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INTRODUCTION 81 

 82 

Therapeutic hypothermia (hypothermia) as compared to therapeutic normothermia (normothermia) 83 

for treatment of comatose children resuscitated after out-of-hospital or in-hospital cardiac arrest did not 84 

confer a significant benefit in survival with favourable functional outcome in two independent, parallel trials 85 

which utilized identical study protocols(1,2).  Current paediatric guidelines recommend either hypothermia 86 

or normothermia for target temperature management (TTM)(3).  However, since effect sizes tested were in 87 

the range of 10 to 20 percent, uncertainty persists regarding optimal temperature management. 88 

In the broad paediatric age range, there are multiple differences between cardiac arrests occurring 89 

in the out-of-hospital versus in-hospital setting including patient demographics, underlying pre-existing 90 

pathology, aetiology of cardiac arrest, response times and resuscitative skills of the initial responders, and 91 

survival rates (4). These differences informed a decision by the THAPCA trials investigators to enrol 92 

patients into two separate independent parallel clinical trials (ClinicalTrials.gov NCT00880087 and 93 

NCT00878644). However, a major challenge in paediatric cardiac arrest trials is recruitment of sufficiently 94 

large sample sizes to detect small clinically significant differences(5).  As the underlying mechanism for 95 

potential benefit from hypothermia after a hypoxic-ischemic insult is similar in both paediatric populations, 96 

the THAPCA trial investigators proposed a secondary analysis of the comparative efficacy and safety of the 97 

two temperature interventions in the combined population of out-of-hospital and in-hospital cardiac arrest 98 

study cohorts. We report here the results of the pooled data analysis from these two trials which used 99 

identical protocols. 100 
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METHODOLOGY 101 
 102 

Design 103 

 104 

The two THAPCA trials were conducted in paediatric intensive care units (ICUs) at 41 enrolling 105 

children’s hospitals in the United States, Canada, and United Kingdom. The rationale, study design, 106 

outcome selection process, protocol summary, 12-month pilot vanguard phase and individual trial 107 

outcomes were previously published (6-8).  Funding for both trials was from the National Heart, Lung, and 108 

Blood Institute (NHLBI). The trial protocols differed only in the inclusion criteria definition of out-of-hospital 109 

and in-hospital cardiac arrest(1,2). The institutional review boards of all participating sites and the data- 110 

coordinating centre approved the protocol and informed consent documents.  Site research coordinators 111 

collected all data, and statisticians at the data-coordinating centre (University of Utah) performed all 112 

analyses.  Site training, data management and site monitoring were described in the Supplementary 113 

Appendix of each trial report(1,2).  All site investigators vouched for their submitted data. The current 114 

pooled study was approved by the THAPCA executive committee prior to analysis of either of the THAPCA 115 

trials. 116 

Patient Population 117 

 118 

Children ≥48 hours and <18 years old who sustained cardiac arrest, required chest compressions 119 

for ≥ two minutes, and required mechanical ventilation after return of circulation, met inclusion criteria. 120 

Major exclusion criteria were scores of 5 or 6 on the Glasgow Coma Scale motor response subscale 121 

(scores range from 1 to 6, lower scores indicate worse function), inability to randomize within 6 hours of 122 

return of circulation, active and refractory severe bleeding, pre-existing illness with life expectancy less than 123 

12 months, and lack of commitment to aggressive care.  Full exclusion criteria lists were provided in the 124 

Supplementary Appendix of the two trial reports(1,2). Written informed consent from a parent or legal 125 

guardian was required. 126 

Randomization and Intervention 127 

 128 

Eligible patients were randomized to hypothermia or normothermia in a 1:1 ratio using permuted 129 

blocks stratified by clinical centre and age (younger than 2 years, 2 to 11 years, and 12 years or older). 130 
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Targeted temperature management (TTM) was actively maintained for 120 hours in both groups, as 131 

previously described(1,2). Participants assigned to hypothermia were pharmacologically paralyzed, sedated 132 

and cooled (or warmed if indicated) by surface cooling using a Blanketrol III cooling unit (Cincinnati 133 

SubZero, Cincinnati) with mattresses applied anteriorly and posteriorly, to achieve and maintain 33°C 134 

(range 32-34°C) core temperature for 48 hours. They were rewarmed over 16 hours or longer to target 135 

temperature 36.8°C (range 36-37.5°C) which was actively maintained throughout the remainder of the 120 136 

hour intervention period. Patients randomized to normothermia received identical care except core 137 

temperature was actively maintained at 36.8°C (range 36-37.5°C) for 120 hours with the cooling unit.  Dual 138 

central temperature monitoring (oesophageal, rectal, or bladder) and a servo-control mode were used.  For 139 

patients supported with extracorporeal membrane oxygenation (ECMO) at the time of randomization or 140 

later, temperature was controlled with ECMO using a single central temperature monitor. All other aspects 141 

of care were determined by clinical teams. 142 

Outcomes 143 

 144 

The primary outcome was survival with favourable neurobehavioral outcome at 12 month follow-up, 145 

defined as an age-corrected standard score ≥70 on the Vineland Adaptive Behaviour Scales, Second 146 

Edition (VABS-II)(9). The VABS-II has an age-corrected mean score of 100 (standard deviation, 15); higher 147 

scores indicate better performance.  VABS-II data were collected centrally (Kennedy Krieger Institute, 148 

Baltimore, MD) via telephone by a trained interviewer blinded to treatment assignment.  As pre-specified in 149 

the protocol, enrolled children with pre-arrest VABS-II scores below 70 (based on data from caregiver 150 

questionnaire completed at each site within 24 hours of randomization) were excluded only from the 151 

primary efficacy analysis.  Patients with no baseline VABS-II available were considered eligible for the 152 

primary analysis if their baseline Paediatric Overall Performance Category (POPC) and Paediatric Cerebral 153 

Performance Category (PCPC) scores were in normal or mild disability categories(10,11).  Scores on these 154 

scales range from 1 to 6, with lower scores representing less disability; patients with scores of 1 or 2 on 155 

both scales were eligible for the primary analysis. 156 

Secondary outcomes were change in neurobehavioral function, measured as the difference from 157 

pre-arrest baseline to 12 month measurement on the VABS-II (assigning deceased cases and those with 158 
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lowest possible VABS-II scores worst possible outcomes, regardless of baseline function) and survival at 159 

12 months. Safety outcomes included the incidences of blood product use, infection, and serious 160 

arrhythmias through seven days, and 28-day mortality.  The outcome assessment methodology was 161 

previously described(1,2). 162 

Statistical Analysis 163 

 164 

Individual patient data from both primary trial datasets were combined. Identical definitions, coding, 165 

reference units and data collection processes were used for each trial enabling combination without loss of 166 

data items. The efficacy analysis for the primary outcome was performed using a pre-specified modified 167 

intention-to-treat approach in both trials, excluding children with poor pre-arrest neurobehavioral function. 168 

