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Abstract
We present a new, simple compact proof of the known strong duality theorem of tropi-
cal linear programmingwith one-sided constraints. This result together with properties
of subeigenvectors enables us to directly solve a special tropical linear program with
two-sided constraints.We also study the duality gap in tropical integer linear program-
ming. A direct solution is available for the primal problem. An algorithm of quadratic
complexity is presented for the dual problem. A direct solution is available provided
that all coefficients of the objective function are integer. This solution provides a good
estimate of the optimal objective function value in the general case.

Keywords Tropical linear programming · Tropical integer programming · Duality ·
Residuation

Mathematics Subject Classification 15A18 · 15A80

1 Introduction

Tropical linear algebra (also called max-algebra or path algebra) is an analogue of
linear algebra, where addition is replaced by maximization and multiplication by
conventional addition.

The interest in tropical linear algebra was originally motivated by the possibil-
ity of dealing with a class of nonlinear problems in pure and applied mathematics,
operational research, science and engineering as if they were linear due to the fact
that the underlying structure is a commutative and idempotent semifield. Besides the
main advantage of using linear rather than nonlinear techniques, tropical linear algebra
enables us to efficiently describe and deal with complex sets (see Butkovič [1]), reveal
combinatorial aspects of problems (see Butkovič [2]) and view a class of problems in
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a new, unconventional way. The first pioneering papers by Cuninghame-Green [3] and
Vorobyov [4] appeared in the 1960s, followed by substantial contributions in the 1970s
and 1980s (see Cuninghame-Green [5], Gondran and Minoux [6] and Zimmermann
[7]). Since 1995, we have seen a remarkable expansion of this research field following
a number of findings and applications in areas as diverse as control theory and opti-
mization (see Baccelli et al. [8]) phylogenetics in Speyer and Sturmfels [9], modeling
of the cellular protein production by Brackley et al. [10] and railway scheduling (see
Heidergott et al. [11]). A number of research monographs have been published, for
instance, by Baccelli et al. [8], Butkovič [12] and Heidergott et al. [11].

Tropical linear algebra covers a range of linear-algebraic problems in themax-linear
setting, such as systems of linear equations and inequalities, linear independence and
rank, bases and dimension, polynomials, characteristic polynomials, matrix equations,
matrix orbits and periodicity of matrix powers (see Baccelli et al. [8], Butkovič [12],
Cuninghame-Green [5] andHeidergott et al. [11]). Among themost intensively studied
questions were the eigenproblem and z-matrix equations. These have been answered
with numerically stable low-order polynomial algorithms (see Butkovič et al. [13],
Cuninghame-Green [5], Gondran andMinoux [6], Gaubert [14] and Bapat et al. [15]).
The same is true about the subeigenproblem, which appears to be strongly linked to the
eigenproblem. In contrast, attention has only recently been paid to the supereigenprob-
lem, which is trivial for small eigenvalues, but in general the description of the whole
solution set seems to be much more difficult than for the eigenproblem (see Butkovič
[16]). At the same time, tropical linear and integer linear programs have also been
studied, for instance, by Zimmermann [7], Butkovič [12], Butkovič and Aminu [17],
Gaubert et al. [18] and Butkovič and MacCaig [19]. While one-sided tropical linear
systems of equations and inequalities are solvable in low-order polynomial time, no
polynomial method seems to exist for solving their two-sided counterparts in general.
Consequently, linear programs with one-sided constraints are easily solvable, while
a polynomial solution method for linear or integer linear programs with two-sided
constraints remains an open question.

The aim of this paper is to give a simple compact proof of the strong duality theorem
for tropical linear programs with one-sided constraints (the weak duality is trivial, and
its proof follows the lines of the conventional weak duality and is given here purely
for completeness) and then use this result to present efficient solution methods for
solving

(a) a special type of tropical linear programs with two-sided constraints, and
(b) tropical dual integer programs with one-sided constraints.

