UNIVERSITYOF
BIRMINGHAM

iversit}/]of iIrmingham
esearch at Birmingham

Some results on general quadratic reflected BSDEs
driven by a continuous martingale

Lionnet, Arnaud

DOI:
10.1016/j.5pa.2013.11.001

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Lionnet, A 2014, 'Some results on general quadratic reflected BSDEs driven by a continuous martingale',
Stochastic Processes and their Applications, vol. 124, no. 3, pp. 1275-1302.
https://doi.org/10.1016/j.spa.2013.11.001

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

» Users may freely distribute the URL that is used to identify this publication.

» Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

» User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
« Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 28. Jun. 2022


https://doi.org/10.1016/j.spa.2013.11.001
https://doi.org/10.1016/j.spa.2013.11.001
https://birmingham.elsevierpure.com/en/publications/50ad2c69-33b4-4da3-9849-f333ece0c7ad

Available online at www.sciencedirect.com

. . stochastic
o~ ScienceDirect processes
" and their
e R R applications
ELSEVIER Stochastic Processes and their Applications 124 (2014) 1275-1302 —_—

www.elsevier.com/locate/spa

Some results on general quadratic reflected BSDEs
driven by a continuous martingale

Arnaud Lionnet™

Oxford-Man Institute, University of Oxford, UK
Mathematical Institute, University of Oxford, UK

Received 7 May 2013; received in revised form 1 November 2013; accepted 1 November 2013
Available online 8 November 2013

Abstract

We study the well-posedness of general reflected BSDEs driven by a continuous martingale, when
the coefficient f of the driver has at most quadratic growth in the control variable Z, with a bounded
terminal condition and a lower obstacle which is bounded above. We obtain the basic results in this setting:
comparison and uniqueness, existence, stability. For the comparison theorem and the special comparison
theorem for reflected BSDEs (which allows one to compare the increasing processes of two solutions), we
give intrinsic proofs which do not rely on the comparison theorem for standard BSDEs. This allows to
obtain the special comparison theorem under minimal assumptions. We obtain existence by using the fixed
point theorem and then a series of perturbations, first in the case where f is Lipschitz in the primary variable
Y, and then in the case where f can have slightly-superlinear growth and the case where f is monotonous
in Y with arbitrary growth. We also obtain a local Lipschitz estimate in BM O for the martingale part of the
solution.
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1. Introduction

Since Pardoux and Peng initiated the systematic study of (non-linear) backward stochastic
differential equations (BSDEs thereafter) in [27], these equations have been proved useful for
a number of areas. They are intimately linked with the stochastic version of the maximum
principle for stochastic optimal control problems, they provide probabilistic representations for
the solutions to some partial differential equations (PDEs thereafter), and they are natural in
finance where, beyond coming in through the use of the above fields, they provide a natural
language to express the replication of a European option. Reflected BSDEs (RBSDEs) have
applications in the same areas, where they are linked to optimal stopping, PDEs with obstacle
(variational inequalities) and American options. Consequently, a significant effort has been
directed to studying the conditions under which these equations are well-posed.

“Reflected” BSDEs are in fact BSDEs subject to a constraint: the solution process Y is
required to remain above a lower obstacle L. In order to achieve this, it is necessary to add
to the usual dynamics dYs; = — fids + Z;d Wy a “force” dK that drives Y upward. One wants
that extra term to be minimal, so that K is only active to prevent Y from passing below the
obstacle L. This optimality condition (known as the Skorohod condition) is often expressed as

fOT liy,>L,}d Ky = 0. So a reflected BSDE takes the following form:

dYy = —f(s, Yy, Zy)ds — dKs + Z,d W,
Yr =§,
Y; > L, forallt € [0, T], (D

T
K is continuous, increasing, starts from 0 and / Liy,>1,)dKs =0,
0

where the solution to be determined is now the triple (Y, Z, K).

Reflected BSDEs were introduced by El Karoui, Kapoudjian, Pardoux, Peng and Quenez
in [14]. These authors considered the case where f is Lipschitz, the terminal condition is square-
integrable and the lower obstacle a continuous square-integrable semimartingale, the natural
extension of Pardoux and Peng [27]. The first results for quadratic BSDEs (that is, when f
is allowed to have a quadratic growth in z) were obtained by Kobylanski in [20], under the
assumption that £ is bounded and f Lipschitz in y. Lepeltier and San Martin [23] allowed f
to have slightly superlinear growth in y. Kobylanski, Lepeltier, Quenez and Torres [21] were
then able to prove the analogue results for RBSDEs by extending the techniques of [20,23].
The coefficient f can have any growth in the y variable if it satisfies the monotonicity condition
(see for instance Pardoux [26]), which is encountered in reaction—diffusion equations. Briand,
Lepeltier and San Martin [9] studied the case of quadratic growth BSDEs with such an
assumption, and this was then extended to reflected BSDEs by Xu [32]. Briand and Hu [7,8]
extended Kobylanski’s results [20] to the case of an unbounded terminal condition, and this case
was further studied in the recent works of Delbaen, Hu and Richou [11,12] and Barrieu and
El Karoui [2]. Lepeltier and Xu [24] could then treat the case of RBSDEs with unbounded £,
while Bayraktar and Yao [3] removed the condition that L be bounded. Work has also been
done regarding the regularity of the obstacle L, for instance Peng and Xu [29] worked with
L? obstacles. However, the case of quadratic BSDEs remains significantly more difficult than
that of Lipschitz BSDEs, and the methods used initially are often quite involved. Recently,
Tevzadze [30] and Briand and Elie [6] gave simpler approaches for the case when & is
bounded.
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The above works concerning the well-posedness of reflected BSDEs considered a Brownian
setting. However, BSDEs have been studied in a general martingale setting (see El Karoui and
Huang [13], Tevzadze [30], Morlais [25], Barrieu and El Karoui [2]), and in a general filtered
probability space in Cohen and Elliott [10]. In this paper, we obtain the well-posedness of a
general class of quadratic RBSDEs driven by a continuous martingale and with a bounded
terminal condition in a simple, self-contained way. We show the existence of solutions in the
cases where the dependence of f in y is Lipschitz, slightly-superlinear or monotone with
arbitrary growth. We also obtain the special comparison theorem for the increasing processes
under minimal assumptions. Finally, we obtain a local Lipschitz estimate in BMO for the
martingale part of the solution.