Secondary efficacy outcomes were analysed among all children.  Safety analyses were done by treatment 169 

received.  The primary outcome and 12 month mortality were compared between assigned treatment 170 

groups using a Cochran-Mantel-Haenszel test stratified by categorized age and study.  Change in VABS-II 171 

was analysed using van Elteren’s modification of the Mann-Whitney test (12), stratifying by categorized age 172 

and study, treating death as the worst outcome and the lowest possible VABS-II score as the second-worst 173 

outcome.  For this exploratory investigation, significance was declared at the 0.05 for all tests.  The 174 

probability of survival to one year was evaluated by comparing survival curves between arms using a log- 175 

rank test stratified by age category.  Univariate analysis of prognostic risk factors for survival independent  176 

of treatment group were analysed.  Multivariable analysis for prognostic factors for neurobehavioral 177 

outcome have been presented previously for each trial(13,14). Analyses were performed using SAS 178 

software, version 9.4 (SAS Institute, Inc., Cary, NC). 179 

 180 
 181 
 182 

RESULTS 183 

 184 

Characteristics of Study Cohort 185 

 186 

Both trials commenced on September 1, 2009 with THAPCA-OH patients enrolled through 187 

December 31, 2012 at 36 centres in USA and Canada (2 did not recruit) and THAPCA-IH patients enrolled 188 

until February 27, 2015 at 37 sites in the USA, Canada and UK (9 sites did not enrol).  Forty-seven centres 189 
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in total participated in at least one of the THAPCA trials, with 6 centres not randomizing at least one case. 190 

The full CONSORT Diagram is described in Appendix Fig 1. A total of 4146 patients met inclusion criteria 191 

and were screened; 1221 had no trial exclusion criteria and were eligible for enrolment; and 624 were 192 

enrolled, 321 randomized to hypothermia and 303 to normothermia.  Eight patients, who were assigned to 193 

hypothermia and three normothermia, did not receive an intervention and one normothermia patient 194 

received hypothermia therapy.  Five hundred and seventeen patients had VABS-II scores ≥70 at baseline, 195 

prior to their cardiac arrest, and were eligible for the primary outcome assessment. 196 

The baseline characteristics of the two temperature treatment groups were similar (Table 1). 197 
 198 
Overall median age was 1.5 years IQR [0.3, 7.1] with 63% male; 71% had one or more pre-existing medical 199 

condition most frequent being cardiac, lung or airway, and neurological conditions. Thirty percent  200 

(190/624) had a primary cardiac aetiology for their arrest, 9% (57/624) presented with a shockable rhythm 201 

(ventricular fibrillation or ventricular tachycardia); and the median estimated duration of chest compressions 202 

was 25 minutes IQR [12, 42.5]. Time from return of spontaneous circulation after cardiac arrest to target 203 

temperature following randomization for hypothermia group was Median 6.9 hours [Interquartile range 204 

(IQR) 5.6 to 8.8] and normothermia group 6.4 hours [IQR 5.3 to 8.4]. 205 

Outcomes 206 

 207 

The proportion of survivors with the primary outcome VABS-II score ≥70 at 12 months was not 208 

significantly different between those treated with hypothermia (28%) compared to the normothermia 209 

intervention (26%); relative risk 1.08; 95% confidence interval [CI] 0.81 to 1.42; p=0.61. In patients 210 

included in the primary analysis who died or had a profound (VABS-II <45 or lowest) or moderate to severe 211 

disability (VABS-ll 45-69), there was also no significant difference in proportion of patients treated with 212 

either therapy (p=0.4) (Table 2). The secondary outcome of one year change in VABS-ll score from 213 

baseline score did not differ between groups (p=0.20); nor did the proportion in whom the VABS-ll score 214 

decreased by no more than 15 points (1 standard deviation) or improve differ (hypothermia 22% versus 215 

normothermia 21%) (Table 2). 216 

Survival at 12 months for 614 patients, whose outcome status was known, did not differ between groups 217 

(hypothermia 44% vs. normothermia 38%; relative risk 1.15; 95% CI 0.95 to 1.38; p=0.15) (Table 2). 218 
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Survival duration was longer for patients receiving hypothermia; (Figure 1a, p=0.045).  Sensitivity analysis 219 

revealed that this difference was due to the greater number of deaths occurring in the normothermia 220 

groupbetween days 0 to 3 (Figure 1b, p=0.91; Supplemental Figure 2, p=0.003).  Specifically, a greater 221 

number of deaths occurred on day 0 in the normothermia group (19 versus 5) and the majority (12/19) were 222 

due to cardiovascular failure/futility (Table 3).  By 12 months, the proportions of deaths by individual causes 223 

were similar for patients treated with hypothermia and normothermia.  The majority of deaths were 224 

attributed to brain death (24.6% versus 24.9%), withdrawal of medical support in view of poor neurological 225 

prognosis (35.8 versus 31.4%), or cardiovascular failure/futility (21.2% versus 24.9%) (Table 3). 226 

Prognostic factors for survival and for survival at 12 months with VABS-ll ≥70 were analysed (Table 227 

4).  A cardiac aetiology of cardiac arrest, initial rhythm of ventricular fibrillation or ventricular tachycardia, 228 

shorter duration of cardiopulmonary resuscitation, fewer epinephrine doses, and cardiac arrest occurrence 229 

during a weekday (versus weekend) and during the day (versus night) were each associated with improved 230 

survival, independent of treatment arm.  Children whose cardiac arrest occurred in-hospital compared to 231 

out-of-hospital were almost twice as likely to survive (OR 1.79 [1.29, 2.49]) and three times as likely to 232 

survive with VABS-ll ≥70 (OR 3.09, 95% CI [2.04, 4.69]) (see Supplemental Table 1). 233 

Safety 234 

 235 

Safety outcome data were available for 314 in the hypothermia group and 298 in the normothermia 236 

group. The incidences of blood-product use, infection, and serious arrhythmias within seven days did not 237 

differ between these groups; nor did 28 day mortality significantly differ [hypothermia, 146/314(46%) 238 

versus normothermia, 159/298(53%), p=0.10; (see Supplemental Table 2). 239 

DISCUSSION 240 

 241 

In this analysis of pooled data from two identically conducted targeted temperature management 242 

randomized clinical trials(1,2), there was no significant improvement in survival with favourable 243 

neurobehavioral outcome, defined as a VABS-II score ≥70 for hypothermia (28%) versus normothermia 244 