Note that the weak and strong duality in tropical linear programming has been
investigated in the past, in more general settings, by Hoffman [20] and Zimmermann
[21]. The strong duality theorem has been presented by Superville [22] with a rather
complicated proof. The present paper uses residuation to provide a simple and compact
proof.
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2 Definitions, Notation and Preliminary Results

As usual in tropical linear algebra, the conventional operators (+, .) are replaced by
the pair (⊕,⊗) where

a ⊕ b = max(a, b)

and

a ⊗ b = a + b

for a, b ∈ R := R ∪ {−∞}. This pair is extended to matrices and vectors as in
conventional linear algebra. That is if A = (ai j ), B = (bi j ) andC = (ci j ) arematrices
of compatible sizes with entries from R, we write C = A ⊕ B if ci j = ai j ⊕ bi j for
all i, j and C = A ⊗ B if

ci j =
⊕

k

aik ⊗ bkj = max
k

(aik + bkj )

for all i, j . If α ∈ R, then α ⊗ A = (
α ⊗ ai j

)
. For simplicity, we will use the

convention of not writing the symbol ⊗. Thus, in what follows the symbol ⊗ will not
be used (except when necessary for clarity), and unless explicitly stated otherwise, all
multiplications indicated are in max-algebra.

Consider the following motivational example (see Cuninghame-Green [5]). Prod-
ucts P1, . . . , Pm are prepared using n machines (or processors), every machine
contributing to the completion of each product by producing a partial product. It
is assumed that each machine can work for all products simultaneously and that all
these actions on a machine start as soon as the machine starts to work. Let ai j be the
duration of the work of the j th machine needed to complete the partial product for Pi
(i = 1, . . . ,m; j = 1, . . . , n). If this interaction is not required for some i and j , then
ai j is set to −∞. The matrix A = (

ai j
)
is called the production matrix. Let us denote

by x j the starting time of the j th machine ( j = 1, . . . , n). Then, all partial products
for Pi (i = 1, . . . ,m) will be ready at time

max(x1 + ai1, . . . , xn + ain).

Hence, if b1, . . . , bm are given completion times, then the starting times have to satisfy
the system of equations:

max(x1 + ai1, . . . , xn + ain) = bi for all i = 1, . . . ,m.

Using max-algebra, this system can be written in a compact form as a system of linear
equations:

Ax = b. (1)
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A system of the form (1) is called a one-sided system of max-linear equations (or
briefly a one-sided max-linear system or just a max-linear system). Such systems are
easily solvable (see Cuninghame-Green [3], Butkovič [12] and Zimmermann [7]; see
also the end of this section).

In applications, it may be required that the starting times are as small as possible
(to reflect the fact that the producer has free capacity and wishes to start production
as soon as possible). This means to minimize the value of

f (x) = max(x1, . . . , xn) (2)

with respect to (1). In general, we may need to minimize (or possibly to maximize) a
max-linear function, that is,

f (x) = f T x = max( f1 + x1, . . . , fn + xn), (3)

where f = ( f1, . . . , fn)T . So in (2) we have f = (0, . . . , 0)T . Thus, the max-linear
programs are of the form

f T x −→ min or max , s.t. Ax = b.

Sometimes the vector b is given to require the earliest or latest rather than exact
completion times. In such cases, the constraints of the optimization problem are Ax ≥
b or, Ax ≤ b. In some cases, two processeswith the same starting times and production
matrices, say, A and B, have to be coordinated so that the products of the second are
completed not before those completed by the first and possibly also not before given
time restrictions given by a vector d = (d1, . . . , dm)T . Then, the constraints have the
form

Ax ⊕ d ≤ Bx . (4)

In full generality, max-linear programs are of the form

f T x −→ min or max , s.t. Ax ⊕ c = Bx ⊕ d.

