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SUMMARY

BET bromodomain proteins are required for onco-
genic transcription activities, and BET inhibitors
have been rapidly advanced into clinical trials. Un-
derstanding the effects of BET inhibition on pro-
cesses such as DNA replication will be important
for future clinical applications. Here, we show that
BET inhibition, and specifically inhibition of BRD4,
causes replication stress through a rapid overall in-
crease in RNA synthesis. We provide evidence that
BET inhibition acts by releasing P-TEFb from its
inhibitor HEXIM1, promoting interference between
transcription and replication. Unusually, these tran-
scription-replication conflicts do not activate the
ATM/ATR-dependent DNA damage response but
recruit the homologous recombination factor
RAD51. Both HEXIM1 and RAD51 promote BET in-
hibitor-induced fork slowing but also prevent a
DNA damage response. Our data suggest that
BET inhibitors slow replication through concerted
action of transcription and recombination machin-
eries and shed light on the importance of replication
stress in the action of this class of experimental
cancer drugs.

INTRODUCTION

Members of the BET bromodomain-containing protein family

bind to lysine-acetylated histone tails and regulate transcription

by recruiting and activating positive transcription elongation

factor b (P-TEFb). P-TEFb can occur in two active complexes

with BET protein BRD4 or the super elongation complex (SEC)

and an inactive complex with 7SK-snRP (7SK RNA, HEXIM1,

LARP7, and MEPCE). BRD4 activates P-TEFb by releasing it

from 7SK-snRP and recruits active P-TEFb to gene promoters

(Quaresma et al., 2016). Active P-TEFb facilitates RNA polymer-

ase II (Pol II) pause release by phosphorylating the RNA Pol II

C-terminal domain (CTD) and other targets.

BET proteins promote oncogenic transcription programs,

and specific small-molecule inhibitors of BET bromodomains

promise a targeted cancer treatment (Delmore et al., 2011).

BET inhibition downregulates MYC protein levels and kills tu-

mor cells independently of p53 (Da Costa et al., 2013). In solid
Cell Repor
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tumor cells, BET inhibitor responses can be MYC independent

(Lockwood et al., 2012). Although the molecular mechanisms

surrounding BET inhibitor action are still poorly understood,

BET inhibitors are already undergoing clinical trials in a wide

range of cancers (Andrieu et al., 2016; Fujisawa and Filippako-

poulos, 2017).

More recently, BRD2 and BRD4 have been implicated in

DNA replication and DNA damage responses (Da Costa

et al., 2013; Floyd et al., 2013; Sansam et al., 2018). BRD4

in particular interacts with DNA replication factors RFC,

TICRR, and CDC6 (Maruyama et al., 2002; Sansam et al.,

2018; Zhang et al., 2018). Inhibiting the interaction between

BRD2/4 and TICRR slowed euchromatin replication, suggest-

ing that BET proteins control DNA replication initiation to pre-

vent interference between replication and transcription (San-

sam et al., 2018). BET inhibitors cause little or no DNA

damage but promote downregulation of DNA replication

stress-response and stress-repair genes (Pawar et al., 2018;

Zhang et al., 2018). It is not known whether the latter are spe-

cific responses to BET inhibition affecting replication and

repair. Investigating more direct effects of BET proteins and

BET inhibition on DNA replication might help understand BET

inhibitor action independently of cell-type-specific transcrip-

tion programs and provide insights into potential side effects

and resistance mechanisms.

We previously reported that JQ1 treatment slows replication

fork progression in NALM-6 leukemia cells, indicative of replica-

tion stress (Da Costa et al., 2013). Replication stress occurs

when the transcription machinery or other obstacles hinder repli-

cation fork progression, which promotes formation of mutagenic

or cytotoxic DNA damage, especially double-strand breaks

(DSBs). This is highly relevant to cancer therapy, as many con-

ventional chemotherapies act by causing severe replication

stress and collapse of replication forks into DSBs. However,

non-toxic levels of replication stress can promote genomic insta-

bility, an unwanted side effect of cancer therapy (Kotsantis et al.,

2015).

Here we describe a mechanism by which BET inhibition

causes replication stress. We show that BET inhibition and

loss of BRD4 cause rapid upregulation of RNA synthesis and

transcription-dependent replication fork slowing in a pathway

that depends on HEXIM1 and RAD51. Unexpectedly, combina-

tion of BET inhibitor with HEXIM1 or RAD51 depletion prevents

fork slowing but activates a DNA damage response, suggesting

that replication fork slowing might help suppress BET inhibitor-

induced DNA damage.
ts 25, 2061–2069, November 20, 2018 ª 2018 The Author(s). 2061
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:e.petermann@bham.ac.uk
https://doi.org/10.1016/j.celrep.2018.10.079
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2018.10.079&domain=pdf
http://creativecommons.org/licenses/by/4.0/


RESULTS

U2OS osteosarcoma cells were used as a well-characterized

model for replication stress and DNA damage. Osteosarcoma

is one of many cancers proposed to benefit from BET inhibitor

treatment (Lamoureux et al., 2014). We confirmed that JQ1 treat-

ment slowed replication within 1 hr (Figures 1A and 1B). Replica-

tion was also slowed by lower concentrations of JQ1 and

another BET inhibitor, I-BET151 (Figures S1A and S1B).