(26%) groups.  Additionally, the best change from baseline outcome, defined as a VABS-II score reduction 245 

by no more than 15 points (1 SD) at one year, was similar for hypothermia (22%) and normothermia (21%) 246 

groups.  Mortality at one year was not statistically different by temperature intervention, although earlier 247 
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deaths in the first three days of intervention were observed with normothermia.  Hypothermia and 248 

normothermia groups had comparable safety profiles for blood product utilization, infection, serious cardiac 249 

arrhythmia and 28-day mortality. 250 

We were able to perform a pooled randomized control trial (RCT) analysis, as opposed to an 251 

individual patient data (IPD) meta-analysis, because the RCT protocols were identical with respect to all 252 

elements including data definitions, collection and handling procedures, and primary and secondary 253 

outcomes. In addition, the trials were initiated concurrently and predominantly at sites that participated in 254 

both THAPCA trials, minimizing temporal and site-specific effects between trials. The justification for 255 

conducting separate trials stemmed from analysis of a pre-trial planning cohort study that found differences 256 

in the aetiology of arrest, initial cardiac arrest rhythm, resuscitation skills of initial responders and survival 257 

outcomes between paediatric out-of-hospital and in-hospital cardiac arrest populations(4,15,16). In fact, the 258 

substantial difference in proportion of favourable outcomes between the IH and OH cohorts provides 259 

support for the decision to conduct separate trials in these two paediatric populations. 260 

The current investigation was planned and approved by the trial executive committee prior to 261 
 262 

completion of either trial.  By combining the two trial datasets in the current investigation, we were able to 263 

further explore the impact of hypothermia versus normothermia to ameliorate severe hypoxic-ischemic 264 

injury following paediatric cardiac arrest in a sample approximately twice the size of the original trials. 265 

However, in the pooled population as in the individual trials, there were no statistically significant 266 

differences for the primary or two secondary outcomes. The larger sample size gained by combining the 267 

two trials leads to more precise confidence intervals for treatment effect than in each individual trial, more 268 

conclusively ruling out even moderate benefits of hypothermia. 269 

In this study, both treatment arms received 120 hours of active temperature control, to prevent fever 270 

(temperature >37.5°C), using surface temperature control devices, pharmacological sedation and 271 

neuromuscular blocking medication as required. Our findings are similar to a large adult trial of targeted 272 

temperature management (TTM) of 33°C versus 36°C for 36 hours(17), which found no statistically 273 

significant difference in outcomes.  However, neither the adult nor the paediatric trials compared active 274 

TTM with no active temperature control.  Recent reports of actual practice temperature management of 275 
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adult cardiac arrest describe a change in TTM from 33°C to 36°C(18-20). This practice has been 276 

accompanied by trends in less active cooling, greater exposure to fever, and worse clinical outcomes(20). 277 

The reports suggest an actual practice ‘belief’ that fever prevention can be achieved without protocol 278 

guided sedation, neuromuscular blockage and servo regulated cooling devices.  A large ongoing adult trial 279 

of hypothermia (33°C) versus standard care avoiding early fever (>37.8°C) management after cardiac 280 

arrest may provide needed information to address this critical question (ClinicalTrials.gov Identifier: 281 

NCT02908308). 282 

Although there was no overall difference in survival at 12 months, we found a difference in time to 283 

death between hypothermia and normothermia treatment groups (Figure 1a; p=0.045). This difference was 284 

explained by more early deaths in the normothermia group during days 0 through 3 (Figure 1c; p=0.003). 285 

There are at least two reasons for this observation.  First, for day 0, increased deaths due to cardiac failure 286 

in the normothermia group was observed, although this trend largely balanced out by day 3 (Table 3). This 287 

suggests hypothermia may have been protective or provided additional inotropic effects for the myocardium 288 

in the early post arrest period.  Early hypotension in the first 6 to 12 hours post cardiac arrest is associated 289 

with worse outcome in children comatose after cardiac arrest(21,22).  Hypothermia has been reported to 290 

reduce inotropic or vasopressor requirement and reduce/rebalance myocardial work to oxygen demand(23).  291 

Following adult cardiac arrest, hypothermia increases systemic vascular resistance leading to reduced 292 

vasopressor use and lower oxygen consumption(24). In children, hypothermia has been reported as a 293 

useful salvage therapy for severe low cardiac output syndrome post congenital heart disease surgery(25).  294 

The second identifiable factor associated with hypothermia was lower numbers of deaths through            295 

day 3 that were attributable to brain death or to poor neurological prognosis [hypothermia 10% (31/321) 296 

versus normothermia 19% (57/303); p=0.001](Table 3).  This likely reflected delays in neurological 297 

prognostic and brain death assessments in hypothermic patients until at least 24 hours after normothermia 298 

was achieved; this common practice stemmed from consideration that sedative drugs administered 299 

concurrently with hypothermia could have prolonged clearance and thereby confound clinical 300 

assessments(26). 301 

There are limitations with the current study.  As described previously, caregivers and research staff 302 

in the ICU were aware of treatment assignments of patients, although the primary outcome one year VABS- 303 
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II interview assessments were performed by individuals who were unaware of treatment group 304 

assignment(1,2). We could not rule out the possibility of earlier death or determination by clinical teams of 305 

futility in the normothermia group, as discussed above.  Although planned prior to the completion of the two 306 

THAPCA trials, this pooled analysis was performed after publication of the two primary trials when the 307 

results were known to the investigators. A major strength of this study was that pooling of individual patient 308 

data analysis was possible due to identical protocols and data definitions. The larger sample size provided 309 

greater statistical power to show potential differences in neurobehavioral, mortality and safety outcomes. 310 

The inclusion and exclusion criteria selected patients with identical high risk of neurological morbidity and 311 

mortality. The final inclusion of 15% (624/4146) of initially screened patients may limit the generalization of 312 

the study findings to all paediatric cardiac arrest patients. However, the current pooled study included a 313 

more heterogeneous and generalizable population than did either individual trial. Inclusion of patients 314 

stratified with less severe injury, excluding the most severe hypoxic ischemic arrests (e.g. sudden infant 315 

death syndrome), or selecting a more homogeneous population (e.g. drowning) might allow more focused 316 

assessment of TTM efficacy.   Unanswered questions remain regarding optimal evaluation of TTM.  Future 317 

trials should consider different durations and depth of cooling (27-29), earlier onset of TTM, more precise 318 

patient stratification based on acute brain injury biomarkers, and adjunctive neuroprotective agents. 319 