These have been first studied byButkovič andAminu (see [17])with pseudopolyno-
mialmethods later presented byAkian et al. [23] andGaubert et al. [18].Nopolynomial
solution method seems to exist in general, not even for feasibility checking, although
it is known that this problem in N P ∩ co-N P; see Bezem et al. [24].

Throughout the paper, we denote −∞ by ε (the neutral element with respect to
⊕), and for convenience, we also denote by the same symbol any vector, whose all
components are−∞, or amatrix whose all entries are−∞.Amatrix or vector with all
entries equal to 0will also be denoted by0. Ifa ∈ R, then the symbola−1 stands for−a.

Matrices and vectors whose all entries are real numbers are called finite. We assume
everywhere that n,m ≥ 1 are integers and denote N = {1, . . . , n} , M = {1, . . . ,m}.

It is easily proved that if A, B,C and D are matrices of compatible sizes (includ-
ing vectors considered as m × 1 matrices), then the usual laws of associativity and
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distributivity hold and also isotonicity are satisfied:

A ≥ B �⇒ AC ≥ BC and DA ≥ DB. (5)

A square matrix is called diagonal if all its diagonal entries are real numbers
and off-diagonal entries are ε. More precisely, if x = (x1, . . . , xn)T ∈ R

n , then
diag (x1, . . . , xn) or just diag (x) is the n × n diagonal matrix

⎛

⎜⎜⎜⎝

x1 ε ... ε

ε x2 ... ε
...

...
. . .

...

ε ε ... xn

⎞

⎟⎟⎟⎠ .

Thematrix diag (0) is called the unit matrix and denoted I .Obviously, AI = I A = A
whenever A and I are of compatible sizes. A matrix obtained from a diagonal matrix
[unitmatrix] by permuting the rows and/or columns is called a generalized permutation
matrix [permutation matrix]. It is known that in tropical linear algebra generalized
permutation matrices are the only type of invertible matrices (see Cuninghame-Green
[5] and Butkovič [12]). Clearly,

(diag (x1, . . . , xn))
−1 = diag

(
x−1
1 , . . . , x−1

n

)
.

If A is a squarematrix, then the iterated product AA...A in which the symbol A appears
k-times will be denoted by Ak . By definition, A0 = I .

Given A ∈ R
n×n

, it is usual (see Cuninghame-Green [5], Baccelli et al. [8], Hei-
dergott et al. [11] and Butkovič [12]) in max-algebra to define the infinite series

A∗ = I ⊕ A+ = I ⊕ A ⊕ A2 ⊕ A3 ⊕ .... (6)

The matrix A∗ is called the strong transitive closure of A, or the Kleene Star.
It follows from the definitions that every entry of the matrix sequence

{
A ⊕ A2 ⊕ ... ⊕ Ak

}∞
k=0

is a non-decreasing sequence in R, and therefore, either it is convergent to a real
number (when bounded), or its limit is +∞ (when unbounded). If λ(A) ≤ 0, then

A∗ = I ⊕ A ⊕ A2 ⊕ ... ⊕ Ak−1

for every k ≥ n and can be found using the Floyd–Warshall algorithm in O
(
n3

)
time

(see Butkovič [12]).
The matrix λ−1A for λ ∈ Rwill be denoted by Aλ and (Aλ)

∗ will be shortly written
as A∗

λ.
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Given A = (ai j ) ∈ R
n×n

, the symbol DA will denote the weighted digraph
(N , E, w) (called associated with A) where E = {

(i, j) ; ai j > ε
}
and w (i, j) = ai j

for all (i, j) ∈ E . The symbol λ(A)will stand for the maximum cycle mean of A, that
is:

λ(A) = max
σ

μ(σ, A), (7)

where the maximization is taken over all elementary cycles in DA and

μ(σ, A) = w(σ, A)

l (σ )
(8)

denotes the mean of a cycle σ . With the convention max ∅ = ε, the value λ (A) always
exists since the number of elementary cycles is finite. An O

(
n3

)
algorithm for finding

λ (A) has been first presented by Karp [25] (see also Butkovič [12]). Observe that
λ (A) = ε if and only if DA is acyclic.

