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Abstract: As a pillar industry in China, the iron & steel sector have under through 

rapid growth and technical progress for decades. However, energy polices aiming at 

energy savings may not be as good as expected due to the existence of rebound effects. 

The motivation of the paper is to analysis the nexus between technical progress and 

energy rebound effects. Based on a three-input trans-log cost function model, we first 

estimate the share equation and the corresponding price elasticity for each input factor. 

Then, the rebound effect in China’s iron & steel industry over 1985-2015 is evaluated 

through decomposing the energy prices. Empirical results show that: (1) The price 

elasticities of input factors are negative; (2) Energy/capital and energy/labor show 

substitute relationships; (3) The average energy rebound effect in the ISI is as high as 

73.88%; (4) The energy rebound effect shows a downward trend before the 11th 

Five-year period and then an upward trend after that. Therefore, policies proposals of 

lowering the rebound effect should be placed not only on technical progress, but also 

on energy price reform by reducing energy subsidies and thus accelerating energy 

price marketization, so as to promote energy substitution, reduce energy rebound 

effect and produce further economic and environmental benefits. 

 

Keywords: Technical progress, Price elasticity, Energy rebound effect; China’s iron & 

steel industry 

 

1. Introduction 
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Figure 3 Changes of energy intensity in the ISI in China 

Source: China Statistical Yearbook (China Statistics Press, 1986-2016). 

 

From the above analysis, it is noticed that as the technical level in China’s ISI 

improves, energy efficiency in this sector shows an increasing trend. However, due to 

the energy rebound effect, the improvement in energy efficiency may not give rise to 

a decrease on energy use, which can make the energy policies aiming at energy 

savings less effective. The rebound effect describes the phenomenon that energy 

efficiency can be improved by the use of new technologies; however, along with the 

new technologies and increased energy efficiency, industrial enterprises and residents 

may increase their consumption of energy resources (Khazzoom, 1987; Grubb, 1990; 

Wirl, 1997; Wang et al., 2012) (see figure 4). For iron & steel enterprises, 

improvement in energy efficiency means that less energy input achieves equivalent 

output and thus other inputs such as capital and labor will be replaced by energy 

(Wang and Lin, 2017). Whether technology-induced efficiency improvement could 

reduce energy consumption, it is strongly related to the effectiveness of energy policy.  

 

 

Figure 4 The relationship between technical progress and rebound effect 

 

Therefore, the purpose of the paper is to evaluate the energy rebound effect in 

China’s ISI, taking into consideration the energy price control and energy substitution. 
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The main contributions are comprised of three aspects: (1) a 

non-neutral-technical-progress trans-log cost function model is built to interpret the 

relationship between technical progress and rebound effect; (2) the price elasticities 

and energy substitution effect between energy and other input factors are evaluated; (3) 

the energy rebound effect in China’s ISI is estimated using asymmetric price method, 

based on which the changes of rebound effect in each Ffive-year period are analyzed.  

The rest part of the paper is structured as the following sections: Section 2 

emphasizes on literature review. Section 3 describes the methodology for building an 

evaluation model to estimate the energy rebound effect. Section 4 presents variables 

and data sources. Section 5 shows model results and the corresponding analysis. 

Section 6 concludes this manuscript and give policy suggestions.  

 

2. Literature review 

The concept of energy rebound effect was initially introduced by Khazzoom (1987). 

After that, there were many researches focusing on theoretical analyses to give 

in-depth understanding of energy rebound effect, such as Greening et al. (2000) and 

Jin (2007). Based on Khazzoom (1987), improvements in energy efficiency caused by 

technical progress would promote energy conservation. However, the improved 

technical level, along with an increased operational efficiency of production 

equipment, would lead to a decrease in the corresponding production cost, thus 

encourage further economic development, and ultimately accelerate energy 

consuming. Improvement in energy efficiency could boost energy consumption in two 

ways: (1) through reducing the cost of energy consumption and thus encouraging 

producers to substitute energy for other production inputs; (2) through making the 

economy grows more rapidly, thus accelerating energy consumption. Whether energy 

conservation policies would meet the established goals depends largely on the 

rebound effect.  