In conclusion, this larger pooled cohort of patients who were comatose after paediatric cardiac 320 

arrest from in-hospital or out-of-hospital locations, therapeutic hypothermia did not confer a statistically 321 

significant benefit in survival with a good functional outcome compared to therapeutic normothermia.  Both 322 

hypothermia and normothermia active temperature interventions had similar severe adverse event profiles. 323 
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ABSTRACT 34 
 35 
 36 
 37 
 38 
Background: Separate trials to evaluate therapeutic hypothermia after paediatric cardiac arrest 39 

for out-of-hospital and in-hospital settings reported no statistically significant differences in 40 

survival with favourable neurobehavioral outcome or safety compared to therapeutic 41 

normothermia.  However, larger sample sizes might detect smaller clinical effects. Our aim was 42 

to pool data from identically conducted trials to approximately double the sample size of the 43 

individual trials yielding greater statistical power to compare outcomes. 44 

Methods: Combine individual patient data from two clinical trials set in forty-one paediatric 45 

intensive care units in USA, Canada and UK. Children aged at least 48 hours up to 18 years old, 46 

who remained comatose after resuscitation, were randomized within 6 hours of return of 47 

circulation to hypothermia or normothermia (target 33.0°C or 36.8°C). The primary outcome, 48 

survival 12 months post-arrest with Vineland Adaptive Behaviour Scales, Second Edition (VABS- 49 

II) score at least 70 (scored from 20-160, higher scores reflecting better function, population 50 

mean=100, SD=15), was evaluated among patients with pre-arrest scores ≥70. 51 

Results: 624 patients were randomized. Among 517 with pre-arrest VABS-II scores ≥70, the 52 

primary outcome did not significantly differ between hypothermia and normothermia groups 53 

(28% [75/271] and 26% [63/246], respectively; relative risk, 1.08; 95% confidence interval [CI], 54 

0.81 to 1.42; p=0.61).  Among 602 evaluable patients, the change in VABS-II score from 55 

baseline to 12 months did not differ significantly between groups (p=0.20), nor did, proportion of 56 

cases with declines no more than 15 points or improvement from baseline [22% (hypothermia) 57 

and 21% (normothermia)]. One-year survival did not differ significantly between hypothermia 58 

and normothermia groups (44% [138/317] and 38% [113/ 297], respectively; relative risk, 1.15; 59 

95% CI, 0.95 to 1.38; p=0.15). Incidences of blood-product use, infection, and serious cardiac 60 

arrhythmia adverse events, and 28-day mortality, did not differ between groups. 61 
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Conclusions: Analysis of combined data from two paediatric cardiac arrest targeted 62 

temperature management trials including both in-hospital and out-of-hospital cases revealed that 63 

hypothermia, as compared with normothermia, did not confer a significant benefit in survival  64 

with favourable functional outcome at one year. 65 

Clinical Trial Registration: THAPCA-OH ClinicalTrials.gov number, NCT00878644. THAPCA- 66 

IH ClinicalTrials.gov number, NCT00880087 67 

 68 
 69 
 70 
 71 

 72 
Key Words 73 

 74 
Paediatric Cardiac Arrest; 75 
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Targeted Temperature Management; 77 
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INTRODUCTION 81 

 82 

Therapeutic hypothermia (hypothermia) as compared to therapeutic normothermia (normothermia) 83 

for treatment of comatose children resuscitated after out-of-hospital or in-hospital cardiac arrest did not 84 

confer a significant benefit in survival with favourable functional outcome in two independent, parallel trials 85 

which utilized identical study protocols(1,2).  Current paediatric guidelines recommend either hypothermia 86 

or normothermia for target temperature management (TTM)(3).  However, since effect sizes tested were in 87 

the range of 10 to 20 percent, uncertainty persists regarding optimal temperature management. 88 

In the broad paediatric age range, there are multiple differences between cardiac arrests occurring 89 

in the out-of-hospital versus in-hospital setting including patient demographics, underlying pre-existing 90 

pathology, aetiology of cardiac arrest, response times and resuscitative skills of the initial responders, and 91 

survival rates (4). These differences informed a decision by the THAPCA trials investigators to enrol 92 

patients into two separate independent parallel clinical trials (ClinicalTrials.gov NCT00880087 and 93 

NCT00878644). However, a major challenge in paediatric cardiac arrest trials is recruitment of sufficiently 94 

large sample sizes to detect small clinically significant differences(5).  As the underlying mechanism for 95 

potential benefit from hypothermia after a hypoxic-ischemic insult is similar in both paediatric populations, 96 

the THAPCA trial investigators proposed a secondary analysis of the comparative efficacy and safety of the 97 

two temperature interventions in the combined population of out-of-hospital and in-hospital cardiac arrest 98 

study cohorts. We report here the results of the pooled data analysis from these two trials which used 99 

identical protocols. 100 
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METHODOLOGY 101 
 102 

Design 103 

 104 

The two THAPCA trials were conducted in paediatric intensive care units (ICUs) at 41 enrolling 105 

children’s hospitals in the United States, Canada, and United Kingdom. The rationale, study design, 106 

outcome selection process, protocol summary, 12-month pilot vanguard phase and individual trial 107 

outcomes were previously published (6-8).  Funding for both trials was from the National Heart, Lung, and 108 

Blood Institute (NHLBI). The trial protocols differed only in the inclusion criteria definition of out-of-hospital 109 

and in-hospital cardiac arrest(1,2). The institutional review boards of all participating sites and the data- 110 

coordinating centre approved the protocol and informed consent documents.  Site research coordinators 111 

collected all data, and statisticians at the data-coordinating centre (University of Utah) performed all 112 

analyses.  Site training, data management and site monitoring were described in the Supplementary 113 

Appendix of each trial report(1,2).  All site investigators vouched for their submitted data. The current 114 

pooled study was approved by the THAPCA executive committee prior to analysis of either of the THAPCA 115 

trials. 116 

Patient Population 117 

 118 

Children ≥48 hours and <18 years old who sustained cardiac arrest, required chest compressions 119 

for ≥ two minutes, and required mechanical ventilation after return of circulation, met inclusion criteria. 120 

Major exclusion criteria were scores of 5 or 6 on the Glasgow Coma Scale motor response subscale 121 

(scores range from 1 to 6, lower scores indicate worse function), inability to randomize within 6 hours of 122 

return of circulation, active and refractory severe bleeding, pre-existing illness with life expectancy less than 123 

12 months, and lack of commitment to aggressive care.  Full exclusion criteria lists were provided in the 124 