The tropical eigenvalue–eigenvector problem (briefly eigenproblem) is the follow-
ing:

Given A ∈ R
n×n

, find all λ ∈ R (eigenvalues) and x ∈ R
n
, x �= ε (eigenvectors)

such that

Ax = λx .

This problem has been studied since the work of Cuninghame-Green. An n × n
matrix has up to n eigenvalues with λ (A) always being the largest eigenvalue (called
principal). This finding was first presented by Cuninghame-Green [5] and Gondran
and Minoux [6] (see also Vorobyov [4]). The full spectrum was first described by
Gaubert [14] and Bapat et al. [15]. The spectrum and bases of all eigenspaces can be
found in O(n3) time (see Butkovič et al. [26] and Butkovič [12]).

The aim of this paper is to study integer solutions to tropical linear programs, and
therefore, we summarize here only the results on finite solutions and for finite A and b.
The following has been proved by Cuninghame-Green [5] and Gondran and Minoux
[6].

Theorem 2.1 If A ∈ R
n×n, then λ (A) is the unique eigenvalue of A and all eigenvec-

tors of A are finite.

A matrix A ∈ R
n×n

is called irreducible if DA is strongly connected. Note that
the statement of Theorem 2.1 remains valid if the premise A ∈ R

n×n is replaced by
A ∈ R

n×n
, A irreducible. For details, see Butkovič [12].

If A ∈ R
n×n and λ ∈ R, then a vector x ∈ R

n, x �= ε satisfying

Ax ≤ λx (9)

is called a subeigenvector of Awith associated subeigenvalueλ.We denoteV∗(A, λ) =
{x ∈ R

n : Ax ≤ λx}. The following has been proved by Butkovič and Schneider [27].
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Theorem 2.2 Let A ∈ R
n×n. Then, V∗ (A, λ) �= ∅ if and only if λ ≥ λ (A) and

V∗ (A, λ) = {
A∗

λu : u ∈ R
n
}
.

Similarly as in Cuninghame-Green [5] and Butkovič [12], we define min-algebra
over R by

a ⊕′ b = min(a, b)

and

a ⊗′ b = a ⊗ b

for all a and b. We extend the pair of operations
(⊕′,⊗′) to matrices and vectors in

the same way as in max-algebra.
We also define the conjugate A# = −AT . It is easily seen that

(
A#

)# = A, (10)

(A ⊗ B)# = B# ⊗′ A# (11)

and (
A ⊗′ B

)# = B# ⊗ A# (12)

whenever A and B are compatible. Further, for any u ∈ R
n we have

u# ⊗ u = 0 (13)

and
u ⊗ u# ≥ I . (14)

We will usually not write the operator ⊗′, and for matrices, the convention applies
that if no operator appears, then the product is in min-algebra whenever it follows the
symbol #, otherwise it is in max-algebra. In this way, a residuated pair of operations
(a special case of the Galois connection) has been defined, namely

Ax ≤ y ⇐⇒ x ≤ A# y (15)

for all x, y ∈ R
n . Hence Ax ≤ y implies A(A# y) ≤ y. It follows immediately that

a one-sided system Ax = b has a solution if and only if A
(
A#b

) = b and that the
system Ax ≤ b always has an infinite number of solutions with A#b being the greatest
solution.
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3 Duality for Tropical Linear Programs

Let A = (
ai j

) ∈ R
m×n, b = (b1, . . . , bm)T ∈ R

m, c = (c1, . . . , cn)T ∈ R
n and

consider the following primal-dual pair of tropical linear programs:

max f (x) = cT x, s.t. Ax ≤ b, x ∈ R
n (P)

and

min ϕ (π) = πT b, s.t. πT A ≥ cT , π ∈ R
m . (D)

Let us denote SP = {x ∈ R
n : Ax ≤ b} and SD = {

π ∈ R
m : πT A ≥ cT

}
. The

sets of optimal solutions will be denoted SoptP and SoptD , respectively. The optimal
objective function values will be denoted f max and ϕmin.