For empirical research on the topic, there are a variety of researches that analyze 

the energy rebound effect in various sectors of the economy. Roy (2000) estimated the 

technical efficiency promotes energy consumption in India and concluded that if there 
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are no relative pricing policies, it is not feasible to inhibit the energy rebound effect in 

a developing country. Binswanger (2001) analyzed the influence of substitutability as 

well as the income effect on the rebound effect, and their empirical research 

concluded that the rebound effect of service sector was less than 25%. Bentzen (2004) 

evaluated the rebound effect of the manufacturing industry in the US using time series 

data. Results showed the rebound effect was around 24%. Hens et al. (2010) 

calculated the direct rebound effect of household heating and analyzed the effect of 

energy price on direct rebound using consumption data obtained from 964 households. 

Ghosh and Blackhurst (2014) built a household production model to study efficiency 

correlation and the rebound effect between residential and transportation sectors. Yu 

(2015) analyzed the energy rebound effect and sectoral shocks in the USA using CGE 

model. Freire-Gonzalez (2017) estimated the rebound effect in European Union 

countries and found that the rebound effects in most economies are lower than 100%. 

As China’s government has promulgated a series policies to save energy and 

control environment problem (Zhang et al., 2017), energy rebound effect is becoming 

a hot issue. In China, Zhou and Lin (2007) first conducted analysis regarding the 

rebound effect of China’s energy consumption using macroeconomic time series 

between 1978 and 2004, and their results suggested the rebound effect fluctuated 

within the range of 30-80% from a macroeconomic perspective. By improving Zhou 

and Lin (2007)’s model, Lin and Liu (2012) concluded that the overall rebound effect 

in China’s energy consumption during 1981-2009 is around 53.2%. Some studies 

focus on household consumption since price data in household sector is available in 

China. Yu et al. (2013) estimated both the direct rebound effect and indirect rebound 

effect of residential energy consumption in Beijing city. Lin and Liu (2012)’s research 

showed the energy rebound effect of China’s passenger transport is 107.2%, which 

was defined as “back fire effect”. Wang et al. (2014) studied the direct energy 

rebound effect on household electricity consumption in using panel co-integration and 

suggested the values of long-term and short-term energy rebound effect are 74% and 

72%, respectively.   

Econometric methodologies used for energy rebound effect estimation can be 
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concluded as the following types. (1) The direct calculation methods: including OLS 

model (Greene, 1992; Wirl,1997), GLS model (Gonzá lez, 2010), instrumental 

variable method (IV) model (Nesbakken, 2001), 3SLS model (Small and Dender, 

2005, Hymel et al. 2010) and SUR model (Wang et al. 2011). (2) CGE model: Allan 

et al. 2007; Wei, 2010; Yu et al., 2015. (3) Price elasticity model:  Lin and Zhao 

(2016), Lin and Li (2014), Yang and Li (2017), etc. Among the three methods: the 

direct calculation method is based on the definition of rebound effect, but this method 

cannot reflect the connection of improving energy efficiency and energy price control; 

improving in electricity price is significantly driving industrial enterprise’s energy 

efficiency to increase (Zhang, 2012). The CGE model can show the economic 

implication of the rebound effect, but fails to illustrate the reason of energy rebound. 

While the price elasticity or efficiency elasticity method is generally accepted, as it 

uses price elasticity to calculate the rebound effect, which can reflect not only the 

mechanism of the rebound effect but also the connections between technical progress, 

energy substitution and rebound effect. 

Although the ISI is one of the most energy-consuming sectors, the studies 

analyzing the energy rebound effect in this sector are limited. Therefore, we try to 

estimate the energy rebound effect and the corresponding price elasticities in China’s 

ISI, by building the model of trans-log cost function. Policy suggestions are provided 

for achieving energy conservation in industrial sectors. 

3. Methodology 

  As energy price changes, iron & steel enterprises are likely to change the share of 

inputs (energy, capital and labor) in the production process. The price elasticities for 

these three input factors can be estimated, based on the three-input production 

function built as Eq.(1) and the trans-log cost function written as Eq.(2). 