As reported previously (Da Costa et al., 2013), replication forks

speeds were recovered to control levels after 24 hr incubation

with JQ1 and remained at control levels for up to 72 hr (Fig-

ure S1C). This was not due to loss of JQ1 activity, because add-

ing fresh JQ1 after 23 hr did not slow fork speeds (Figures 1A and

1B). This suggests that replication forks are rapidly slowed by

JQ1 treatment, but they eventually adapt. Cell cycle distribution

remained unaffected between 1 and 8 hr JQ1 treatment, but cells

accumulated in G1 after 24 hr JQ1 treatment (Figure S1D). The

lack of S-phase arrest could be explained by compensatory

new origin firing (Figure S1E).

To investigate whether ongoing transcription contributes to

JQ1-induced replication slowing, we quantified nascent RNA

synthesis using nuclear incorporation of 5-ethynyluridine (EU)

(Figure 1C). EU incorporation increased by about 35% after

1 hr JQ1 treatment and remained increased up to 72 hr of JQ1

treatment (Figures 1D, 1E, and S1F). Increased RNA synthesis

was also observed in U2OS cells treated with I-BET151 and

in NALM-6 cells (Figures S2A and S2B). For an alternative

approach, we isolated total RNA and normalized yields to cell

numbers, showing that JQ1-treated cells contained more RNA

overall (Figure 1F).

In contrast to our findings, it was previously reported that JQ1

treatment or BRD4 degradation quickly suppress nascent tran-

scription of most protein-coding genes such as MYC, with only

a few genes such as EGR1 and SERTAD1 upregulated (Muhar

et al., 2018; Winter et al., 2017). As previous work focused on

poly-adenylated mRNA sequencing, we decided to investigate

the effect of BET inhibition on non-poly-adenylated RNA spe-

cies. First, we re-analyzed the published RNA Pol II chromatin

immunoprecipitation sequencing (ChIP-seq) datasets (Muhar

et al., 2018). These showed that 1 hr after BRD4 degradation,

genome-wide net occupancy of RNA Pol II actually increased

by 53.8%, particularly over a set of highly transcribed genes

that produce non-poly-adenylated RNAs such as histone and

non-coding RNA genes (Figure S3). We used qRT-PCR to test

whether this increased RNA Pol II occupancy was also

increasing gene expression. Indeed, expression of all selected

candidate genes was also upregulated by JQ1 in U2OS cells

(Figure 1G). Our data support that although BET inhibition sup-

presses transcription of poly-adenylated protein-coding genes,

highly transcribed histone and other non-poly-adenylated non-

coding RNA genes are upregulated, and this may explain the

observed increase in total nascent RNA synthesis.

To test whether replication fork slowing was transcription

dependent, we used short treatments with the transcription in-

hibitors triptolide, DRB, and a-amanitin (Figure 1H). These in-

hibited ongoing RNA synthesis and increased replication fork

speeds specifically in the presence of JQ1 (Figures 1I and 1J).
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Similar results were observed in human non-cancer BJ-hTert fi-

broblasts and in two chronic leukemia cell lines, C2 and MEC1

(Figures S2C–S2H). These data suggest that JQ1-induced repli-

cation stress depends on active RNA synthesis and that this is

not restricted to cancer cells. One hour JQ1 treatment increased

RNA synthesis in four of five cell lines tested, which was always

accompanied by fork slowing (Figure 1K). Fork slowing was

more dramatic in leukemia lines compared with U2OS or fibro-

blasts. Only C2 cells appeared resistant to JQ1 effects, display-

ing neither increased RNA synthesis nor fork slowing.

We used small interfering RNA (siRNA) to investigate which

BET protein was the target of JQ1-induced replication-transcrip-

tion conflicts. We first depleted BRD4, which can interact with

DNA replication proteins (Maruyama et al., 2002; Sansam

et al., 2018; Zhang et al., 2018). BRD4 depletion increased

RNA synthesis (Figures 2A–2D) and reduced fork speeds (Fig-

ure 2E). Adding JQ1 did not further affect fork speeds in

BRD4-depleted cells (Figure 2E). BRD4 siRNA-induced fork

slowing was rescued by ectopic expression of the long isoform

of BRD4 (Figures 2F and 2G) and short transcription inhibitor

treatments (Figure 2H). In contrast, depletion of BRD2 or BRD3

did not increase RNA synthesis and caused negligible fork slow-

ing (Figures 2I–2N). These data suggest that BRD4 is the BET

protein that prevents replication-transcription conflicts and is

required for BET inhibitor-induced replication stress.