In Section 3, we first obtain the standard comparison theorem in our setting, using a
linearization and the BMO argument from Hu, Imkeller and Miiller [17], as opposed to
via an optimal stopping representation and comparison for BSDEs (see [21]). We note that
this result, which guarantees uniqueness, holds naturally for f only locally Lipschitz in y,
instead of globally Lipschitz as often assumed [6,30]. We then prove the special comparison
theorem for reflected BSDEs, which allows one to compare the increasing processes when one
RBSDE solution dominates another. This theorem was first proved in Hamadene, Lepeltier and
Matoussi [16], and reused in Peng and Xu [29]. In the papers [16,29,22,21] where it appears, the
proof always relies on the penalization approach to reflected BSDEs and the comparison theorem
for standard BSDESs, comparing quantities which, at the limit, become the increasing processes.
The statement and the new proof we provide here are more intimately related to the nonlinear
Snell envelope approach reflected BSDEs and hold under minimal assumptions. In particular,
because we do not rely on a comparison theorem, they hold without the regularity assumptions
usually made on f.

In Section 4 we prove the existence of solutions to the reflected BSDEs when f is quadratic
in z and Lipschitz in y. To this end, we generalize the technique introduced by Tevzadze [30] for
BSDEs. The idea there is to first use the fixed point theorem to obtain a solution to a quadratic
BSDEs when f (-, 0, 0) and £ are sufficiently small (f (s, 0, 0)ds is the residual drift, that drives
the solution even if (Y;, Z;) = (0,0)), and then to build upon this partial result to obtain a
solution for general f(-,0,0) and &.

This technique can be understood as a type of “vertical” splitting and recombination, and is
in that sense an analogue to what is done for Lipschitz BSDEs. In that classical case, if one
works with the natural norm on the space where one looks for solutions, which in that context
is the space of square-integrable processes, one finds that the fixed point theorem applies if the
time interval is small enough. A natural way to use this is then to split (“horizontally”) a general
time interval into pieces small enough that one can obtain a solution on each interval, and patch
them together to obtain a solution on the whole interval. For quadratic BSDEs, since one can
apparently solve the BSDE only for small data, the idea is to split a general set of data into
pieces small enough that one can obtain a solution for each piece, and then combine them to
obtain a solution to the initial problem (see [31,19]). One can also understand this method as a
series of perturbations. One first solves a BSDE with microscopic data, then successively solves
perturbation equations and adds the associated solutions, allowing the size of the data to grow at
each step. At the end, one has built a solution to the initial BSDE with macroscopic data.

In order to use the fixed point theorem, one mainly needs to understand the underlying
backward stochastic problem. For BSDEs, this underlying problem is the semimartingale
decomposition. For reflected BSDEs, it is a Snell envelope problem. However, for the
perturbation procedure to work well, the underlying problem should be a linear problem (for
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instance, it has been applied recently in Kazi-Tani, Possamai and Zhou [19] to BSDEs with
jumps). This way, the equations satisfied by the perturbations are of the same nature as the
equations satisfied by the solutions. This is not the case for reflected BSDEs. It is however
possible to identify the equation that a perturbation should satisfy. The obstacle cannot be
perturbed during the procedure, but this can be dealt with by assuming from the start that it is
negative, a case which covers all the others by a simple translation. In particular, unlike in [21],
we do not need L to be bounded but only require it to be upper bounded.

We then study the stability of the solution with respect to changes in the terminal condition
& and in the residual drift f(-,0,0). We obtain for the martingale part of the solution a
local Lipschitz estimate in the space BM O. Global Lipschitz bounds in H” were obtained
already in Briand, Delyon, Hu, Pardoux and Stoica [5] (see also Briand and Confortola [4],
Ankirchner, Imkeller and Dos Reis [1]). Kazi-Tani, Possamai and Zhou [19] provide a global %-
Holder estimate in the smaller space BM O. Here, we can obtain a stronger regularity for small
perturbations, essentially by bootstrapping a weaker regularity result.

Finally, in Section 5, we extend the scope of the existence theorem of Section 4. In that latter
case, f is Lipschitz in y and the sequence of perturbations described above can be performed
uniformly without problem. However, when the first derivative f) is not a bounded function of
v, the maximal allowed size for a perturbation depends on the size of the solution to the reflected
BSDE that one wants to perturb, so it is not clear a priori that the procedure would terminate after
finitely many perturbations. We show, however, that this is the case as soon as one can obtain an
a priori bound for Y in S°°. We can therefore extend the existence theorem of Section 4 to the
case where f is slightly-superlinear and to the case where f is monotone with arbitrary growth
(as studied respectively by [21,32] in a Brownian setting), using the same perturbation technique.

In the following section, we motivate the general continuous-martingale setting, and specify
the notation and the framework that will be used throughout the paper.

2. Setting
General, continuous-martingale setting.

The reflected BSDE (1) is set in a Brownian setting. Even in this setting, it is sometimes useful
to consider that the reference increasing process is not the time ds. For instance, Pardoux and
Zhang observed in [28] that when looking at the BSDE associated with a semilinear parabolic
PDE in a domain with Neumann boundary conditions (the so-called “generalized BSDEs”), the
drift term is of the form f(Yy, Zy)ds + f'(Ys)d As where A is the local time of the underlying
diffusion on the regular boundary, and is therefore orthogonal to the Lebesgue measure. In that
case, one can enhance the increasing process by setting dC = ds + d A, and find f” such that
fXYs, Z)ds + f'(Yo)dAy = f"(Ys, Zs)dC (see El Karoui and Huang [13]).