Theorem 3.1 (Weak Duality Theorem) The inequality cT x ≤ πT b holds for any
x ∈ SP and π ∈ SD.

Proof By isotonicity and associativity, we have

cT x ≤
(
πT A

)
x = πT (Ax) ≤ πT b.

��
The followingwas proved by Superville [22].We aim to provide here a substantially

simpler proof.

Theorem 3.2 ( Strong Duality Theorem) Optimal solutions to both (P) and (D) exist
and

max
x∈SP

cT x = min
π∈SD

πT b.

We first prove a lemma:

Lemma 3.1 A#b ∈ SoptP and hence f max = cT
(
A#b

)
.

Proof By residuation (15), we have

x ∈ SP ⇐⇒ x ≤ A#b

and the rest follows by isotonicity of ⊗. ��
Proof (Of strong duality.) Let us denote t = cT

(
A#b

)
and set πT = tb#. It remains

to prove that π is dual feasible and πT b = t . Using associativity and isotonicity (5)
and also (12) and (14), we have

πT A =
(
t ⊗ b#

)
⊗ A
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= t ⊗
(
b# ⊗ A

)

= cT ⊗
(
A# ⊗′ b

)
⊗

(
A# ⊗′ b

)#

≥ cT ⊗ I

= cT .

On the other hand (using (13))

πT b =
(
t ⊗ b#

)
⊗ b = t ⊗

(
b# ⊗ b

)
= t ⊗ 0 = t,

which completes the proof. ��
It follows that there is no duality gap for the pair of programs (P) and (D). Their

optimal solutions are x = A#b (no matter what c is) and πT = cT
(
A#b

)
b#, respec-

tively. Their common objective function value is cT
(
A#b

)
. If A, b, c are integer, then

there is also no duality gap for the corresponding pair of integer programs since then
both x and π are integer. However, this is not the case when some of A, b, c are non-
integer and the question of a duality gap arises. This question will be discussed in the
next section.

4 Dual Integer Programs

Let A = (
ai j

) ∈ R
m×n, b = (b1, . . . , bm)T ∈ R

m, c = (c1, . . . , cn)T ∈ R
n and

consider the following pair of tropical integer programs:

max f (x) = cT x, s.t. Ax ≤ b, x ∈ Z
n (PI)

and

min ϕ (π) = πT b, s.t. πT A ≥ cT , π ∈ Z
m . (DI)

Let us denote SP I = {x ∈ Z
n : Ax ≤ b} and SDI = {

π ∈ Z
m : πT A ≥ cT

}
. The

sets of optimal solutions will be denoted SoptP I and SoptDI , respectively. The optimal
objective function values will be denoted f max

I and ϕmin
I .

It follows immediately from residuation that SP I = {
x ∈ Z

n : x ≤ ⌊
A#b

⌋}
. Hence

by isotonicity,
⌊
A#b

⌋ ∈ SoptP I and f max
I = cT

⌊
A#b

⌋
.

Solving (DI) is less straightforward but can be done directly when b ∈ Z
m . This

will be shown below, but first we answer a principle question for general (real) A, b
and c.

Proposition 4.1 SoptDI �= ∅.