We next investigated the mechanism of increased RNA syn-

thesis. It has been shown that both JQ1 and I-BET151 can

disrupt the 7SK-snRP-P-TEFb complex, increasing the propor-

tion of active P-TEFb in complex with the SEC (Bartholomeeusen

et al., 2012; Chaidos et al., 2014). This promotes transcription of

genes including the 7SK-snRP component HEXIM1 (Bartholo-

meeusen et al., 2012). Increased HEXIM1 protein levels eventu-

ally re-establish the 7SK-snRP-pTEFB complex and therefore

P-TEFb inhibition (Figure 3A). We hypothesized that JQ1-

induced replication stress might result from 7SK-snRP dissocia-

tion and increased RNA Pol II activity. In line with this, RNA Pol II

CTD serine2 phosphorylation was transiently increased during

the first hours of JQ1 treatment (Figures 3B and 3C). Several

drugs including hexamethylene bis-acetamide (HMBA) can

dissociate 7SK-snRP from P-TEFb (Fujinaga et al., 2015). If

7SK-snRP dissociation underlies BET inhibitor-induced fork

slowing, then HMBA treatment should also slow replication,

even though HMBA has no known connection to replication

forks. HMBA treatment slightly increased RNA synthesis and

slowed replication forks, which was not further exacerbated by

co-treatment with JQ1 (Figures 3D and 3E). Finally, the short iso-

form of BRD4, which cannot effectively interact with P-TEFb

(Schröder et al., 2012), failed to rescue the effect of BRD4 knock-

down on replication fork slowing (Figures 3F–3H).

We decided to further investigate the roles of HEXIM1 in JQ1-

induced RNA synthesis and replication fork slowing. HEXIM1

depletion prevented the early JQ1-induced increase in RNA syn-

thesis and replication fork slowing. After 24 hr JQ1 treatment,

however, RNA synthesis increased, accompanied by fork slow-

ing (Figures 3I–3L). These data suggest that HEXIM1 depletion

delayed the effects of JQ1. Although HEXIM1 protein levels

slowly increased during 48–72 hr JQ1 treatment, there was no

decrease in nascent RNA synthesis (Figures 3J and S1F),
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Figure 1. BET Inhibition Induces Replica-

tion-Transcription Conflicts

(A) DNA fiber labeling in U2OS cells treated

with JQ1.

(B) Replication fork speeds after JQ1 treatment

(n = 3–6).

(C) EU labeling after JQ1 treatment.

(D) Representative images of click-stained EU

labeled cells ± 8 hr JQ1.

(E) Nuclear EU intensities after JQ1 treatment

(n = 3–5).

(F) RNA was extracted after 8 hr JQ1 treatment

and yield normalized to cell number and DMSO

(n = 7).

(G) Fold change in the normalized expression

levels of indicated transcripts ± JQ1 as indicated

(n = 4).

(H) Cells were treated with transcription inhibitors

before and during EU or DNA fiber labeling. AM,

a-amanitin; TRIP, triptolide.

(I) Nuclear EU intensities in cells treated with

transcription inhibitors and JQ1 (n = 4).

(J) Replication fork speeds after 1 hr JQ1 ± tran-

scription inhibitors (n = 3 or 4).

(K) JQ1 effect on nascent RNA synthesis and

replication fork speeds in a panel of human cell

lines.

Data are represented as mean ± SEM. Scale bars,

10 mm. See also Figures S1–S3 and Table S1.
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C Figure 2. Loss of BRD4 Causes Replica-

tion-Transcription Conflicts

(A) DNA fiber labeling after BRD2/3/4 depletion.

(B) Protein levels of BRD4 isoforms after siRNA

depletion. NS, non-specific bands.

(C) Representative EU images ± BRD4 siRNA.

(D) Nuclear EU intensities ± BRD4 siRNA (n = 5).

(E) Replication fork speeds after BRD4 deple-

tion ± 1 hr JQ1 (n = 3).

(F) Equal EmGFP-BRD4 expression 48 hr after

plasmid transfection ± BRD4 siRNA.

(G) Replication fork speeds after BRD4 siRNA ±

BRD4 long isoform expression plasmid (n = 3).

(H) Median replication fork speeds after BRD4

siRNA ± transcription inhibitors (n = 3).

(I) Protein levels of BRD2 after siRNA depletion.

(J) Nuclear EU intensities ± BRD2 siRNA (n = 3).

(K) Replication fork speeds after BRD2 siRNA ±

1 hr JQ1 (n = 3).

(L) Protein levels of BRD3 after siRNA depletion.

NS, non-specific.

(M) Nuclear EU intensities ± BRD3 siRNA (n = 3).

(N) Replication fork speeds after BRD3 siRNA ±

1 hr JQ1 (n = 3).

Data are represented as mean ± SEM. Scale bars,

10 mm.
suggesting that the process of replication adaptation is more

complex than a HEXIM1-mediated feedback loop suppressing

transcription.