The reference martingale M need not be a Brownian motion, and in particular need not enjoy
the martingale representation property (see El Karoui, Peng and Quenez [15]). The martingale
part N of the solution then has the decomposition N = f Zd M+ N on the reference martingale
M, with N1 orthogonal to M (i.e. (N L M) =0).The quadratic variation d (M) of M is assumed
to be absolutely continuous (component-wise) with respect to dC (one can always enhance dC so
that it becomes the case). Write then d(M) = adC = c0*dC. Since Z; is uniquely determined
only when no component of d(M); is zero, the drift term will only depend on Zo. The drift is
also allowed to depend on N through a quadratic term ggd (N=+), and a term d (v, N1), linear
in Nt
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So in the end, we will study the following general reflected BSDE:

dYy = —dV(Y,N); —dKs; + dNj,

=k @
Y, > L, forallt < T, and

K increasing, continuous, starting from 0 and such that 1{y,.; ;dK; =0

where the drift is given by
dV(Y,N)s = f(s, Yy, Zso5)dCs + d (v, N*)s + ged(N1);.

This is referred to as the reflected BSDE of data (V, &, L) = (f, v, g,&, L).

The framework is a filtered probability space (.Q s F = (Ft)iefo,1]> P) satisfying the usual
conditions, where T > 0 is a finite time horizon. T is an F-stopping time valued in [0, T]
(bounded stopping time). The continuous square-integrable martingale M is assumed to be
BM O (see below). All the processes considered are continuous.

C is a continuous and progressively measurable increasing process (starting from 0) such that,
roughly, all the finite variational processes which are related to the data (not depending on the
solution) are absolutely continuous with respect to it. In particular, d(M); = a;dCs = o50;dC;.
It is assumed that the positive symmetric matrix a (or equivalently o) is bounded away from 0
and infinity (i.e. bounded and uniformly elliptic).

The data of the BSDE (coefficients f, v, g of the drift V, terminal condition &, obstacle L) are
as follows:

o f:02x[0, TIxRxM; 4(R) - Ris Prog@B(R)®B(M; 4(R))-measurable, where M, 4(R)
is the space of n x d matrices with entries in R. Prog = Prog(Fr) is the progressively
measurable sigma-field on the interval [|0, T'[] (the set of pairs (w, ¢) such that t < T (w)).

v is a BMO martingale orthogonal to M (that is (v, M) = 0)

g is a progressively measurable and bounded scalar process.

& is an Fr-measurable, bounded random variable.

L is a continuous semimartingale bounded above.

Throughout the paper, we assume that f has at most quadratic growth in the variable z, in the
following sense:

(Agg) There exists a growth function A(-) (i.e. A : R — R, symmetric, increasing on R,
bounded below by 1) and a positive process h € L%}MO (i.e. [hdM € BM O, see below)
such that:

£y, D1 < 20 (] + 1217).

The assumption as written above allows for any growth in y, although more specific assumptions
on this are made in Sections 3-5.

Solutions to the reflected BSDE.

A solution to the reflected BSDE is generally understood as a triple S = (Y, N, K) where
Y is a semimartingale, N a square-integrable martingale (¢ {?) and K an increasing process
(starting from 0), such that (2) is satisfied, with N = f ZdM + N+

Note that a solution can also be understood as a pair S = (Y, N) such that, defining K from
Koy = 0 and the dynamics equation in (2), K is indeed found to be increasing and satisfies the
Skorohod condition. This will often be what is meant by solution in the rest of the paper.
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Under the assumption of quadratic growth and bounded terminal condition, we consider only
bounded solutions: ¥ € S°. For those, N is found to be a BMO martingale (see the a priori
estimate of Proposition 1). So a solution will always be understood as being in S*° x BM O
(x.A), where BMO and A are described below.

Spaces of processes, notation.

We will make use of the following particular spaces.
e BM O(P) is the space of all the BMO P-martingales, that is those for which the norm
INIsopy = sup IEP(UNYT — (N} F)lloo
T

7

is finite, where ’ZBT is the set of stopping times ¢ such that 0 < ¢ < T. The mention of the
measure P will be omitted whenever no confusion is possible. When X € BM O, then £(X)
is a UI martingale, so one can define a measure Q by stating that on 7, Z—g = E(X);. Also,
we will use frequently the fact that forany N € BM O (P), N=N- (X, N)isin BMO(Q)
(cf Kazamaki [18], Theorems 2.3 and 3.3).

° L%MO is the space of processes h such that [ hdM € BM O. We equip it with the norm

T
E</ h2dC; ]—",) H .
t o0

e A is the space of accumulators, that is: progressively measurable, continuous, increasing
processes starting from 0.

2
Ial2, = sup
BMO t

o L%2 is the space of processes x such that fOT |xs|2dCy € L, and L>! is that of processes
such that [ |x;|dCs € L%, with norms [x[%,, = [ fy 1xs/?dClloc and [x[lco,1 =
T
I fo x5 1d Cs || 0o+

In the growth assumptions on y made later on, we use a fixed positive process r € L°2, which
is part of the framework (like T, M, C). It is there to take into account the fact that C7 might
not be bounded (in fact, if C incorporates a local time of a diffusion on a regular boundary, it
has exponential moments but is not bounded). In the case where dCy; = ds and T is a constant,
r=Tland ||rlleo2 = VT

For processes S = (Y,N) € S* x BMO(Q), we use the norm ||S||2Q = ||Y||‘2900 +
[|N ||% MO(0)" As usual the mention of the measure Q is omitted whenever no confusion arises.
By L*° we denote the space of bounded random variables, and we use the norm || ||, whether
those random variables are R-valued (like &) or path-valued (like g).

BMO property for N.

Proposition 1. Let f satisfy (Aqg), v € BMO and g be bounded. Let Y be a continuous
semimartingale, N be a square-integrable martingale and K be an increasing process such that
Y has the decomposition:

dY = —-dV(Y,N)—-dK +dN,

where dV (Y, N)s = f(s,Ys, Zso)dCs + d(v, NY)y + g(s)d(NL)s. If Y is bounded (i.e.
Y € 5%°), then N € BMO and K € Agyo.
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Here, Agumo refers to the increasing processes K € A such that the norm ||K || 4,,, =
sup, ||E(KT — I(,|]—',)||OQ is finite. Note that this statement is, to some extent, not so much
about solutions to a (possibly reflected) BSDE but about quadratic semimartingales (see Barrieu
and El Karoui [2]), and quadratic semimartingales are considered here up to a monotonous
process.