Supplementary Appendix of the two trial reports(1,2). Written informed consent from a parent or legal 125 

guardian was required. 126 

Randomization and Intervention 127 

 128 

Eligible patients were randomized to hypothermia or normothermia in a 1:1 ratio using permuted 129 

blocks stratified by clinical centre and age (younger than 2 years, 2 to 11 years, and 12 years or older). 130 
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Targeted temperature management (TTM) was actively maintained for 120 hours in both groups, as 131 

previously described(1,2). Participants assigned to hypothermia were pharmacologically paralyzed, sedated 132 

and cooled (or warmed if indicated) by surface cooling using a Blanketrol III cooling unit (Cincinnati 133 

SubZero, Cincinnati) with mattresses applied anteriorly and posteriorly, to achieve and maintain 33°C 134 

(range 32-34°C) core temperature for 48 hours. They were rewarmed over 16 hours or longer to target 135 

temperature 36.8°C (range 36-37.5°C) which was actively maintained throughout the remainder of the 120 136 

hour intervention period. Patients randomized to normothermia received identical care except core 137 

temperature was actively maintained at 36.8°C (range 36-37.5°C) for 120 hours with the cooling unit.  Dual 138 

central temperature monitoring (oesophageal, rectal, or bladder) and a servo-control mode were used.  For 139 

patients supported with extracorporeal membrane oxygenation (ECMO) at the time of randomization or 140 

later, temperature was controlled with ECMO using a single central temperature monitor. All other aspects 141 

of care were determined by clinical teams. 142 

Outcomes 143 

 144 

The primary outcome was survival with favourable neurobehavioral outcome at 12 month follow-up, 145 

defined as an age-corrected standard score ≥70 on the Vineland Adaptive Behaviour Scales, Second 146 

Edition (VABS-II)(9). The VABS-II has an age-corrected mean score of 100 (standard deviation, 15); higher 147 

scores indicate better performance.  VABS-II data were collected centrally (Kennedy Krieger Institute, 148 

Baltimore, MD) via telephone by a trained interviewer blinded to treatment assignment.  As pre-specified in 149 

the protocol, enrolled children with pre-arrest VABS-II scores below 70 (based on data from caregiver 150 

questionnaire completed at each site within 24 hours of randomization) were excluded only from the 151 

primary efficacy analysis.  Patients with no baseline VABS-II available were considered eligible for the 152 

primary analysis if their baseline Paediatric Overall Performance Category (POPC) and Paediatric Cerebral 153 

Performance Category (PCPC) scores were in normal or mild disability categories(10,11).  Scores on these 154 

scales range from 1 to 6, with lower scores representing less disability; patients with scores of 1 or 2 on 155 

both scales were eligible for the primary analysis. 156 

Secondary outcomes were change in neurobehavioral function, measured as the difference from 157 

pre-arrest baseline to 12 month measurement on the VABS-II (assigning deceased cases and those with 158 
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lowest possible VABS-II scores worst possible outcomes, regardless of baseline function) and survival at 159 

12 months. Safety outcomes included the incidences of blood product use, infection, and serious 160 

arrhythmias through seven days, and 28-day mortality.  The outcome assessment methodology was 161 

previously described(1,2). 162 

Statistical Analysis 163 

 164 

Individual patient data from both primary trial datasets were combined. Identical definitions, coding, 165 

reference units and data collection processes were used for each trial enabling combination without loss of 166 

data items. The efficacy analysis for the primary outcome was performed using a pre-specified modified 167 

intention-to-treat approach in both trials, excluding children with poor pre-arrest neurobehavioral function. 168 

Secondary efficacy outcomes were analysed among all children.  Safety analyses were done by treatment 169 

received.  The primary outcome and 12 month mortality were compared between assigned treatment 170 

groups using a Cochran-Mantel-Haenszel test stratified by categorized age and study.  Change in VABS-II 171 

was analysed using van Elteren’s modification of the Mann-Whitney test (12), stratifying by categorized age 172 

and study, treating death as the worst outcome and the lowest possible VABS-II score as the second-worst 173 

outcome.  For this exploratory investigation, significance was declared at the 0.05 for all tests.  The 174 

probability of survival to one year was evaluated by comparing survival curves between arms using a log- 175 

rank test stratified by age category.  Univariate analysis of prognostic risk factors for survival independent  176 

of treatment group were analysed.  Multivariable analysis for prognostic factors for neurobehavioral 177 

outcome have been presented previously for each trial(13,14). Analyses were performed using SAS 178 

software, version 9.4 (SAS Institute, Inc., Cary, NC). 179 

 180 
 181 
 182 

RESULTS 183 

 184 

Characteristics of Study Cohort 185 

 186 

Both trials commenced on September 1, 2009 with THAPCA-OH patients enrolled through 187 

December 31, 2012 at 36 centres in USA and Canada (2 did not recruit) and THAPCA-IH patients enrolled 188 

until February 27, 2015 at 37 sites in the USA, Canada and UK (9 sites did not enrol).  Forty-seven centres 189 
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in total participated in at least one of the THAPCA trials, with 6 centres not randomizing at least one case. 190 

The full CONSORT Diagram is described in Appendix Fig 1. A total of 4146 patients met inclusion criteria 191 

and were screened; 1221 had no trial exclusion criteria and were eligible for enrolment; and 624 were 192 

enrolled, 321 randomized to hypothermia and 303 to normothermia.  Eight patients, who were assigned to 193 

hypothermia and three normothermia, did not receive an intervention and one normothermia patient 194 

received hypothermia therapy.  Five hundred and seventeen patients had VABS-II scores ≥70 at baseline, 195 

prior to their cardiac arrest, and were eligible for the primary outcome assessment. 196 

The baseline characteristics of the two temperature treatment groups were similar (Table 1). 197 
 198 
Overall median age was 1.5 years IQR [0.3, 7.1] with 63% male; 71% had one or more pre-existing medical 199 

condition most frequent being cardiac, lung or airway, and neurological conditions. Thirty percent  200 

(190/624) had a primary cardiac aetiology for their arrest, 9% (57/624) presented with a shockable rhythm 201 

(ventricular fibrillation or ventricular tachycardia); and the median estimated duration of chest compressions 202 

was 25 minutes IQR [12, 42.5]. Time from return of spontaneous circulation after cardiac arrest to target 203 

temperature following randomization for hypothermia group was Median 6.9 hours [Interquartile range 204 