We then investigated the relationship between JQ1-induced

fork slowing and DNA damage. Replication fork slowing can

expose single-stranded DNA (ssDNA) and, if forks collapse,

cause DSBs. These activate the ATR and ATM checkpoint

kinases and p53. However, JQ1 does not induce DNA dam-

age (Pawar et al., 2018) or activate p53 (Da Costa et al.,

2013). In line with this, we observed no JQ1-induced increase

in ssDNA or DSBs as measured by nuclear foci formation of

RPA and 53BP1 or phosphorylation of the ATM and ATR

targets histone H2AX (gH2AX; Figure 4A), CHK1, and RPA
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(Figure S4A). BRD4 depletion also

failed to induce DNA damage foci

(Figure S4B).

Unexpectedly however, JQ1 induced

foci formation of the homologous recom-

bination factor RAD51, which depended

on ongoing transcription and ATR activity

(Figures 4B–4D and S4C). This sug-

gested that RAD51 is recruited in

response to JQ1-induced transcription-

replication conflicts, aided by basal ATR

activity. We used siRNA to investigate

the impact of RAD51 on replication fork

progression in JQ1-treated cells (Figures

4E and 4F). Interestingly, RAD51 deple-

tion prevented JQ1-induced fork slowing

(Figure 4G). We investigated whether

RAD51 suppresses RNA synthesis, like

HEXIM1. RAD51-depleted cells dis-
played high levels of RNA synthesis in both the presence and

absence of JQ1, making these data difficult to interpret (Fig-

ure S4D). Nevertheless, we concluded that RAD51-dependent

rescue of fork speeds was not due to decreased transcription.

Transient overexpression of RAD51 promoted fork slowing after

24 hr JQ1 treatment, additionally supporting that RAD51 directly

slows forks in response to JQ1 (Figures S4E and S4F).

RAD51-mediated fork slowing was previously reported for

DNA-damaging treatments and is suggestive of replication fork

reversal (Zellweger et al., 2015). In support of a fork reversal

model, PARP inhibition and depletion of SMARCAL1 or ZRANB3

(Bhat and Cortez, 2018) also prevented JQ1-induced fork slow-

ing (Figure 4H-J).
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Figure 3. BET Inhibitor-Induced Repli-

cation-Transcription Conflicts Require

HEXIM1

(A) Current model HEXIM1 role in JQ1-induced

transcription increase.

(B) Nuclear immunostaining for phospho-S2 RNA

Pol II ± JQ1.

(C) Nuclear phospho-S2 RNA Pol II intensities as in

(B) (n = 4; n = 2 [24 hr]).

(D) Nuclear EU intensities ± 5 mM HMBA (1 hr)

(n = 3).

(E) Replication fork speeds after HMBA treat-

ment ± JQ1 (1 hr) (n = 3).

(F) Schematic of BRD4 isoforms used.

(G) Protein levels of BRD4 short isoform after full-

length BRD4 siRNA ± BRD4 short isoform

expression plasmid.

(H) Replication fork speeds after full-length BRD4

siRNA ± BRD4 short isoform expression plasmid

(n = 3).

(I) Protein levels of HEXIM1 after 48 hr siRNA

transfection followed by JQ1 for times indicated.

(J) Protein levels of HEXIM1 after 48–72 hr JQ1.

(K) Nuclear EU intensities after HEXIM1 siRNA and

JQ1 treatment (n = 3–9).

(L) Replication fork speeds after HEXIM1 siRNA

and JQ1 treatment (n = 3 or 4, n = 2 [nonT 8 hr]).

Data are represented as mean ± SEM. Scale bars,

10 mm.
We then tested the effect of RAD51 depletion on JQ1-induced

DNA damage. Interestingly, RAD51 depletion actually promoted

DNA damage, as indicated by gH2AX and 53BP1 foci formation

(Figures 4K–4M). This suggests that RAD51 prevents DNA dam-

age at JQ1-slowed replication forks.

As HEXIM1 depletion also rescued fork progression, we tested

the effect of HEXIM1 on DNA damage. HEXIM1-depleted cells

accumulated DNA damage early during JQ1 treatment that per-

sisted for 24 hr (Figures 4N and 4O). In line with the increased

DNA damage, HEXIM1-depleted cells were more sensitive to

24 hr JQ1 treatment than control cells, as were ATR inhibitor-

treated cells (Figure S4G). This suggests that both HEXIM1,

which is upstream of transcription-replication conflicts, and
Cell Report
RAD51, which acts downstream of these

conflicts, contribute to replication fork

slowing and prevent JQ1-induced DNA

damage (Figure 4P).

DISCUSSION

We report that BET inhibition increases

transcription especially of highly tran-

scribed histone and other non-poly-ad-

enylated non-coding RNA genes and

causes transcription-dependent replica-

tion fork slowing. This depends on

HEXIM1, a central factor in the BET inhib-

itor response, and the homologous

recombination factor RAD51, which is

central in the replication stress response.
Unusually, BET inhibitor-induced replication stress is transient

and, despite engaging RAD51, does not activate a full DNA dam-

age response. We speculate that these unusual transcription-

replication conflicts will help illuminate some aspects of BET

inhibitor treatment responses.