Y= f (A, E, K, L)                                                (1) 

In Eq.(1), Y indicates total output of the iron & steel industry; E, K and L denote 

input factors of energy, capital and labor, respectively; while A indicates technical 

progress. In order to calculate price elasticities for these input factors, the industrial 
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output and input factors are assumed to be exogenously given. The trans-log cost 

function and homogeneity restrictive conditions can be expressed as Eq. (2) and Eq 

(3): 

2
0

1 1 1

2

1 1

1 1
ln ln ln + ln ln

2 2

1
(ln ) ln ln ln ln

2

m m m

ij it jt i it t tt y t
i j i

m m

yy t iy it t it it yt t
i i

TC P P P t t Y

Y P Y t P t Y

     

   

  

 

    

   

 

 
         (2) 

ij ji for all i j    

1 1 1 1

1, 0, 0, 0, , 1, ,
m m m m

i ij iy it
i j i i

i j m   
   

                             (3) 

In Eq.(2), TC indicates the total cost; itP  or jtP
 denoted the price of each input 

factor; i(j) = E, K, L denotes input factors of energy, capital and labor, respectively; t 

works as a time trend variable representing the level of technology.  

According to the Shephard's lemma and combined with Eq. (2), the factor share 

equation for each input factor can be written as Eq. (4): 

1

ln ln
m

factor iy t ij jt i it
j

S Y P t   


                                       (4) 

Based on the above factor share equation, Allen proposed the equations of 

cross-price elasticity (CPE) and own-price elasticity (OPE), which can be expressed 

as Eq.5 and Eq.6, respectively. 

( ) /ij ij i j iS S S                                                   (5) 

2( ) /ii ii i i iS S S                                                  (6) 

Where, )( ji SS is the cost share of the thji )(  factor. ij  indicates variations of 

factor i caused by fluctuation of the price of factor j, as a result, it reflects the 

substitution effect between capital, labor and energy. When technical level in iron & 
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steel production is improved, less energy is needed to produce the same amount of 

products; however, as the improved energy efficiency will make energy relatively 

cheaper than capital and labor, steel producers is likely to use more energy to 

substitute capital or labor, and thus lead to further energy consumption.  

According to the definition of rebound effect, when technical progress happens, 

energy use efficiency will be improved, however; producers consume more energy 

than before. The consumption of energy can be evaluated by the own-price elasticity 

of the decreasing energy price and the substitution elasticities between energy and 

other inputs. Therefore, the decreasing trend of energy price should be separated first. 

Existing literature suggest that the asymmetric price method is widely adopted to 

separate energy price changes (Bentzen, 2004; Gately and Huntington, 2002; Adofo et 

al. 2013; Lin and Li, 2014). Based on the asymmetric price effect, changes in energy 

price can be decomposed into a decreasing energy price effect and an increasing 

energy price effect.   

, 0 , ,* *e t dec t inc tP P P P                                                (7) 

, 0 1min 1, / }t
dec t i i iP P P                                             (8) 

, 0 1max 1, / }t
inc t i i iP P P                                                                                                   (9) 

According to Eq (7), energy price is decomposed into three components, 0P  denotes 

energy price in the initial year, ,dec tP  represents the decreasing trend of energy price 

change, and ,inc tP  represents the increasing trend of energy price change. Based on Eq 

(7-9), the energy cost share equation can be written as: 

0 _ _ _ _ _ _

^ ^ ^ ^ ^ ^ ^ln ln ln ln ln
e dec e inc e k e l e y e te dec inc k lS P P P P Y t                         (10) 

   Thus, the energy rebound effect can be estimated by: 
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_

^ 2
_ ( ) /

e dec eij dec e eRE S S S                                                                                       (11) 

4. Data sources and processing 

Based on the model before, variables of industrial output, industrial input factors 

and the prices of input factors in China’s ISI are necessary for empirical analysis (see 

Table 1). The time interval of data is 1985-2015. In order to conduct comparable 

analysis, all nominal variables have been converted to the 1985 price level.  