(IQR) 5.6 to 8.8] and normothermia group 6.4 hours [IQR 5.3 to 8.4]. 205 

Outcomes 206 

 207 

The proportion of survivors with the primary outcome VABS-II score ≥70 at 12 months was not 208 

significantly different between those treated with hypothermia (28%) compared to the normothermia 209 

intervention (26%); relative risk 1.08; 95% confidence interval [CI] 0.81 to 1.42; p=0.61. In patients 210 

included in the primary analysis who died or had a profound (VABS-II <45 or lowest) or moderate to severe 211 

disability (VABS-ll 45-69), there was also no significant difference in proportion of patients treated with 212 

either therapy (p=0.4) (Table 2). The secondary outcome of one year change in VABS-ll score from 213 

baseline score did not differ between groups (p=0.20); nor did the proportion in whom the VABS-ll score 214 

decreased by no more than 15 points (1 standard deviation) or improve differ (hypothermia 22% versus 215 

normothermia 21%) (Table 2). 216 

Survival at 12 months for 614 patients, whose outcome status was known, did not differ between groups 217 

(hypothermia 44% vs. normothermia 38%; relative risk 1.15; 95% CI 0.95 to 1.38; p=0.15) (Table 2). 218 
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Survival duration was longer for patients receiving hypothermia; (Figure 1a, p=0.045).  Sensitivity analysis 219 

revealed that this difference was due to the greater number of deaths occurring in the normothermia 220 

groupbetween days 0 to 3 (Figure 1b, p=0.91; Supplemental Figure 2, p=0.003).  Specifically, a greater 221 

number of deaths occurred on day 0 in the normothermia group (19 versus 5) and the majority (12/19) were 222 

due to cardiovascular failure/futility (Table 3).  By 12 months, the proportions of deaths by individual causes 223 

were similar for patients treated with hypothermia and normothermia.  The majority of deaths were 224 

attributed to brain death (24.6% versus 24.9%), withdrawal of medical support in view of poor neurological 225 

prognosis (35.8 versus 31.4%), or cardiovascular failure/futility (21.2% versus 24.9%) (Table 3). 226 

Prognostic factors for survival and for survival at 12 months with VABS-ll ≥70 were analysed (Table 227 

4).  A cardiac aetiology of cardiac arrest, initial rhythm of ventricular fibrillation or ventricular tachycardia, 228 

shorter duration of cardiopulmonary resuscitation, fewer epinephrine doses, and cardiac arrest occurrence 229 

during a weekday (versus weekend) and during the day (versus night) were each associated with improved 230 

survival, independent of treatment arm.  Children whose cardiac arrest occurred in-hospital compared to 231 

out-of-hospital were almost twice as likely to survive (OR 1.79 [1.29, 2.49]) and three times as likely to 232 

survive with VABS-ll ≥70 (OR 3.09, 95% CI [2.04, 4.69]) (see Supplemental Table 1). 233 

Safety 234 

 235 

Safety outcome data were available for 314 in the hypothermia group and 298 in the normothermia 236 

group. The incidences of blood-product use, infection, and serious arrhythmias within seven days did not 237 

differ between these groups; nor did 28 day mortality significantly differ [hypothermia, 146/314(46%) 238 

versus normothermia, 159/298(53%), p=0.10; (see Supplemental Table 2). 239 

DISCUSSION 240 

 241 

In this analysis of pooled data from two identically conducted targeted temperature management 242 

randomized clinical trials(1,2), there was no significant improvement in survival with favourable 243 

neurobehavioral outcome, defined as a VABS-II score ≥70 for hypothermia (28%) versus normothermia 244 

(26%) groups.  Additionally, the best change from baseline outcome, defined as a VABS-II score reduction 245 

by no more than 15 points (1 SD) at one year, was similar for hypothermia (22%) and normothermia (21%) 246 

groups.  Mortality at one year was not statistically different by temperature intervention, although earlier 247 
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deaths in the first three days of intervention were observed with normothermia.  Hypothermia and 248 

normothermia groups had comparable safety profiles for blood product utilization, infection, serious cardiac 249 

arrhythmia and 28-day mortality. 250 

We were able to perform a pooled randomized control trial (RCT) analysis, as opposed to an 251 

individual patient data (IPD) meta-analysis, because the RCT protocols were identical with respect to all 252 

elements including data definitions, collection and handling procedures, and primary and secondary 253 

outcomes. In addition, the trials were initiated concurrently and predominantly at sites that participated in 254 

both THAPCA trials, minimizing temporal and site-specific effects between trials. The justification for 255 

conducting separate trials stemmed from analysis of a pre-trial planning cohort study that found differences 256 

in the aetiology of arrest, initial cardiac arrest rhythm, resuscitation skills of initial responders and survival 257 

outcomes between paediatric out-of-hospital and in-hospital cardiac arrest populations(4,15,16). In fact, the 258 

substantial difference in proportion of favourable outcomes between the IH and OH cohorts provides 259 

support for the decision to conduct separate trials in these two paediatric populations. 260 

The current investigation was planned and approved by the trial executive committee prior to 261 
 262 

completion of either trial.  By combining the two trial datasets in the current investigation, we were able to 263 

further explore the impact of hypothermia versus normothermia to ameliorate severe hypoxic-ischemic 264 

injury following paediatric cardiac arrest in a sample approximately twice the size of the original trials. 265 

However, in the pooled population as in the individual trials, there were no statistically significant 266 

differences for the primary or two secondary outcomes. The larger sample size gained by combining the 267 

two trials leads to more precise confidence intervals for treatment effect than in each individual trial, more 268 

conclusively ruling out even moderate benefits of hypothermia. 269 

In this study, both treatment arms received 120 hours of active temperature control, to prevent fever 270 

(temperature >37.5°C), using surface temperature control devices, pharmacological sedation and 271 

neuromuscular blocking medication as required. Our findings are similar to a large adult trial of targeted 272 

temperature management (TTM) of 33°C versus 36°C for 36 hours(17), which found no statistically 273 

significant difference in outcomes.  However, neither the adult nor the paediatric trials compared active 274 

TTM with no active temperature control.  Recent reports of actual practice temperature management of 275 
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adult cardiac arrest describe a change in TTM from 33°C to 36°C(18-20). This practice has been 276 

accompanied by trends in less active cooling, greater exposure to fever, and worse clinical outcomes(20). 277 

The reports suggest an actual practice ‘belief’ that fever prevention can be achieved without protocol 278 

guided sedation, neuromuscular blockage and servo regulated cooling devices.  A large ongoing adult trial 279 

of hypothermia (33°C) versus standard care avoiding early fever (>37.8°C) management after cardiac 280 

arrest may provide needed information to address this critical question (ClinicalTrials.gov Identifier: 281 

NCT02908308). 282 

Although there was no overall difference in survival at 12 months, we found a difference in time to 283 

death between hypothermia and normothermia treatment groups (Figure 1a; p=0.045). This difference was 284 

explained by more early deaths in the normothermia group during days 0 through 3 (Figure 1c; p=0.003). 285 