Remark 2. The result implies in particular the following: if ¥ is a bounded semimartingale with
decomposition dY = —dV — dK + dN, with K monotonous (which boils down to increasing,
up to considering —Y) and if the process V isin L}, (i.e. sup, ||E(ftT ld V5| i) lloe < +00),
then N € BMO and K € Agyo.

Proof. The proof uses the usual exponential transform. Let i € R, whose sign and value will be

chosen later. By Itd’s formula for the process exp(i1Y) between a stopping time ¢ € ’ZBT and T
one has

T 2 T
e”'Yt _ M/ eMYSdKS + 'U“?/ e“YSd(N)S
t t
T T
=M ,u,/ eMsdv, — u/ e*YsdN;. 3)
t t

Since Y € S, the process ¢! is bounded, and since N is a square-integrable martingale,
[ e*YdN is a martingale. We have

|d Vsl < £ (s, Ys, Zsop)|dCs + 1d (v, N*)s| + |gslld (N )y,
and using the quadratic growth assumption on f we have
£ (s, Ys, Zsoy)| < A(Y5) (h] +1ZsosP) < A(R] + 1Zso3 ),

where A = A(]|Y||s~). Using the Kunita—Watanabe inequality and ab < a” + b?, we see that

T T
E( f e“Ys|dvg|‘fz> sAE< / s (02 + | Zoy P)dC, ﬁ)
t t
T T
+E(f e“Y‘d(v)s‘]—',)E</ Vs d (N1, ]—})
t t

T
+||g||ooE</ e“st<NL>s‘f,>.
t

Recall that by the orthogonality of M and N+, d(N) = |Zo |>?dC + d(N~), and therefore both
|Zo|?dC and d (N ) are less than or equal to d (N). Therefore,

T T
E</ e 1d vy .7-}) < AE(/ "V h2d ]—",)
t t

T T
—l—E(/ e"Vsd (v .7-',)(/1+1+||g||oo)E</ eV d(N)g

7).
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So, setting b = (A 4+ 1 4 ||g|lco), and taking the conditional expectation of (3) with respect to
F;, one has
)

T MZ T
0-— uE(/ e“deKs‘]:,) + {— — |M|b]E(/ M d(N),
t 2 1
T T
< eli¥lse 4 |u|[AE</ MY p2dCy J—',) + E(/ eV d () f,ﬂ —0.
t 1

2
We now choose u = —4b, so ”7 — |ulb = 4b2. Since b > 1, b®> > b. We now use the fact that
e MWW lisee < on¥s < olullYlls> and take the sup,, so we obtain finally

APIY [ 500

S [t a2, +vlRy0)] < 400 O
BMO

2
KN Agyo + INIBMo =< b

Note however that while it indeed gives a bound for N € BM O, this estimate does not
guarantee that if ||Y || —> O then | N| ppyro —> O.

3. Comparison theorems and uniqueness
3.1. Comparison theorem

We prove below the comparison theorem in our setting, which guarantees uniqueness in the
existence theorems of Sections 4 and 5. The regularity assumption that we require for the theorem
to hold is, for notational simplicity, the following:

(Apgp) The function f is of class C! (in the variable (y, z), for all w, 1) with

Iyt y, D1 < pO)r? and | fo(t, v, 2] < o' ) (e + I2]),

for some growth functions p and p’, and some positive process h € L% MO

Theorem 3. Consider two sets of data (f, v, g, &, L) and (f',v, g, &', L"), and assume that:

1. there exist solutions (Y, N, K) and (Y', N’, K') to the corresponding reflected BSDEzs,
2. the parameters are ordered: ' < f, g’ < g, & <&and L' <L,
3. f is regular enough: it satisfies (Apg).

Then one has Y’ <Y.

While the proof given in [21] in a Brownian setting uses an optimal stopping representation
and the comparison theorem for BSDEs, we rely here on a classical linearization argument and
the properties of solutions to a linear BSDE. More precisely, we study the positive part (AY)*,
where AX = X’ — X for a generic quantity X, and show that (AY)* < 0.

Proof. Denoting by / the local time of AY in 0, the It6—Tanaka formula gives

1
d(AY)} = Liay,-0d AY,s + Edls

1
L0 ~dAVs — dAK, +dAN, | + Sdis. “
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Now, gathering terms, rewriting differences, and linearizing some,
dAV, = [f’(s, Y., ZLoy) — f(s. Yy, Zsas)]dCS

+d(v, (N)" = NY) + gid((N)h)y — gsd (NF);

— [(Af)(s, Y., Z,oy) + f(s. Y., ZLoy) — f(s. Yy, Zsos)]dCS
+d (v, ANY) + (D) AUV + g AUV —d (N,

= [(Af)(s, Y, Zyoy) + [ (s, Yy, Zioy) — (s, Yy, Zyoy) + f (s, s, Zoy)
— (s, Vs, Zsas)]dCs Fd(v, ANLY + (Ag)s d(N)L),

+ g5 d((N)F + N* ANT)
- [Af + F,AY + FZAZa]dC +d0, ANLYY + (Ag) d((N)Y),

where

1
Fy(s) = Fy(sa Y, Ys/» Z;Gs) = / fy(s» Y, + uAYs, Z;Gs)du’
0
1
F,(s) = Fy(s, Yy, Zsoy, Z,05) =/ fo(s, Y, Zgog + ulAZgog)du and
0

vV =v+ / gd(N*+ + (N)Y).
So we can rewrite (4) as

d(AY)t = —dD — F,(AY)TdC + 1 ay-0) [dAN — F.AZodC —d(V, ANL)], (5)
where

dD = 1 ay-0) [Afdcx + Agd (NS + dAK] _ %dl
is a decreasing process. Indeed Af <0, Ag <0, dl > 0 and

Liay=0dAK = I{AY>0}dK/ —Liay-0dK <0

=0 >0

because dK > 0 and on {AY > 0} wehave Y’ > Y > L > L’ hence dK' = 0.