Table 1 Data sample for each variable 

Variable declaration 
 

Size Mean-Value Min-value Max-value 

Production output 
（billion） 

Y 31 126.83 16.78 591.06 

Input 
factors 

Energy 
(Mtce)  

E 31 295.50 76.40 693.42 

Capital 
（billion） 

K 31 19.18 3.46 65.65 

Labor input 
(thousand) 

L 31 3087.35 2430 4220.70 

Prices 
of 

input 
factors 

Labor price Pl 31 366.67 100.00 1059.68 
Capital 
price 

Pk 31 105.55 100.00 113.40 

Energy 
price 

Pe 31 141.29 74.35 191.76 

 

4.1 Variables of industrial output and input factors 

(1) Industrial value added (IVA): industrial output indicators include industrial 

products, gross output value and IVA. For ISI, there are variety types of industrial 

products, as a result, the value of production is difficult to be quantified. The indicator 

of gross output value takes into account also the value of intermediate products, which 

does not meet the definition of output in the ISI in this paper. Therefore, IVA is 
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adopted to represent output in this sector and the statistical data of IVA is extracted 

from the CEIC database (CEIC, 2016). 

(2) Labor input: number of employees, collected from ‘China Statistical 

Yearbook’ (China Statistics Press, 1986-2012), is used to measure the labor input. 

Though the statistical data of employees in the ISI during 1999-2002 is missing, it can 

be estimated through another statistical indicators, the overall labor productivity, 

which is the result of IVA divided by the number of employees. 

(3) Capital input: in ‘China Statistical Yearbook’, there are two statistic indicators 

related to the capital input, which are the original value and net value of fixed asset. 

However, both of them are representing the purchase value of capital goods, not the 

real capital input. In order to evaluate the real capital input in the ISI, we need to 

estimate the capital stock for each year. Therefore, like Zhang et al.(2004), Wang 

(2004) and Shan (2008), the capital stock during 1985-2015 are estimated by 

perpetual inventory method (PIM) in this paper.  

(4) Energy input: in order to obtain the total energy input, the input of different 

energy sources (coal, coke, oil, electricity, etc.) is added together by converting them 

into the unit of coal equivalent. Both data of energy consumption and the 

corresponding converting coefficients are obtained from ‘China Energy Statistical 

Yearbook’. In order to calculate energy input cost, similar to Cho et al. (2004), we 

divide energy input into three kinds, including coal-related energy, oil-related energy 

and electricity. The input of nature gas is ignored here because of its small proportion 

(0.42%) in the energy input structure of China’s ISI (Xie et al., 2016). 
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4.2 Variables of factor prices 

(1) Labor price: real wages show the value of labors’ real income adjusted for 

inflation, which can be used to represent labor price. Due to data availability, the 

indicator of overall wage of the manufacturing industry is adopted to indicate the 

level of labor price in the ISI, which is available in the CEIC database (CEIC, 2016). 

(2) Capital price: the real price of capital is the real return on fixed asset 

investment. Therefore, investment return can be expressed as the nominal interest rate 

)(tr  plus depreciation rate )(t , and then be converted into actual interest rate by 

minus the inflation rate )(t . All data needed in the calculation of capital price are 

obtained from the CEIC database (CEIC, 2016) and the calculation process is shown 

in Eq. (13).  

)()()(, tttrP tk                                              （13） 

(3) Energy price: the prices of variety final energy sources. The prices of the 

above-mentioned three energy sources are not comparable as different types of energy 

are measured by different physical units. In order to evaluate the real energy price, the 

market prices of all energy kinds are needed. Then the time varying weight ,i t  is the 

energy input structure in China’s ISI. Therefore, energy price in the ISI can be 

estimated by Eq.(14): 

, , ,*e t i t i t
i

P p  },,{ yelectricitoilcoali                                (14) 

 

5. Empirical analysis 

5.1 Estimated results on price elasticities  
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In order to get the price elasticity for each input factor, the parameters in factor 

share equation (Eq. 4) should be estimated first. As the factor share equations of 

energy, capital and labor are influenced by each other, the three equations are 

estimated by system estimation method. The results of the estimated coefficients are 

shown in Table 2. The conventional R2 is 0.90 in the energy share equation, 0.89 in 

the capital share equation and 0.91 in the labor share equation, respectively. In Table 2, 

the sign of each parameter indicates that the model is in accordance with economic 

reality. The value of t suggests the significance of these parameters at the 5% level. 