Our data provide insight into the roles of BRD4 in DNA replica-

tion. Reports show that BRD4 interacts with DNA replication fac-

tors RFC, TICRR, and CDC6 (Maruyama et al., 2002; Sansam

et al., 2018; Zhang et al., 2018). We show here that BRD4 also

regulates DNA replication via its P-TEFb interaction. The BRD4

short isoform contains the interaction domains for TICRR and

RFC (Maruyama et al., 2002; Sansam et al., 2018) but failed to

rescue replication stress. The interaction with CDC6 is not yet
s 25, 2061–2069, November 20, 2018 2065
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Figure 4. RAD51 and HEXIM1 Modulate BET Inhibitor-Induced DNA Damage

(A) Representative images of DNA damage foci after JQ1 treatment. HU was 2 mM 8 hr.

(B) Representative images of RAD51 foci after JQ1 treatment.

(C) Total percentages (top) and percentage normalized to S/G2 content (bottom) of cells with RAD51 foci after JQ1 treatment (n = 3–6).

(D) Percentages of cells with RAD51 foci ± 4 hr JQ1 and a-amanitin (AM) (n = 3).

(E) EU and DNA fiber labeling after RAD51 depletion.

(legend continued on next page)
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mapped (Zhang et al., 2018). Our data suggest that TICRR and

RFC are not involved in the phenotypes described here. Instead,

they support previous reports that BET inhibition rapidly in-

creases P-TEFb activity (Bartholomeeusen et al., 2012; Chaidos

et al., 2014). We show that this also involves increased RNA syn-

thesis. Our data support that although BET inhibition suppresses

transcription of poly-adenylated protein-coding genes (Muhar

et al., 2018; Winter et al., 2017), non-poly-adenylated RNA

Pol II transcripts such as histones and non-coding RNA genes

are upregulated. We previously reported that overexpression

of H-RASV12 or transcription factor TBP increases nascent

RNA synthesis and causes replication stress (Kotsantis et al.,

2016). BET inhibition shows how small-molecule inhibitor treat-

ments can also cause replication stress by increasing RNA syn-

thesis. Any treatments that disrupt the complex of P-TEFb with

7SK-snRP, including other cancer drugs, such as HDAC inhibi-

tors and azacytidine (Fujinaga et al., 2015), could potentially

cause transcription-replication conflicts in this way.

Our findings suggest that HEXIM1 is required for BET inhibitor-

induced replication fork slowing, which is delayed by at least 8 hr

in the absence of HEXIM1. After 24 hr JQ1, extensive gene

expression changes and possibly HEXIM2 (Byers et al., 2005)

may compensate for HEXIM1 loss. HEXIM1 depletion has been

associated with long-term BET inhibitor resistance. Our findings

do not conflict with this, as BET inhibitor resistance in HEXIM1-

depleted cells was observed only after prolonged (>24 hr) treat-

ment (Devaraj et al., 2016). It was proposed that HEXIM1 loss

counteracts JQ1 by increasing P-TEFb activity (Devaraj et al.,

2016). Importantly, we show that HEXIM1 loss can also promote

JQ1 effects, such as DNA damage. In addition to modulating

transcription-dependent fork slowing, HEXIM1might play undis-

covered roles in replication stress and DNA damage response. It

may be relevant that HEXIM1 also regulates p53 (Lew et al.,

2012). Nevertheless, we observed JQ1-induced replication fork

slowing in a p53 mutant cell line. Reduced HEXIM1 protein

levels have been observed in metastatic breast cancer (Ketchart

et al., 2013), melanoma (Tan et al., 2016), and acute leukemia

(Devaraj et al., 2016; Huang et al., 2016). It will be important for

cancer researchers to further investigate the relationship be-

tween HEXIM1, replication stress, and the response to cancer

treatment.

Homologous recombination capacity of cancer cells is a well-

established predictive biomarker for the response to replication

stress-inducing treatments. RAD51 loading is known to actively

slow forks in response to a variety of genotoxic agents (Zell-
(F) Protein levels of RAD51 after siRNA depletion.

(G) Replication fork speeds after 1 hr JQ1 ± RAD51 siRNA (n = 3 and 4).

(H) Replication fork speeds after 1 hr JQ1 ± PARP inhibitor (n = 3).

(I) Protein levels of SMARCAL1 or ZRANB3 48 hr after siRNA transfection.

(J) Replication fork speeds after 4 hr JQ1 ± SMARCAL1 or ZRANB3 siRNA (n = 3

(K) Representative images of gH2AX and 53BP1 foci after JQ1 ± RAD51 siRNA.

(L) Percentages of cells with gH2AX foci after 8 hr JQ1 ± RAD51 siRNA (n = 4).

(M) Percentages of cells with 53BP1 foci after 8 hr JQ1 ± RAD51 siRNA (n = 4).

(N) Percentages of cells with gH2AX foci after JQ1 ± HEXIM1 siRNA (n = 3).