(AY)™ is therefore seen as the solution to a linear equation (5). Define the integrating factor
By = elo Fy@dCu and the measure Q by 3 dQ = &(f F.o~'dM + V'),. By the assumption on
f; and the fact that h € L% wo and v, N and N’ are in BMO (recall Proposition 1 and the
definition of a solution), f F.o~'dM + V' is in BMO, and therefore Q is indeed well defined.
Then, AN = AN— [ F,AZodCs—(V, ANL) isa BM O (Q)-martingale. By the assumption on
fy, the process B is bounded so f By1ay,>0d AN” is again a Q-martingale. Therefore, looking
at the dynamic of Y = BY under QO we finally find that

0< (AT =Eg (eff BWdC Agyt / el Fy(”)dcvdDu‘ft> <0. O
t
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Remark 4. The previous theorem is stated, for convenience, for a function f which is C L
Typically, for the comparison theorem one only requires f to be locally Lipschitz, in which
case the processes Fy, F; have to be replaced by the differential quotients: 8, f (Y, Y’, Z'o) =
WII@HH, etc., and the above proof works as long as F) € L>®land F, € L2BMO'
These criteria are satisfied as soon as

(AjLip) There exist growth functions p and o', and a process h € L% Mo such that
1ft. ¥, 2) = ft.y. D < pO, YIrF Ay + o' (v Y (he + |z] + 121) 1 Az).

Note: when p, o’ are constants this is the standard assumption of local Lipschitz regularity
made in the quadratic BSDE literature (see for instance Briand and Elie [6] and Tevzadze [30]).
However, since we are dealing with bounded solutions, the assumption can be weakened to the
case (AjLip) wWhere p, p" are growth functions.

3.2. Special comparison theorem

When the two sets of data are in a comparison configuration and when the lower obstacles are
the same, one can say more than Y’ < Y and also compare the increasing processes of the two
solutions, K’ and K.

Proposition 5. Let (f, g, v, &, L) and (f', g', v, &', L) be some data, and assume that:

1. there exist solutions S = (Y, N, K) and S’ = (Y’', N’, K') to the corresponding RBSDE:z,
2. the drift coefficients are ordered: f' < f, g’ < g,
3. Y'is dominated by Y:Y' <Y.

Then it is the case that dK; < dK].

The intuition is quite clear. First, since one has Yt/ < Y,, if Y does not touch the barrier
(Y; > L), then dK; = 0 and whether ¥, > L, or Y, = L;, one has dK| > 0 = dK;. So the only
non-trivial case is when Y touches the barrier, and therefore Y’ as well. In that case, since the
extra forces d K’ and d K are minimal, they only prevent the drifts d V' and dV from driving the
solutions Y’ and Y under the obstacle. But since d V,’ < dV; in that case, the correction that could
be needed for Y will be less than that needed for Y’. The proof makes this heuristics rigorous.

Unlike in [16,29,22,21], the proof we give here works under minimal assumptions and in
particular does not require regularity assumptions on f, since it does not rely on the comparison
theorem for BSDEs.

Proof. In this proof, contrary to the rest of the paper, AX denotes X — X’ for a generic quantity
X. In order to deal with what happens locally when the process AY touches 0, we proceed as in
El Karoui et al. [14]: write down the structure of AY and AY ™, argue that these two processes
are equal (since by assumption AY > 0), identify their finite variational and martingale parts,
and then extract the relevant information. Our goal is to prove that dAK < 0.

We have

dAY = —dAV —dAK +dAN  and
1
d(AY)+ = 1{Ay>0}dAY + Edl’
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where [ is the local time of AY at 0. Identifying the finite variational and martingale parts, we
see that

1
—dAV —dAK = 1 ay-0) (—dAV _ dAK) +5dl and
dAN = 1{AY>0}dAN,

that is to say

1
Lay—o) (-dAv —dAK) = Sdl and
I{AY:O}dAN =0.

The second equation implies, by Ito’s isometry and the orthogonality between M and AN,
that 1Ay:0(|AZG|2dC + d(ANJ-)) = 0. So we know that on the set {Y' = Y} (i.e. against

l{ay=0y) we have Y = Y" and Z = Z'. We also notice that by the Kunita—Watanabe inequality,
Liay=0yd(V', AN = 0 for any continuous semimartingale v’.
The drift term can be rewritten, using Av = v —v =0,

dAV; = (£(S) = f/(8))dC +d (v, N*) —d(v, (N)") + gd(N*1) — g'd((N")")
= (f(S) = f(S) + (Af)(S))dC +d{v, ANT) +d({Av, (N)F)
+g[aV) = AtV h | + (A
= [(f(S) — f(8))dC +d(v, AN*) + gd(N+ + (N)*, ANl)]

+[(ANEHC + dia), (W) + AgdiN)H]

_ [(f(S) — £(S))dC +d(, ANH] + [d(AV)(S/)],

where v/ = v + fgd(NJ- + (N’)1). By the assumptions on the coefficients, we know that
d(AV)(S'); = dI; = 0. So we find that against 1{ay,—oy we have
I{Ayt:()}dﬂvf =0+ I{Ayt:()}dlt.
In the end,

1

liay=0)(—dI —dAK) = Edl,
)

1 dAK = —1 dl ! dl <0

{AY=0} = —liay=0 ) <0,
>0 >0

and so we have proven that 1{py—0d AK < 0. And when AY > 0,onehas Y > Y > L' =L
sodK =0 < dK’, and therefore liay=0yd AK < 0, which completes the proof. [

4. Existence and stability

In this section we work under the assumption that the derivatives of f are controlled in the
following way:
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(Ager) f is twice continuously differentiable in the variables (y, z) and there exists p, o', A > 0,
and h € L%}MO such that

|fy(t,y. 2D < pr} and |fo(t,y,2)] < p'(he + I2]),
| fyy(t, ¥, 2)| < Arf, | fyz(t,y, 2| < Arp and | foo(t,y,2)] < A.

Rather than aiming to construct a solution to (2) by an approximation procedure on the data,
as was done in the Brownian setting (see [21]), we work in a more direct way, as in Section 5
of [14], and for this we adapt the perturbation procedure introduced in [30] for BSDEs. We then
analyze the dependence of the solution on the data.