 

Table 2 The estimation results for factor share equation 

Variables 
Coefficients Estimations 

Standard 
Error 

t-value 
Probabilit
y   

_( )eConstent S

 
0  

-0.20  0.10  -2.04  0.04  

ln _( )e eP S  1_ e  0.22  0.03  8.41  0.00  

ln _( )k eP S  2 _ k  -0.09  0.03  -2.67  0.01  

ln _( )eY S  Y_3  0.06  0.02  3.24  0.00  

_( )et S  t_4  -0.01  0.00  -2.59  0.01  

_( )kConstent S

 
5  

0.57  0.11  5.03  0.00  

ln _( )k kP S  6 _ k  0.07  0.05  1.52  0.10  

ln _( )kY S  Y_7  -0.04  0.02  -1.65  0.10  

_( )kt S  t_8  0.02  0.00  4.94  0.00  

ln _( )l lP S  9 _ l  0.12  0.02  6.86  0.00  

0 1_ 2 _ 1_ 2 _ 3_ 4 _ln *ln ( )*ln *ln *e e e k k e k l Y tS P P P Y t              

5 2 _ 6 _ 2 _ 6 _ 7 _ 8_* ln *ln ( )*ln *ln *k k e k k k k l Y tS P P P Y t              
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0 5 1_ 2 _ 2 _ 6 _ 9 _

3_ 7 _ 4 _ 8 _

1 ( ) ( )* ln ( )* ln *ln

( )* ln ( )*

l e k e k k k l l

Y Y t t

S P P P

Y t

      

   

       

   
 

 

Based on the above results, the cross-price elasticity ( ij ) and own-price elasticity 

( ii ) can be calculated according to Eq. (5-6). However, the average cost share of 

energy, capital and labor should be calculated first. According to Lin and Li (2004), 

the average cost share means the average proportion of the cost of each input factor in 

total input cost over the research periods (31 years in this paper), which can be 

calculated by Eq. (15). 

31

)*/()*(
31

1 ,,
 
  t leki

itititit

i

QPQP

S
                                   (15) 

Where i indicates energy, capital and labor; t indicates the year; Pit and Qit indicate 

the price and quantity of input factor, respectively. The obtained result for the average 

cost share of energy, capital and labor is 0.596, 0.214 and 0.189, respectively. As a 

typical energy intensive manufacturing sector, the average share of energy in the ISI 

approximates the average energy share in the manufacturing industry, which is about 

0.53 based on the research by Dong et al. (2012). The results are shown in Table 3. 

Table 3 Elasticities of cross-price and own price for input factors in the ISI 

ij  L E K 

L -0.19 0.12 0.31 

E 0.04 -0.03 0.07 

K 0.27 0.19 -0.46 

 

The following conclusions are drawn from Table 3. (1) The own price elasticities of 

energy, capital and labor are -0.03, -0.46, and -0.19, respectively. The results indicate 

that a change in price of one input factor would bring about influence to input 

quantity in the adverse direction. (2) The price elasticity of energy is relatively small 

(-0.03), compared to that of labor and capital. The main reason is that the prices of 
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energy in China is regulated and maintained at a low level. Therefore, the rigid energy 

price lead to small price elasticity. (3) The estimated energy-capital elasticity and 

energy-labor elasticity are positive, which implies a substitutable relationship between 

energy and other input factors. When energy price decreases, the iron & steel 

enterprise would be likely to reduce their capital and labor inputs and use more 

energy.  