Proof Since SDI is a closed, non-empty set and ϕ is continuous and bounded below
due to the weak duality theorem, we only need to prove that SDI can be restricted
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to a bounded set without affecting ϕmin
I . Let U = ϕ (π0) for an arbitrarily chosen

π0 ∈ SDI and L be any lower bound following from the weak and strong duality
theorems. Then, disregarding π ∈ SDI with πi > U − bi for at least one i will have
no affect on ϕmin

I . Similarly, disregarding those π (if any) where πi < L − bi for at
least one i . Hence for solving (DI), we may assume without loss of generality that

B−1L ≤ π ≤ B−1U ,

where B = diag (b). The feasible set in (DI) is now restricted to a compact set and
the statement follows. ��

We will transform (DI) to an equivalent “normalized” tropical integer program.
Let us denote B = diag (b) , C = diag (c) and σ T = πT B. Hence πT =
σ T B−1, πT b = σ T 0 and the inequality in (DI) is equivalent to

σ T B−1AC−1 ≥ 0 (16)

or, component-wise:

max
i

(
σi − bi + ai j − c j

) ≥ 0 for all j .

Let us denote the matrix B−1AC−1 by D. The new tropical integer program is

min ϕ′ (σ ) = σ T 0, s.t. σ T D ≥ 0T , σ ∈ Z
m . (DI’)

Proposition 4.2 If b ∈ Z
m, then (DI) and (DI’) are equivalent and a one-to-one cor-

respondence between feasible solutions of these problems is given by πT = σ T B−1.

Proof If b ∈ Z
m , then π is integer if and only if σ is integer; the rest follows from the

previous discussion. ��
Proposition 4.3 If

t = min
σ∈SDI ′

ϕ′ (σ ) ,

then σ0 = (t, . . . , t)T is an optimal solution to (DI’).

Proof Let t = minσ∈SDI ′ ϕ′ (σ ) = ϕ′ (̃σ ) for some σ̃ ∈ SDI ′ . Then, t = σ̃ T 0 =
max (̃σ1, . . . , σ̃m) ∈ Z and so we have σ0 ≥ σ̃ , hence σ T

0 D ≥ σ̃ T D ≥ 0T , σ0 ∈ Z
m

and ϕ′ (σ0) = t . The statement follows. ��
ByProposition 4.3, wemay restrict our attention to constant vectorswhen searching

for optimal solutions of (DI’). If σ T = (s, . . . , s), then (16) reads

max
i

(
s − bi + ai j − c j

) ≥ 0 for all j,
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equivalently,

s ≥ min
i

(
bi − ai j + c j

)
for all j,

or,

s ≥ max
j

min
i

(
bi − ai j + c j

)
.

This can also be written as

s ≥ max
j

(
c j + min

i

(
bi − ai j

))

= max
j

(
c j + min

i

(
a#j i + bi

))

= cT
(
A#b

)
.

Since t is the minimal possible integer value of s, we have

t =
⌈
cT

(
A#b

)⌉
.

We have proved:

Proposition 4.4 If b ∈ Z
m, then minσ∈SDI ′ ϕ′ (σ ) = ⌈

cT
(
A#b

)⌉
, and σ =

(t, . . . , t)T is an optimal solution of (DI’), where t = ⌈
cT

(
A#b

)⌉
.

We also conclude that πT = t0T B−1 = tb# is an optimal solution of (DI) with
ϕmin
I = πT b = t ⊗ b# ⊗ b = t0 = t . Therefore, the duality gap for the pair (PI)–(DI)

when b ∈ Z
m is the interval

(
cT

⌊
A#b

⌋
,
⌈
cT

(
A#b

)⌉)
.

A solution method for dual integer programs without the assumption b ∈ Z
m is

presented in Chapter 6.

5 Using Duality for Solving a Two-Sided Linear Program

Wewill now use the results of Sect. 3 to directly solve a special tropical linear program
with two-sided constraints.

Consider the two-sided tropical linear program

min g (y) = cT y, s.t. Ay ⊕ d ≤ y, y ∈ R
n (TSLP)
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where A ∈ R
n×n and d ∈ R

n .The inequality Ay⊕d ≤ y is equivalent to the following
system of inequalities:

Ay ≤ y, d ≤ y.