4.1. Principle

As said in the introduction, the strategy is to first apply the fixed point theorem. To perform
this, one will use only the following assumption on f:

(AjocLip) The function f is differentiable at (0, 0) (in (y, z), for all (w, s)), and there exist A > 0
such that, writing 8y = fy(s,0,0) and y; = f;(s, 0, 0), one has
— for all w, s, y1, ¥2, 21, 22:
[f(s,y1521) — f(s, y2, 22) — Bs(y1 — y2) — ¥s(z1 — 22)]

=< A(rsltl + byl + il + 122l ) (5l = yal + |21 = 1),
—y €L}y and B e Lo (thatis: f) 18,dCy € L™),

which follows naturally from the assumption on the second derivative of f in (Ager). In all
generality, it allows also for quadratic growth in y. So what one actually proves first is that when
f satisfies this assumption (with possibly quadratic growth in y and z), and when the data are
small enough (in a sense to specify), there exists a solution.

The perturbations procedure is then carried as follows for a reflected BSDE with obstacle
L < 0. Split the initial data in n pieces: (é")izlﬂ_“,n and (a');—1..., such that Z?:l Si = ¢
and Z?:l o' = a, where @ = f(,0,0), and such that for each i, (Si, ai) is small enough.
For the sake of the proof we take the particular decomposition given by & = £ = }ls and

o =a™ = %oe, for n big enough, though other decompositions would do.

First, there is a solution S = (¥, N, K1) to the reflected BSDE (2) with small data
(f—a+a',vg & L)
Now, unless otherwise specified, we denote by x* the sum 2}‘: lxj , for a general quantity x

<i—1 —i—1

indexed by {1, ..., n}. Fori = 2 to n, having obtained a solutionsi_1 =Y ,ﬁi_l, K )
to the reﬂeqted BSDE (2) with parameters (f — o + a1y, g, ?l'_l, L),{ one incc_)rporates one
more (o', £') in the system. One first constructs the perturbation S* = (Y', N', K*) solving the
perturbation equation

dY' = —dVi(Y', N’y — dK' + dN',

Yh=¢",

Y v L

—i—1 i

K7 +dK' >0 and @K ' 4+dkH@ 4y s 4L =0

(6
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with drift given by
aviy', Ny, = [f& T + 8 - £ +aildc,
+d <v + / 2¢d(N'" )", (N’)l> + gd((N)F);

=[S +al]dCy +d ", (NS, + gd (N,

where V' ! = v+ [ 2gd (V'YL and 7" is the function f recentered around S' . It satisfies
?l ! (0) = 0 so the residual-drift (constant part) in this equation is given by &'. So the parameters
(?l_l +at, vi—l g, Si, L) here are small in the required sense. Finally, one sums S = 31_1 +5
to obtain a solution to the reflected BSDE (2) of parameters (f — o + ', v, g, E’, L). Fori=n
this provides a solution to the reflected BSDE of interest.

This allows us to conclude to existence for those reflected BSDEs with negative obstacles.
But then we can show that up to translation, this covers all the cases where the obstacle is upper-
bounded.

Note already that the above perturbation equation (6) is not a RBSDE in the variable
St = (Yi, N, K! ) because K' is not necessarily increasing. It could be viewed as a reflected
BSDE in the variable (Y?, N, K') but this point of view will not be used (see the remark after
Proposition 9 and Remark 10 after its proof). Also, note that the solution S' to the initial, small
RBSDE can be viewed as a perturbation: El = 0+ S', 0 being the solution to the RBSDE
of parameters (f — f(-,0,0), v, g, 0, L). So it would be enough to study only the perturbation
equations, but it seemed clearer to treat first the small reflected BSDEs and then deal with what
changes for the perturbation equations.

4.2. Existence for small reflected BSDEs

4.2.1. Underlying problem

In order to use the fixed point theorem, we need to check that the underlying problem, that is
to say the backward stochastic problem that one sees when the drift dV; is a fixed process and
does not depend on the solution, defines indeed a map from S*° x BM O to itself. For reflected
BSDE:s, as was explained in El Karoui et al. [14], the solution is the Snell envelope of a certain
process (more precisely, ¥ + fo dVj is the Snell envelope of L + fo davy).

Proposition 6. Let V € L}, , (in the sense that sup, ||E(f,T ldVil|Fi)lloe < +00), & € L™,
and L be upper bounded. There exist a unique (Y, N, K) € S x BM O x A solution to the
reflected BSDE:

dY = —dV —dK +dN,

Yr =&, 7
Y>L and lyy-p)dK =0.

In particular, this applies when dVs = dV (y, n)s = f(s, ys, 2505)dCs +d (v, n)s + ged (nt)s,
for f satisfying the quadratic growth condition (Aqg), v € BMO, g € L™ and (y,n) €
S® x BMO.
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Proof. We know from Proposition 5.1 in El Karoui et al. [14] that Y; is given by

T
Y, = esssupE(f dVs+ Lileocr +8l=7
t

teT,’

-7_-[)7 ®)

where 7,7 are the stopping times 7 such that# < T < T, and that the square integrable martingale
N and the increasing process K are the Doob—Meyer decomposition of the supermartingale
Y 4+ V. Our goal is to check that (¥, N) is indeed in S x BM O. For an upper bound on Y;, we

have
T
f,> < E(/ |d V| E) +E<Lf+ ﬁ) + E<%‘+ E)
t

< Wiy, + I oo + 187
for any stopping time 7,50 ¥; < || V”L}mo + ILT ||oo + IE || For a lower bound, since Y solves

T
E(/ st +Lrlr<T +§1r:T
t

(7), and using the fact that K is increasing, we have

)

=

T
=E<é+/ dVy + (K7 — K;)

> E($+ftrdvs ]—',>

> 1 oo = IVllps

so Y is indeed in S°*°. One can then invoke Remark 2 after Proposition 1 to conclude that
N e BMO.
We now prove the second assertion. For a drift process V of the form described above,

ldVs| < 1£(s, s, 2s0)|dCs + |d (v, n)s| + |gs| d (n )yl

Using the assumption (Agg) on f and the Kunita—Watanabe inequality, we have, similarly as in
Proposition 1,
)
t

T
E(f |d V|
t T T
+E</ |d<v,ni>s|fz>+||g||ooE</ d(nt); E)
t t

< MG+ (A4 1+ lgleo) 0 + 1V aro-

T
fz) =< X(Ilyllsw)E</ 1} + |20, 2dC;

where A = A(||y|ls~). Hence V € L}?MO aswanted. [

4.2.2. Existence for RBSDEs with small data
First one proves that there is a solution when the data are small and when, essentially, the drift
is purely quadratic in the solution.