5.2 The energy rebound effect in the ISI in China 

Based on the definition of energy rebound effect, a decreasing energy price can 

bring about more energy use and further rebound effect. In order to evaluate the 

energy rebound effect in the ISI, energy price is decomposed into increasing energy 

price and decreasing energy price based on symmetric price effect as stated in 

Eq.(7)-(9), which is shown in Fig. (4).  

 

 

Figure 4. Decomposition of the energy price in China from 1985 to 2015 

 

By decomposing the energy price, we re-estimate the energy input share equation 

in Eq.(10), with results given in Table 4. Then on the basis of the definition of energy 

rebound effect and substitution effect, energy rebound effect can be calculated by the 

own price elasticity of decreasing energy price. 

Table 4 Evaluation of energy input share equation with decomposed energy price  
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 coefficient Std. Error T-value P 

i  
2.36 0.67 3.52 0.00 

ln _eP dec  
-0.21 0.19 -1.08 0.00 

ln _eP inc  
0.45 0.07 6.63 0.00 

ln kP  
-0.26 0.06 -4.45 0.00 

ln lP  
-0.32 0.13 -2.45 0.02 

lnY  0.18 0.03 5.70 0.00 
t  -0.01 0.01 -0.79 0.44 
Adj-R2 0.92 
Own price elasticity  

ln _eP dec  
-0.74 

ln _eP inc  
0.33 

     

Table 4 suggests most parameters are significant at the 5% level. The 

adjusted-R-squared value is 0.92, which implies a high fitness of the estimated 

coefficients. According to the model results, the energy rebound effect in the ISI is 

estimated to be as high as 74%. The result means that when energy efficiency is 

improved through technical progress, 74% of expected energy-saving would be offset 

due to the decreasing energy prices. Therefore, although China’s ISI is experiencing a 

rapid technical progress, the existence of the low energy prices is encouraging the iron 

& steel enterprises to input more energy resources rather than capital or labor, and 

thus limit the impact of technical progress on energy saving and carbon reducing. This 

conclusion is in accordance with Lin and Li (2014)’s estimation for heavy industries, 

which is around 74.3% over 1980-2010. In addition, the overall energy rebound effect 

was estimated to be 88.42% over 1998-2011 by (Li et al., 2015) in the entire industrial 

sector; and 90.75% over 2006-2012 by (Lin and Tian, 2017) in those energy intensive 

industries in China.  

 

Table 5 Energy rebound effect in the ISI during each Ffive-year period 
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Period Year Energy rebound effect 

7th Five-year Plan 1986 to 1990 83.26% 

8th Five-year Plan 1991 to 1995 72.75% 

9th Five-year Plan 1996 to 2000 69.32% 

10th Five-year Plan 2001 to 2005 65.27% 

11th Five-year Plan 2006 to 2010 68.74% 

12th Five-year Plan 2011 to 2015 84.53% 

 

To understand the changing trend, we further calculate the energy rebound effect 

during each Ffive-year period. At first, the energy rebound effect maintained a 

continuous declination and dropped from 83.26% during the 7th Five-year period, to 

65.27% during the 10th Five-year period. The decreasing energy rebound effect means 

that smaller proportion of expected energy saving is offset and the influence of 

technical improvement on energy saving is strengthened. During the “10th Five-Year 

plan” period, the production of crude steel has increased by 174.2%. In the meanwhile, 

energy consumption in the ISI increased only by 120%. The index of energy 

consumption per ton steel in key iron & steel enterprises1 fell from 876 kilogram of 

coal equivalents per ton (kgce/t) to 741 kgce/t, indicating a decline of 15.4% (Zhang 

et al. 2013). Therefore, empirical data confirm that the improvement in energy 

efficiency due to technology upgrade reduced energy use. 