(O) Percentages of cells with 53BP1 foci after JQ1 ± HEXIM1 siRNA (n = 3).

(P) Model: BET inhibition disrupts recruitment of chromatin and replication fac

replication forks without DNA damage.

Data are represented as mean ± SEM. Scale bars, 10 mm. See also Figure S4.
weger et al., 2015). We show that BET inhibition also activates

RAD51, likely because of increased transcription, and that

RAD51 promotes fork slowing in response to BET inhibitor,

which may involve fork reversal. Forks may reverse at sites of

direct collisions between replication and transcription machin-

eries or in response to indirect effects of transcription on replica-

tion. RAD51 expression is downregulated in response to BET

inhibition (Yang et al., 2017) and in models of acquired BET

inhibitor resistance (Pawar et al., 2018). Intriguingly, acquired

BET inhibitor resistance models also displayed increased

DNA damage signaling (Pawar et al., 2018). This agrees with

our data that RAD51 downregulation increases DNA damage

signaling.

Our data support a speculativemodel whereby loss of HEXIM1

or RAD51 allows normal replication fork progression in the pres-

ence of BET inhibitor at the expense of DNA damage. This may

even contribute to long-term BET inhibitor resistance. Although

it is extensively documented that transcription-replication con-

flicts promote DNA damage, BET inhibition seems to induce

DNA damage when such conflicts are prevented. This latter

damage might, for example, result from reduced chromatin

recruitment of chromatin remodelers (Floyd et al., 2013) or

DNA replication proteins (Sansam et al., 2018; Zhang et al.,

2018) (Figure 4P). The underlying mechanisms, and how they

relate to BET inhibitor response, will require future investigation.

In summary, we provide insights into the relationship amongBET

proteins, DNA replication, and DNA damage response that will

be relevant to cancer therapy research.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rat monoclonal anti-BrdU [BU1/75] Abcam Cat# ab6326, RRID:AB_305426

Mouse monoclonal anti-BrdU [B44] Becton Dickinson Cat# 347580, RRID:AB_10015219

Mouse monoclonal anti-phospho-Histone

H2AX (Ser139) [JBW301]

Millipore Cat# 05-636, RRID:AB_309864

Rabbit polyclonal anti-53BP1 Bethyl A300-272A, RRID:AB_185520

Mouse monoclonal anti-RNA Pol II pS2 [H5] Abcam at# ab24758, RRID:AB_2167352

Mouse monoclonal anti-RPA32 [RPA34-19] Merck Cat# NA18-100UG, RRID:AB_213121

Rabbit polyclonal anti-RAD51 Abcam Cat# ab63801, RRID:AB_1142428

Rabbit monoclonal anti-BRD2 [EPR7642] Abcam Cat# ab139690, RRID:AB_2737409

Rabbit polyclonal anti-BRD3 Abcam Cat# ab83478, RRID:AB_1860012

Rabbit monoclonal anti-BRD4 [EPR5150(2)] Abcam Cat# ab128874, RRID:AB_11145462

Rabbit polyclonal anti-HEXIM1 Abcam Cat# ab25388, RRID:AB_2233058

Rabbit polyclonal anti-pS4/S8 RPA32 Bethyl Cat# A300-245A, RRID:AB_210547

Rabbit polyclonal anti-pS317 CHK1 Cell Signaling Cat# 2344, RRID:AB_331488

Mouse monoclonal anti-PARP1 [F-2] Santa Cruz Cat# sc-8007, RRID:AB_628105

Rabbit polyclonal anti-ZRANB3 Proteintech Cat# 23111-1-AP RRID:AB_2744527

Mouse monoclonal anti-SMARCAL1 [A-2] Santa Cruz Cat# sc-376377 RRID:AB_10987841

Mouse monoclonal anti-aTUBULIN [B512] Sigma Cat# T6074, RRID:AB_477582

Rabbit polyclonal anti-bACTIN Cell Signaling Cat# 4967, RRID:AB_330288

Chemicals, Peptides, and Recombinant Proteins

(+)-JQ1 Tocris 4499/10

I-BET151 Tocris 4650/10

AZ20 Tocris 5198/10

Olaparib Selleckchem S1060

Triptolide Tocris 3253/1

DRB Sigma D1916

alpha-Amanitin Sigma A2263

Hydroxyurea Sigma H8627

Critical Commercial Assays

Click-iT RNA Alexa Fluor 594 Imaging Kit Thermo Fisher C10330

RNeasy Mini Kit QIAGEN 74104

miRNeasy Mini Kit QIAGEN 217004

SuperScript III Reverse Transcriptase Thermo Fisher 18080093

SensiFAST SYBR Lo-ROX Kit Bioline BIO-94005

Deposited Data

Gene Expression Omnibus Series GSE111463 Muhar et al., 2018 https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE111463

Experimental Models: Cell Lines

U2OS ATCC Cat# HTB-96, RRID:CVCL_0042

BJ-hTert ATCC Cat# CRL-4001, RRID:CVCL_6573

NALM-6 DSMZ Cat# ACC-128, RRID:CVCL_0092

C2 DSMZ Cat# ACC-773, RRID:CVCL_0D73

MEC1 DSMZ Cat# ACC-497, RRID:CVCL_1870
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