The first of these inequalities Ay ≤ y describes the set of (finite) subeigenvectors of
A (see Sect. 2) corresponding to λ = 0, that is V∗(A, 0). By Theorem 2.2, this set is
non-empty if and only if λ (A) ≤ 0. Therefore, we suppose now that this condition
is satisfied. By homogeneity of Ay ≤ y, we may assume that a subeigenvector suf-
ficiently large exists and in particular one that also satisfies y ≥ d. This implies that
the feasible set of TSLP is non-empty.

Let us denote

S = {
y ∈ R

n : Ay ⊕ d ≤ y
}
.

By Theorem 2.2, we have

S = {
y = A∗u : u ∈ R

n, A∗u ≥ d
}
,

where A∗ is the Kleene star defined by (6).
Hence, g (y) = cT A∗u and (TSLP) now reads (in the form of a dual problem):

min h (u) = uT
(
A∗T c

)
, s.t. uT A∗T ≥ dT , u ∈ R

n . (TSLP’)

In order to use the results of Sect. 3, we substitute as follows: π → u, ϕ → h,

b → A∗T c, A → A∗T , c → d. This yields the vector

y = A∗u,

as an optimal solution of (TSLP) where

u = dT ⊗
(
−A∗ ⊗′ (A∗T ⊗ c

))
⊗

(
c# ⊗′ (−A∗)) .

The optimal objective function value is

gmin = dT ⊗
(
−A∗ ⊗′ (A∗T ⊗ c

))
.

Computationally, the most demanding part here is the calculation of A∗ which is
O

(
n3

)
. We conclude that (TSLP) can be solved directly in O

(
n3

)
time.

We finish this section by a remark on a tropical linear program obtained from TSLP
by replacing the inequalities with equations:

min g (y) = cT y, s.t. Ay ⊕ d = y, y ∈ R
n . (TSLP2)
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It is known (see Butkovič et al [13]) that if we denote

S = {y : Ay ⊕ d = y} ,

then assuming λ (A) ≤ 0 again we have

S = {
y = v ⊕ A∗d : Av = v

}

and thus

min
y∈S g (y) = min

v∈Rn

{
cT v ⊕ cT A∗d : Av = v

}
= cT A∗d

since for sufficiently small v (which can be assumed by homogeneity of Av = v) we
have cT v ≤ cT A∗d.

Note that if λ (A) < 0, then S = {A∗d} and so (TSLP2) has a non-trivial set of
feasible solutions if and only if λ (A) = 0.

Remark 5.1 If B is an invertible matrix (that is, a generalized permutation matrix),
then the system

Ay ⊕ d ≤ By

easily transforms to that in (TSLP), similarly for equations. Thus, (TSLP) and (TSLP2)
actually cover a bit wider class of optimization problems.

6 An Algorithm for General Integer Dual Programs

The explicit solution of (DI) in Sect. 4 depends on the assumption b ∈ Z
m . If b is

non-integer, then Proposition 4.3 is not available and it is not clear whether a direct
solution method can be produced. Therefore, we now present an algorithm for solving
(DI) without any assumption on b other than b ∈ R

m . Note that existence of a lower
bound of the objective function follows from the weak duality theorem immediately.

First we repeat the transformation to a “normalized” tropical linear program (DI’)
as in Sect. 4.With the same notation, the new tropical program (but without integrality)
is

min ϕ′ (σ ) = σ T 0, s.t. σ T D ≥ 0T . (DI2’)

Nowwe cannot assume σ ∈ Z
m since the inverse transformation πT = σ T B−1 would

not produce an integer vector in general. It is also not sufficient to require σ ∈ R
m in

order to obtain π ∈ Z
m . However, since σi = πi + bi , πi ∈ Z, for every i we have

that σ should satisfy

fr (σi ) = fr (bi ) for all i,
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where fr (x) for x ∈ R stands for the fractional part of x, that is

fr (x) = x − �x� .

In order to meet this requirement, we introduce (for a given b ∈ R
m) real functions

�.�(i) (i = 1, . . . ,m) as follows: If x ∈ R, then �x�(i) is the least real number u such
that x ≤ u and fr (u) = fr (bi ).