During the “11th Five-year plan” period, energy rebound effect increased a bit but 

still kept at a low level (68.7%). In this period, China’s government proposed energy 

intensity and emission intensity target: energy consumption and carbon emission per 

GDP should be reduced by 20% and 10% respectively by 2010. The rigid target 

induced substantial improve in energy efficiency of China’s ISI. T Two major specific 

energy saving policies were implemented in China’s ISI at that period. One was the 

policy of reducing outdated production capacity. During the “11th Five-year plan” 

period, a total of 122.72 million tons of iron capacity and 72.24 million tons of steel 

                                                              
1  The technical level of key ISI enterprises can reflect the main level of China’s ISI, whose steel production 
accounted for about 80% of total steel production in China. 
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capacity had been cut, which reduced energy use in each producing process. The other 

was the promotion of advanced energy-saving technologies. The penetration of dry 

Top Gas Pressure Energy Recovery Turbine (TRT) and recovery technology of 

converter gas reached more than 50%, and some large enterprises established energy 

management centers, which significantly promoted energy saving in the ISI. However, 

from the perspective of rebound effect, energy prices were still regulated at a low 

level during the period, therefore iron & steel enterprises preferred to input energy 

rather than other input factors (capital and labor); at the same time, financial crisis 

inhibited normal activities in financial market, which had positive effect on the 

substitution between capital and energy. Therefore, although the above mentioned 

energy-saving policies were carried out, energy rebound effect had increased a bit 

during the period.    

It is worthy of mentioning that the rebound effect during the 12th Five-year was 

higher than that during the 11th Five-year. In the 12th Five-year Plan, China’s 

government also proposed the numerical reducing target of energy consumption and 

carbon emission per GDP, which 16% and 17% respectively by 2015. However, 

improving in energy efficiency do not mean actual energy saving. In China’s ISI, 

compared with the 11th Five-year, the energy rebound effect increased, which means 

that iron & steel enterprise input more energy resources. The input decisions of iron & 

steel enterprise rely on prices of input factors. Coal-related energies have been the 

dominant energy inputs in China’s ISI, which account for 80% of energy input 

structure (Wang and Lin, 2017). Since 2006, the price of coal products gradually 

moved towards the direction of marketization. Compared with the regulated prices in 

the past, coal prices began to fluctuate. The rebound effect showed an increase during 

the “12th Five-Year plan” mainly due to the significant drop in market coal prices. 

Low market coal price lead to more input of coal-related energy and less energy 

conservation. Therefore, coal price is the main reason for high energy rebound effect. 

However, China’s market coal prices do not include external cost, especially the 

environment cost of coal combustion. If the external cost included, coal price should 

be higher and rebound effect could be reduced. 
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To sum up, the rebound effect in the ISI maintained a downward trend until the 

11th Five-year period, since when it started to show an upward trend. Because higher 

energy rebound effect means less energy saving, therefore the upward trend of 

rebound effect should be controlled. Now, 3 years have passed since the 13th Five-year, 

and the ISI is facing a more challenging energy input restriction. In the 13th Five-year 

Plan, Chinese government has proposed not only the numerical reducing target of 

energy consumption per GDP (15%), but also the total amount control of energy 

consumption (5000 Mtce). Compared with the 12th Five-year, the energy efficiency in 

the ISI has been improved by applying energy saving technologies; in the meanwhile, 

the target of total amount control has enforced the iron & steel enterprises to either 

reduce energy inputs or substitute energy with other input factors ( capital and labor), 

to ensure the actual energy saving. Together with the market-oriented energy prices, 

energy rebound effect is expected to be stabilized within a certain range.Now, 3 years 

of 13th Five-year passes, ISI is facing more strict energy input restriction. In 13th 

Five-year Plan, China’s government not only proposed the numerical reducing target 

of energy consumption per GDP (15%), but also total amount control of energy 

consumption (5000 Mtce). Compared with 12th Five-year, energy saving technologies 

improve energy efficiency; at the same time, the target of total amount control enforce 

iron & steel enterprise to reduce energy input, substitute energy with other input 

factor ( capital and labor), and ensure actual energy saving. Together with more 

market-oriented energy price, energy rebound effect can be controlled. 