BRD2 ON-TARGETplus SMARTpool - Human Dharmacon L-004935-00

BRD3 ON-TARGETplus SMARTpool - Human Dharmacon L-004936-00

BRD4 ON-TARGETplus SMARTpool - Human Dharmacon L-004937-00

HEXIM1 ON-TARGETplus SMARTpool - Human Dharmacon L-012225-01

RAD51 siRNA, targeting sequence

50-GAGCUUGACAAACUACUUC-30
Ito et al., 2005 n/a

ZRANB3 individual siGENOME siRNA Dharmacon D-010025-03

SMARCAL1 siRNA Dharmacon L-013058-00

Allstars negative control siRNA QIAGEN SI03650318

See Table S1 for qRT-PCR primers n/a n/a

Recombinant DNA

pcDNA6.2/N-EmGFP-BRD4(long)-DEST Philpott et al., 2014 n/a

pCDNA5-3HA-BRD4(short)-DEST Gift from Panagis

Fillipakopoulos

n/a

pcDNA3.1/V5/His-TOPO-RAD51 Sørensen et al., 2005 n/a

pcDNA3.1(+) ThermoFisher V79020

pEGFP-C2 Clontech 6083-1

Software and Algorithms

ImageJ n/a https://imagej.nih.gov/ij/

ENCODE tools n/a https://www.encodeproject.org/software/

wigtobigwig/

deepTools n/a http://deeptools.ie-freiburg.mpg.de/

Integrative Genomics Viewer n/a https://software.broadinstitute.org/software/igv/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Eva Pe-

termann (e.petermann@bham.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human U2OS, NALM-6, C2, MEC1 and BJ-hTert cells (ATCC) were authenticated using 8-locus STR profiling (LGC Standards). Cells

were confirmed Mycoplasma free and grown in DMEM (high glucose) or RPMI 1640 in a humidified atmosphere containing 5%CO2.

METHOD DETAILS

Drug treatments
JQ1 (1 mM), I-BET151 (1 mM), AZ20 (2.4 mM), and triptolide (1 mM) were from Tocris Bioscience. Olaparib (5 mM) was from Selleck-

chem. 5,6-dichloro-1-b-D-ribofuranosyl-1H-benzimidazole (DRB, 100 mM), a-amanitin (10 mg/ml), and hydroxyurea (2 mM) were

from Sigma.

DNA fiber analysis
Cells were labeled with 25 mMCldU and 250 mM IdU for 20min each and DNA fiber spreads prepared. HCl-treated fiber spreads were

incubated with rat anti-BrdU (BU1/75, Abcam ab6326, 1:250) and mouse anti-BrdU (B44, Becton Dickinson 347580, 1:500) for 1 h,

fixed with 4% PFA and incubated with anti-rat AlexaFluor 555 and anti-mouse AlexaFluor 488 (Thermo Fisher) for 1.5 h.

EU incorporation assay
5-ethynyl uridine (EU) incorporation assays were performed using the Click-iT RNA Alexa Fluor 594 Imaging Kit (Thermo Fisher). Cells

were incubated with 1 mM EU for 1 h, followed by fixation and Click reaction according to manufacturer’s instructions. DNA was

counterstained with DAPI. Imaging was performed immediately after Click reaction and nuclear masks were generated in ImageJ
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to quantify mean fluorescence intensities per nucleus. Results were normalized to control/DMSO to account for variation in staining

intensity.

siRNA and DNA transfection
siRNAs against BRD2, BRD3, BRD4, HEXIM1, SMARCAL1, ZRANB3, (L-004935-00, L-004936-00, L-004937-00, L-012225-01,

L-013058-00, D-010025-03), and RAD51 (Ito et al., 2005), were from Dharmacon, and ‘‘Allstars negative control siRNA’’ from

QIAGEN. Cells were transfected with 50 nM siRNA using Dharmafect 1 reagent (Dharmacon). For BRD4 and RAD51 overexpression

cells were transfected using TransIT-2020 (Mirus Bio) with 2.5 mg pcDNA6.2/N-EmGFP-BRD4(long)-DEST (Philpott et al., 2014),

pCDNA5-3HA-BRD4(short)-DEST (kind gift from Dr Panagis Filippakopoulos), pcDNA3.1/V5/His-TOPO-RAD51 (Sørensen et al.,

2005), or control plasmids pcDNA3.1(+) (Thermo Fisher) or pEGFP-C2 (Clontech).