There are at least two reasons for this observation.  First, for day 0, increased deaths due to cardiac failure 286 

in the normothermia group was observed, although this trend largely balanced out by day 3 (Table 3). This 287 

suggests hypothermia may have been protective or provided additional inotropic effects for the myocardium 288 

in the early post arrest period.  Early hypotension in the first 6 to 12 hours post cardiac arrest is associated 289 

with worse outcome in children comatose after cardiac arrest(21,22).  Hypothermia has been reported to 290 

reduce inotropic or vasopressor requirement and reduce/rebalance myocardial work to oxygen demand(23).  291 

Following adult cardiac arrest, hypothermia increases systemic vascular resistance leading to reduced 292 

vasopressor use and lower oxygen consumption(24). In children, hypothermia has been reported as a 293 

useful salvage therapy for severe low cardiac output syndrome post congenital heart disease surgery(25).  294 

The second identifiable factor associated with hypothermia was lower numbers of deaths through            295 

day 3 that were attributable to brain death or to poor neurological prognosis [hypothermia 10% (31/321) 296 

versus normothermia 19% (57/303); p=0.001](Table 3).  This likely reflected delays in neurological 297 

prognostic and brain death assessments in hypothermic patients until at least 24 hours after normothermia 298 

was achieved; this common practice stemmed from consideration that sedative drugs administered 299 

concurrently with hypothermia could have prolonged clearance and thereby confound clinical 300 

assessments(26). 301 

There are limitations with the current study.  As described previously, caregivers and research staff 302 

in the ICU were aware of treatment assignments of patients, although the primary outcome one year VABS- 303 
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II interview assessments were performed by individuals who were unaware of treatment group 304 

assignment(1,2). We could not rule out the possibility of earlier death or determination by clinical teams of 305 

futility in the normothermia group, as discussed above.  Although planned prior to the completion of the two 306 

THAPCA trials, this pooled analysis was performed after publication of the two primary trials when the 307 

results were known to the investigators. A major strength of this study was that pooling of individual patient 308 

data analysis was possible due to identical protocols and data definitions. The larger sample size provided 309 

greater statistical power to show potential differences in neurobehavioral, mortality and safety outcomes. 310 

The inclusion and exclusion criteria selected patients with identical high risk of neurological morbidity and 311 

mortality. The final inclusion of 15% (624/4146) of initially screened patients may limit the generalization of 312 

the study findings to all paediatric cardiac arrest patients. However, the current pooled study included a 313 

more heterogeneous and generalizable population than did either individual trial. Inclusion of patients 314 

stratified with less severe injury, excluding the most severe hypoxic ischemic arrests (e.g. sudden infant 315 

death syndrome), or selecting a more homogeneous population (e.g. drowning) might allow more focused 316 

assessment of TTM efficacy.   Unanswered questions remain regarding optimal evaluation of TTM.  Future 317 

trials should consider different durations and depth of cooling (27-29), earlier onset of TTM, more precise 318 

patient stratification based on acute brain injury biomarkers, and adjunctive neuroprotective agents. 319 

In conclusion, this larger pooled cohort of patients who were comatose after paediatric cardiac 320 

arrest from in-hospital or out-of-hospital locations, therapeutic hypothermia did not confer a statistically 321 

significant benefit in survival with a good functional outcome compared to therapeutic normothermia.  Both 322 

hypothermia and normothermia active temperature interventions had similar severe adverse event profiles. 323 
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Table 1 - Demographics by Treatment 
 

 Treatment Assigned  

  
Hypothermia 

(N = 321) 
Normothermia 

(N = 303) P-value 

Age at Randomization (years)   0.0721 

  N 321 303  

  Median [Q1 - Q3] 1.7 [0.4 - 7.6] 1.2 [0.3 - 6.5]  

Age Group at Randomization   0.5092 

  < 2 years 173 (53.9%) 177 (58.4%)  

  2-11 years 96 (29.9%) 80 (26.4%)  

  >= 12 years 52 (16.2%) 46 (15.2%)  

Male 199 (62.0%) 193 (63.7%) 0.6602 

Pre-existing Conditions    

  No pre-existing condition 94 (29.3%) 88 (29.0%) 0.9472 

  Lung or airway disease 87 (27.1%) 89 (29.4%) 0.5292 

  Neurologic condition 87 (27.1%) 67 (22.1%) 0.1482 

  Gastrointestinal disorder 69 (21.5%) 72 (23.8%) 0.4992 

  Prenatal condition 59 (18.4%) 64 (21.1%) 0.3892 

  Congenital heart disease 111 (34.6%) 112 (37.0%) 0.5352 

  Other pre-existing condition 46 (14.3%) 53 (17.5%) 0.2802 

Primary aetiology of cardiac 
arrest 

  0.6632 

  Cardiac 99 (30.8%) 91 (30.0%)  

  Respiratory 156 (48.6%) 157 (51.8%)  

  Other/Unknown 66 (20.6%) 55 (18.2%)  

Initial rhythm noted by EMS or 
hospital 

  0.9032 

  Asystole 99 (30.8%) 97 (32.0%)  

  Bradycardia 104 (32.4%) 104 (34.3%)  

  Pulseless electrical activity (PEA) 58 (18.1%) 54 (17.8%)  

  Ventricular fibrillation or 
tachycardia 

31 (9.7%) 26 (8.6%)  

Table
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Table 1 - Demographics by Treatment 
 

 Treatment Assigned  

  
Hypothermia 

(N = 321) 
Normothermia 

(N = 303) P-value 

  Unknown 29 (9.0%) 22 (7.3%)  

Estimated duration of chest 
compressions 

  0.1331 

  N 312 300  

  Median [Q1 - Q3] 24.5 [10.5 - 40.0] 25.5 [12.5 - 48.0]  

Time of ROSC   0.9612 

  Day 222 (69.2%) 209 (69.0%)  

  Night 99 (30.8%) 94 (31.0%)  

Day of ROSC   0.6982 

  Weekday 248 (77.3%) 238 (78.5%)  

  Weekend 73 (22.7%) 65 (21.5%)  

Total known adrenaline 
(epinephrine) doses3 

  0.3371 

  N 320 302  

  Median [Q1 - Q3] 3.0 [2.0 - 6.0] 4.0 [2.0 - 7.0]  

ECMO4 87 (27.1%) 97 (32.0%) 0.1792 

1 P-value is based on the Wilcoxon rank-sum test. 
2 Chi-squared test of no association. 
3 Administered by EMS and at hospital. 
4 Started at or before treatment and not stopped before treatment initiation. 