Proposition 7. Let A > 0. Let f satisfy assumption (AjocLipz), With parameters (B = 0,y =
0, A, 7) and be sucha = f(-,0,0) € L= (ie. fOT lag|ldCs € L*™®). Letv=0¢€ BMO and g
be bounded by M. There exists €y = €o(r, r) > 0 such that if the size of the data

D = [|£lloc + £ (0, 0)loo,1 + IL ¥ [lo < €0,
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then there exists a solution S = (Y, N, K) € S x BM O(P) x A to the reflected BSDE (2) with
data (V, &, L), where dV (Y, N)y = f(s, Yy, Zyo5)dCs + ged (N1)s.
More precisely,

1
210 (Ir 1%, +2)

eo(A, 1)

Also, for any R < Ro(A,r) = m, if D < 255, then this solution is known to satisfy
r oo.2+

ISIZ = 1Y 3 + INI3po0cp) < R

Proof. We study the map Sol : S x BM O — S* x BM O which sends (y, n) on the solution
(Y, N) to the reflected BSDE

dY =—-dV(y,n) —dK + dN,
Yr =&, )]
Y>0 and lyy-qdK =0,

where dV (y,n)s = f(s,ys, 2505)dCs + ged(n+),. This map is well defined according to
Proposition 6, and (¥, N) € §* x BM O is a solution of (2) if and only if it is a fixed point
of Sol. It will be seen that Sol is not a contraction on the whole space, but it is on a small ball,
and it stabilizes such a small ball if the data are small enough. Therefore there exists at least one
fixed point in the space.

We study first the regularity of Sol. Take s = (y,n) and s’ = (y', n’) in S*° x BM O, write
S = Sol(s), S = Sol(s"), and Ax = x’ — x for a generic quantity x. The semimartingale
decomposition of AY isdAY = —dAV —d AK +d AN, and the terminal value is 0. Therefore,
applying Itd’s formula to (AY)? between ¢ € ’ZZ)T and T, and taking the expectation conditional
to F; one has, since [, AYd AN is a martingale,

T T
(AY)? + E (/ d(AN)S|]-",) =0’+2E </ Aydivxm)
t t

T
+2F </ AYSdAKSU-}) - 0. (10)
t
Let us now look at the third term on the right-hand side. Using the fact that Yd K = LdK and
Y'dK' = LdK' one has
AYdAK = (Y —Y)dK' — (Y - Y)dK
=(L-Y)dK'—(Y' —L)dK <0.
—_— N ——
<0 >0 >0 >0

Let us now deal with the second term:

T T
E (/ AMAVM) < |AY [ E (/ |dAvs||fz).
t t

The assumption on f gives
dAV,] = 2 (rslyl + i+ Iz505] + 12403 ]) (5 A ] + 1Az,041)dC
+lgslld{An®, nt 4+ ().
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Consequently, using the Cauchy—Schwarz and the Kunita—Watanabe inequalities, and the ele-
mentary inequality (37, a;)> <n'Y_a?, we have

e

T
3
< ME(f r2lysl? 4+ r2yL? + lzsos 1 + 205 dCs
t

1
2
J—',)
3 T 3
]-",) E(/ d(nt + (n)h), ]-',) }
t

Now, by orthogonality, one has |zs05|2dCs + d(nt)s = d(n), so in particular each term on the
left-hand side of this equation is smaller than or equal to the right-hand side. So

o[ o)

T
b ([ (R + 2R ), + i, + o,

t

1

2
)

T
xE(/ r2|Ays)? 4 | Azsos)? dCy

t

T
+||g||ooE</ d{An'y,
t

2
%)

(T[]

<2

1

T
x E(/ r2 Ays|2dCy + d(An)g

f,>2

T % T 3

+||g||ooE</ d(An)s fz) E(/ d{n+ (n"))s -7:t>
t t

3 2 2 2 2 2 2
< 22)\<|Irlloo,zllyllgoo + 17z 2 1Y 50 + 171 3ar0 + 17 13470

2

1

2
x (1712 2145 13 + 1 Anli3ar0 )

+lgllooll Anlipmo lln +n'llsmo

3 2
<250 (I 2+ 1) (1513 + Dl ar0 + 1Y W + 10 W 010
%
x (14913 + 1 4n1310)
+1gloo(Inllzso + 1l swo ) I Anl garo-

Now, by definition of the norm on S*° x BM O, ||y||?Soo + ”n”%?MO = ||s||>. Again, this implies

in particular that [n]|%,,, < Ils||*>. So, recalling that ||g|lcc < A, using (a® + b?)? < a+band
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majorizing 1 < 23 (for the 2nd inequality), we have

1 1

E(/T |dAV|‘f,) < 25 (IrZ o + D) (Is12 4+ 1512)” (14s12)°
+a(llsl+ 115" 141
= 250 (I o+ 1) (Isl + I I As 4235 (sl + ") 1 As
< 2BA(Ir % + 1+ D)1+ 1)1 As]l.
Eq. (10) then yields, using 2ab < A—I‘az +4b% and (a + b)? < 2(a® + b?),

T
(A% + E( / d(AN)s
t

1
E) < ZHAYH?SOO
2
+4x 222 (Irll3e 2 +2)7 x 2(Is'I1* + lIs1?) 11 sl
and by taking the sup, we finally find, since || AY| s~ < ||AS]|, that

2
IASI? < 2522 (111130 5 +2) " (Isl® + [1s'11%) | As 1. (11)

Let us now study the size of § = Sol(s). Following the very same computations and argu-

ments as for AS we have first
T T T
¥+ E (f d<N>s|f,) < 1% +2E(/ YodV, E) +2E</ V,dK,
t t t

Since YdK = LdK and, importantly, since K is increasing, one can write

.7:,). (12)