Immunofluorescence
Cells were fixed with 4% PFA for 10 min, permeabilised with 0.25% Triton X-100 for 5 min, and blocked with 2% BSA. Primary an-

tibodies were mouse anti-phospho-Histone H2AX (Ser139) (JBW301, Millipore 05-636, 1:1000), rabbit anti-53BP1 (Bethyl A300-

272A, 1:30000), mouse anti-RNA Pol II pS2 (Abcam ab24758, 1:500,), mouse anti-RPA32 (Merck NA18, 1:500) and rabbit anti-

RAD51 (Abcam ab63801, 1:500). Secondary antibodies were anti-mouse IgG AlexaFluor 488 and anti-rabbit IgG AlexaFluor 555

(Thermo Fisher). DNA was counterstained with DAPI and images were acquired on a Nikon E600 microscope with a Nikon Plan

Apo 60x (1.3 NA) oil lens, a Hamamatsu digital camera (C4742-95) and the Volocity acquisition software (Perkin Elmer). Images

were analyzed using ImageJ. Cells with more than 5 RAD51 foci and 8 gH2AX or 53BP1 foci were scored as positive. Scale bars

are 10 mm.

Western blotting
Cell extracts were prepared in UTB buffer (50 mM Tris-HCl pH 7.5, 150 mM b-mercaptoethanol, 8 M urea) and sonicated to release

DNA-bound proteins. Primary antibodies used were rabbit anti-BRD2 (Abcam ab139690, 1:1000), rabbit anti-BRD3 (Abcam

ab83478, 1:500), rabbit anti-BRD4 (Abcam ab128874, 1:1000), rabbit anti-HEXIM1 (Abcam ab25388,1:5000), rabbit anti-pS4/S8

RPA32 (Bethyl A300-245A, 1:1000), rabbit anti-pS317 CHK1 (Cell Signaling 2344, 1:1000), rabbit anti-RAD51 (Abcam, ab63801,

1:1000) mouse anti-PARP1 (Santa Cruz sc8007, 1:1000), rabbit anti-ZRANB3 (Proteintech 23111-1-AP, 1:500), mouse anti-

SMARCAL1 (Santa Cruz sc-376377, 1:15,000), mouse anti-aTUBULIN (B512, Sigma T6074, 1:10000), rabbit anti-bACTIN (Cell

Signaling 4967, 1:5000).

RNA isolation
Cells were harvested and counted, and RNA was isolated using the QIAGEN RNeasy Mini Kit according to manufacturer’s instruc-

tions. RNA concentration was determined using an Implen NanoPhotometer Pearl and normalized to cell numbers.

Next-generation sequencing data analysis
The available bigwig RNA Pol II ChIP-Seq files were downloaded and analyzed using ENCODE tools (https://www.encodeproject.

org/software/wigtobigwig/) and deepTools (http://deeptools.ie-freiburg.mpg.de/) to obtain files for the quantification analysis. To

identify genes with more RNA Pol II in the dataset (IAA versus DMSO), average scores in every genomic region were calculated

for each bigWig file using deepTools. The Integrative Genomics Viewer (IGV) snapshots were generated loading the respective bigwig

files on IGV, while the difference between the coverages was generated using igvtools/combine tracks.

Quantitative RT-PCR
Total RNA was harvested using the miRNeasy Mini Kit (QIAGEN) followed by DNase I treatment (Roche). 1 mg of total RNA was

reverse-transcribed using SuperScript Reverse Transcriptase III (ThermoFisher) with random primers (Promega), following manufac-

turer’s instructions. The qPCR primers for amplification are listed in Table S1. For quantitative RT-PCR, 2 ml of cDNA were analyzed

using a CFX Connect real-time PCRmachine (BioRad) with SensiFAST SYBR Lo-ROX Kit (Bioline). Cycling parameters were 95�C for

3min, followed by 40 cycles of 95�C for 10 s, 60�C for 30 s. Result were normalized to RPLP0, whichwe have found to be a very stable

transcript. DcT was calculated as difference in the cycle threshold of the transcript of interest and RPLP0, plotted as fold change

compared to the CTR untreated sample.

Colony survival assay
Defined numbers of cells were plated in duplicate before treatment with JQ1 (1 – 30 mM) for 24 h. Colonies of > 50 cells were allowed

to form in fresh medium and fixed in 50% ethanol, 2% methylene blue.

Flow cytometry
Cells were fixedwith cold 70%ethanol before staining with 10 mg/ml propidium iodide. Cell cycle profiles were gathered using the BD

LSR Fortessa X20 and analyzed with BD FacsDiva software.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Values represent the means ± 1x SEM of independent biological repeats. For DNA fiber analysis, at least 100 fibers from 10 different

areas were measured and the median of the distribution was calculated for each independent biological repeat. For foci and EU

analysis, at least 10 different areas were quantified for each independent biological repeat. The number of independent biological

repeats (n) is indicated in the figure legends. The statistical test used throughout was the one-tailed Student’s t test except for colony

assays, where 2-way ANOVA with Tukey’s was calculated using GraphPad Prism 6, as indicated in the figure legends. Asterisks

compare to control, unless indicated otherwise in the figure panels, and signify *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

DATA AND SOFTWARE AVAILABILITY

This study analyzed published next generation sequencing data (Muhar et al., 2018). The accession number for these data is GEO:

GSE111463.
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