 
 
 
 



 

 

 

Table 2.  Primary and Secondary Outcomes.* 
 

 Treatment Assigned  

  Hypothermia Normothermia Risk Difference Relative Risk P Value 

Primary Outcome      

Survival at 12 months with VABS ≥ 70 75/271 (28%) 63/246 (26%) 2.1 (-5.6, 9.7) 1.08 (0.81, 1.42) 0.61† 

One year status (detailed)     0.40‡ 

Death 152/271 (56%) 155/246 (63%)    

Profound disability (VABS < 45 or lowest 

possible)§ 

18/271 (7%) 11/246 (4%)    

Moderate to severe disability (VABS 45-69)¶  26/271 (10%) 17/246 (7%)    

Good functional status (VABS ≥ 70)‖  75/271 (28%) 63/246 (26%)    

Secondary Outcomes      

Survival at 12 months 138/317 (44%) 113/297 (38%) 5.5 (-2.3, 13.2) 1.15 (0.95, 1.38) 0.15† 

One year change from baseline       0.20** 

Death 179/315 (57%) 184/287 (64%)    

Lowest possible VABS score 7/315 (2%) 1/287 (0%)    

VABS decreased > 30 points 31/315 (10%) 23/287 (8%)    

VABS decreased 16-30 points 28/315 (9%) 18/287 (6%)    

VABS decreased no more than 15 points or 

improved 

70/315 (22%) 61/287 (21%)    

 

* The primary outcome was evaluated in patients with a baseline Vineland Adaptive Behaviour Scales, Second Edition 

(VABS-II), score of 70 or higher at 12 months (scores on the VABS-II range from 20 to 160, with higher scores indicating 



 

 

 

better function). The secondary outcomes were evaluated in all patients with available data. Denominators reported are for 

patients whose outcomes were known. CI denotes confidence interval. 

† The P value was calculated by means of the Cochran-Mantel-Haenszel test, with adjustment for age category and study. 

‡ The P value was calculated by means of the Mann-Whitney test on the basis of the 1-yr continuous VABS-II score, 

stratified according to age category and study. Deceased patients and those with the lowest possible VABS-II score were 

assigned ranks of -2000 and -1000, respectively (i.e., the worst possible scores). 

§ Profound disability was defined as a VABS-II score of less than 45 or the lowest possible score. 

¶ Moderate-to-severe disability was defined as a VABS-II score of 45 to 69. 

‖ Good functional status was defined as a VABS-II score of 70 or higher. 

** The P value was calculated by means of the Mann-Whitney test on the basis of the continuous change in VABS-II score, 

stratified according to age category and study. Deceased patients and those with the lowest possible VABS-II score were 

assigned ranks of -2000 and -1000, respectively (i.e., the worst possible scores). 

 

  



 

 

 

Table 3.  Cause of Death by Study Day. 

Hypothermia 
 

 Study Day  

  
0 

(N = 5) 
1 

(N = 30) 
2 

(N = 17) 
3 

(N = 14) 
4 

(N = 21) 
5 

(N = 9) 
> 5 

(N = 83) 
Overall 

(N = 179) 

Cause of Death         

  Cardiovascular failure/futility 4 (80.0%) 8 (26.7%) 7 (41.2%) 2 (14.3%) 1 (4.8%) 0 (0.0%) 16 (19.3%) 38 (21.2%) 

   Brain death declared 0 (0.0%) 3 (10.0%) 2 (11.8%) 4 (28.6%) 12 (57.1%) 6 (66.7%) 17 (20.5%) 44 (24.6%) 

  Withdrawal for poor neurologic 
prognosis 

0 (0.0%) 11 (36.7%) 5 (29.4%) 6 (42.9%) 8 (38.1%) 3 (33.3%) 31 (37.3%) 64 (35.8%) 

  Respiratory failure/futility 0 (0.0%) 1 (3.3%) 1 (5.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (3.6%) 5 (2.8%) 

  Withdrawal for other system failure 1 (20.0%) 3 (10.0%) 2 (11.8%) 2 (14.3%) 0 (0.0%) 0 (0.0%) 6 (7.2%) 14 (7.8%) 

  Other/Unknown 0 (0.0%) 4 (13.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 10 (12.0%) 14 (7.8%) 

 

Normothermia 
 

 Study Day  

  
0 

(N = 19) 
1 

(N = 29) 
2 

(N = 22) 
3 

(N = 22) 
4 

(N = 18) 
5 

(N = 10) 
> 5 

(N = 65) 
Overall 

(N = 185) 

Cause of Death         

  Cardiovascular failure/futility 12 (63.2%) 6 (20.7%) 2 (9.1%) 3 (13.6%) 1 (5.6%) 2 (20.0%) 20 (30.8%) 46 (24.9%) 

  Brain death declared 0 (0.0%) 11 (37.9%) 11 (50.0%) 8 (36.4%) 7 (38.9%) 5 (50.0%) 4 (6.2%) 46 (24.9%) 

  Withdrawal for poor neurologic 
prognosis 

3 (15.8%) 9 (31.0%) 6 (27.3%) 9 (40.9%) 9 (50.0%) 2 (20.0%) 20 (30.8%) 58 (31.4%) 

  Respiratory failure/futility 0 (0.0%) 1 (3.4%) 0 (0.0%) 1 (4.5%) 0 (0.0%) 0 (0.0%) 8 (12.3%) 10 (5.4%) 

  Withdrawal for other system failure 2 (10.5%) 2 (6.9%) 2 (9.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 6 (9.2%) 12 (6.5%) 

  Other/Unknown 2 (10.5%) 0 (0.0%) 1 (4.5%) 1 (4.5%) 1 (5.6%) 1 (10.0%) 7 (10.8%) 13 (7.0%) 
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Figure Legends  
 
Figure 1a.  Probability of survival to one year following cardiac arrest, 
according to assigned treatment. 
 
The two lines represent Kaplan-Meier survival rates from 0 to 365 days after cardiac 
arrest for patients in each study arm (p=0.045 for a log-rank test, stratified by age 
category and study, comparing survival distributions between treatment arms).  
Numbers above the x-axis represent numbers of patients at risk (alive and followed) 
in each study arm at each 30-day interval. 
 
Figure 1b.  Probability of survival past day 3 to one year following cardiac 
arrest, according to assigned treatment. 
 
The two lines represent Kaplan-Meier survival rates from 4 to 365 days after cardiac 
arrest for patients in each study arm (p=0.912 for a log-rank test, stratified by age 
category and study, comparing survival distributions between treatment 
arms).  Numbers above the x-axis represent numbers of patients at risk (alive and 
followed) in each study arm at each 30-day interval. 
 
 

  

Figure



Figure 1a.  Kaplan-Meier estimates of survival probability 

 
 

Figure 1b.  Kaplan-Meier estimates of survival probability (Subjects surviving 

past day 3) 
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