  

6. Conclusion and policy suggestions 

As reducing energy consumption and producing in a cleaner way are more and 

more important in heavy industrial sectors, China’s government implemented Energy 

Saving and Emission Reduction policy since 2005. After that, the government 

proposed numerical target in every Five-year Plan. However, actual energy saving do 

be affected by these energy saving policies, but also relied on energy price policy and 

rebound effect. Therefore, the relationship between technical progress and energy 

rebound effect has become a valuable research issue. In order to conduct empirical 
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analysis, a trans-log cost function model is built in this research to evaluate the price 

elasticities of production inputs and estimate the energy rebound effect in the ISI over 

1985-2015. Main conclusions include: (1) The price elasticities of input factors are 

negative; (2) Energy/ capital and energy/labor show substitute relationships; (3) The 

average energy rebound effect in the ISI is as high as 73.88%; (4) The energy rebound 

effect shows a downward trend before the 11th Five-year period and then a upward 

trend after that.  

As the existence of high energy rebound effect in China’s ISI, energy policies 

regarding energy conservation should be focus on lowering energy rebound effect. 

Based on the economic model we built and the empirical conclusions obtained, some 

policy suggestions are given as follows: 

Firstly, accelerating the implementation of more energy-saving technologies. The 

changing trends of energy rebound effect indicate that technical progress do bring 

energy saving. Thus, improving technical level will become an important measure to 

reduce rebound effect. As technical innovation needs substantial initial investment, 

government should increase financial support for energy innovation and clean energy 

technologies. At the same time, the implementation of energy-saving technologies 

cannot be ignored, and government should also help the enterprises to cultivate 

employees and promote further applications.  

Secondly, reducing energy price regulation. Although energy price elasticity is 

small (-0.032), the negative price elasticity means that price transmission mechanism 

in China’s ISI is effective. As the price of different energy sources (coal, oil, and 

electricity) increases, energy consumption will be reduced. More effort is needed to 

promote mechanism reform for energy price towards marketization. At present, 

although coal price in China has been decided by the market, there are still high level 

of government regulation in oil and electricity prices. Electricity input is particularly 

important for iron & steel production. Deregulation in electricity price can lead to an 

increase in industrial electricity price, and thus a reduction in electricity input.    

Thirdly, cutting down energy subsidies. The existence of high rebound effect 

means that the decreasing price of energy products and services make it cheaper than 
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labor and capital, and lead to an increase in energy demand. However, most energy 

enterprises in China are state-owned. The monopoly of state-owned energy resources 

as well as administrative pricing lead to the retaining of fossil energy prices at a low 

level. In addition, there is substantial government subsidies in China’s energy 

products. Energy subsidy policy will further lower the prices of energy products and 

promote the rebound effect, leading to a higher energy consumption and an 

environment deterioration. Therefore, fossil energy price reform and subsidy reform 

are crucial to mitigating energy rebound effect.  

Fourthly, promoting substitutions between capital/labor and energy resources. 

The substitutive relation exists between energy and other input factors, which enables 

the attempt of achieving energy conservation through energy substitution. Along with 

the government controlled energy prices, iron & steel enterprise are likely to use more 

energy to substitute capital and labor inputs. The steel output has increased rapidly but 

with tremendous energy consumption. As a result, policies should aim at substitutions 

in the adverse direction, by using more capital or labor to substitute energy input. For 

example, government can promote public investment in energy conservation, carbon 

reduction and cleaner energy sources; government can also increase expenditure in 

human resource investment; and enterprises should update their equipment to use less 

energy. Besides substitutions between capital/labor and energy resources, inter-fuel 

substitutions are also a potential solution. For example, promoting clean energy 

policies and introducing more electricity generation from renewable sources through 

energy storage (Xie et al., 2018). 

To sum up, although China’s energy prices are getting market-oriented, energy 

prices in China are still regulated by the government and stated owned companies, 

and the state controlled prices inhibit substitutions between input factors, finally lead 

to more energy consumption. Therefore, implementation of government’s Energy 

Saving and Emission Reduction policy rely on lowering rebound effect; lowering 

rebound effect should combine the promotion of energy-saving technologies with 

reducing energy price regulation, cutting down energy subsidies and promoting 

substitution among input factors.    
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