Condition σ T D ≥ 0T can be stated as follows:

(∀ j) (∃i) (
σi − bi + ai j − c j ≥ 0

)

or, equivalently,

(∀ j) (∃i) (
σi ≥ bi − ai j + c j

)

and taking into account desired integrality of π :

(∀ j) (∃i)
(
σi ≥ ⌈−di j

⌉(i)
)

, (17)

where D = (
di j

)
. Because of the minimization of the objective function, every com-

ponent σi of an optimal solution σ may be assumed to be actually equal to
⌈−di j

⌉(i)

for at least one j or to �L�(i) where L is any lower bound of ϕ′ (σ ) in (DI2’). Con-
versely, any σ satisfying (17), where for every i equality is attained for at least one
j or σi = �L�(i) , produces an integer solution π of (DI) using the transformation
πT = σ T B−1.

Let us denote for σ ∈ R
m and i = 1, . . . ,m :

Ni (σ ) =
{
j ∈ N : σi ≥ ⌈−di j

⌉(i)
}

.

We can summarize our discussion as follows:

Proposition 6.1 The vector πT = σ T B−1 is a feasible solution of (DI) only if

⋃
i=1,...,m

Ni (σ ) = N .

There is an optimal solution π such that the vector σ T = πT B also satisfies

(∀i) (∃ j)
(
σi = ⌈−di j

⌉(i)
or �L�(i)

)
.

Proposition 6.1 enables us to compile the following algorithm for finding an optimal
solution of (DI) for general (real) entries A, b and c. Here we denote

Mi j = ⌈−di j
⌉(i) for every i and j (18)
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and
Mi,n+1 = �L�(i) for every i . (19)

ALGORITHM
Input: A ∈ R

m×n, b ∈ R
m, c ∈ R

n .

Output: An optimal solution to (DI).

1. D := (diag (b))−1 A (diag (c)) and Mi j as defined in (18) and (19).
2. σi := max j=1,...,n+1 Mi j for i = 1, . . . ,m.

3. K := {
i ∈ M : ϕ′ (σ ) = σi �= �L�(i)

}
.

4. (a) For all i ∈ K set σ ′
i := max j

{
Mi j : Mi j < σi

}
.

(b) For all i /∈ K set σ ′
i := σi .

5. If
⋃

i=1,...,m Ni
(
σ ′) �= N or K = ∅, then stop (π = B−1σ is an optimal solution

to (DI)).
6. σ := σ ′.
7. Go to 2.

The number of iterations of this algorithm does not exceed mn since each of m
variables σi can decrease at most n times. The number of operations in each iteration
is O (m) in steps 2,3 and 5 and O (mn) in step 4. Hence, the algorithm is O

(
m2n2

)
.

This includes a possible pre-orderingof eachof the sets
{
Mi j : j = 1, . . . , n + 1

}
, i =

1, . . . ,m, which is O (mn log n) but can be done once before the start of the main
loop.

Note that by taking �b� for b we get (DI) that can be solved directly (Sect. 4) and
the difference between ϕmin

I and ϕmin is up to 1 since
⌊
πT b

⌋ = πT �b� if π is integer.
Hence, a good estimate of the optimal objective function value can be obtained by
directly solving (DI) where b is replaced by �b�.

7 Conclusions

Wehave presented a simple proof of the known strong duality theoremof tropical linear
programming with one-sided constraints. This result together with known results on
subeigenvectors enables us to solve a special tropical linear program with two-sided
constraints in a low-order polynomial time.

Wehave then studied the duality gap in tropical integer linear programming.Adirect
solution is available for the primal problem. An algorithm of quadratic complexity has
been presented for the dual problem. A direct solution of the dual problem is available
provided that all coefficients of the objective function are integer. This solution readily
provides a good estimate of the optimal objective functionvalue for general dual integer
programs.
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