T T
/ YidKy = / LydK; < ”L—’_”Sf’C (KT - Kz)
t t

T
= ||L+||S°°(Yt—5—f dV+<Nr—Nf>>’
t
so that
, T
E<f YdK‘f'>f||L+||S°°|Yt|+||L+||Sf><>||§||<>o+”L+HSO€E(/ "W"f’>+°‘
] t

Reinjecting this into (12), then using the Young inequality, in particular the case 2ab <
8a? + %bz, leads to

T
(Yn*+ E( f d<N>s|f,>
t

2 2 1 2 r 2
< (201% + 1012713 + 17 e +9E(/ |dV|‘f,> .
t
Now, by the assumption on f,
2
ldVs| < [f(sv 0,0) + )L(rs|ys| + |Zsas|) ]dcs + |gs|d<”L>s

= [£6,0,00 + 22 (210 + 12,0 ) [dC, + Il i),
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so, by the same argumentation as for AV above,

E(/tT IdVl‘fz) < £ 0,0 oot + 24(I7 112 5 + D) lIsI? + Alls |
< 11F G0, 0)lloot + 22 (17125 +2) s 11>
Consequently, after taking sup, and using ||Y||s~ < ||S||, one has
ISIP < (41815 + 2012 1) + 5 1P
F18x2x [||f(-, 0, 0)1% 1 +2222(IIr %, + 2)2||s||4].
Collecting the terms in ||S||? and majorizing largely one has finally
IS1% < 2°D% + 2232 (Ir 12, + 2) s, (13)

where D = ||&|loo + [ILT [l + | £ (-, 0, 0)|lco.1 and we used a® + b% +c? < (a + b + ).

To have Sol be a contraction on a closed (and therefore complete) ball B(0, R) of S°xBM O,
we see from (11) and (13) that we would like the radius R and the size D of the data to be suf-
ficiently small so that 2232(|lr[2, , +2)°R? < 1(< 1) and 2°D? 4 2%2(|Ir|® + 2)°R* < R,
This is the case as soon as

1

R < RyA,r) =m ——5F——
2r(IIr 13, 5 +2)
R Ro(A,r)
D < 2_5 < T = ¢y(A,r). O

We now remove the assumption that the linear terms in the drift are null.

Proposition 8. Let & > 0. Let f satisfy assumption (AlocLipz), With parameters (B, y, A, r) and
be such that « = f(-,0,0) € L®! (i.e. fOT |f(s,0,0)|dCs € L*®). Let v € BMO and g be
bounded by M. There exists g = €o(B, A, r) > 0 such that if the size of the data

D= |lloo+ 1£(¢0,0)l00.1 + 1LYl < €0,

then there exists a solution S = (Y, N, K) € S x BM O(P) x A to the reflected BSDE (2) with
data (f,v, g,§, L).

More precisely,

¢—2Bllso

210.(Ir 12,2 +2)

€(B, A, r) =

Also, R < Ri(hr) = —L  where » = A if D <
so. for any R = RoGr) = sy, where & = exp(Illot) i D =

exp(—|8 ||OO,1)2£5, then this solution is known to satisfy
2 T2 =2 2
1513 = 1713 + IN 13 41000) < B>

where 2 — eJo BudCu Y; and N is the martingale part of Y under Q: % = E(f yo~ldM +v).
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Proof. Write f(¢,y,z) = By +viz+h(t,y,2), where B; = f,,(¢,0,0) and y; = f;(¢, 0, 0) (so
that 2(¢,0,0) = f(¢,0,0) = o). Note that & satisfies (AjocLipz) With parameters (8 = 0,y =
0,A,r).

The idea is that if (Y, N, K) is a solution to the reflected BSDE (2), one can eliminate the
linear terms (B;Y; + y;: Z;0;)dC; +d (v, N1), in the drift dV (Y, N), by a pair of transforms and
obtain a reflected BSDE with purely quadratic drift. Proposition 7 guarantees the existence of a
solution to such a RBSDE, so undoing the transforms glelds a solution to (2).

In view of this, let us define the measure Q by 77 = E(L) where L = i yoldM + v.

Then M = M — (L,M) = M — fya*dC is a BM O(Q)-martingale. Define also B =
exp ( fo Bud Cu>, which is a bounded process. Define the transformed data

(s, y,z) = Bsh(s, BT 'y, By '2),

/g\S - Bs gév
§ = Bré,
L =BL.

0,y = 0,2, r) where A = A exp(||Blloo.1)-
Proposition 7 ensures the existence of a solut10n (? ﬁ , K ) § ® x BMO(Q) x Aunder Q to
the reflected BSDE (2) with transformed data (h v=0,g, &, L). Indeed,

IZllo0 < exp(llBllos,1)lIglloc < exp(lBlloo, )k = A < +00,

I, 0, 0)lloo,1 < exp(llBllo, )11 £+ 0, 0)llog,1 < +00,

I€lloe < exp(llBlloc, )€ lloo < +00,
ILF s < exp(lBlloc,DILT 5% < o0,

Note that 7 satisfies (AyocLipz) With parameters (8 =

€
g,

soif D < exp(—||ﬂ||oo,1)eo(/):, r) = exp(—2[|Bllc,1)€0(2, r), Proposition 7 applies.
Now, define ¥ = B™'Y, N = [, B~'dN = [ZdM + N+ and K = [; B~'dK. The
Girsanov (Q — P)-transform of N,
N =N+ (L,N)

- /Zdﬁ+ﬁi+/yfadc+<v, Nt
= /2dM+Ni,

is a BMO(P)-martingale. Y is a bounded semimartingale, since B~! is bounded, and
differentiating ¥ = B~'Y shows that (Y, N, K) is a solution to the reflected BSDE (2) with
data (f,v, g,&, L), as we wanted. [

4.3. Perturbation of a reflected BSDE

We now deal with existence for perturbation equations like (6). We assume we have a solution

I — (Yl, N1, Kl) to a reflected BSDE with data (f, v, g, él, Ll), and want to construct a
solution Ez to a reflected BSDE with slightly different data (f +a?, v, g, f;‘l + ";“2, L'+ L2). The
idea is to construct the difference S% = (Y2, N2, K 2) = 32 — S!. The next proposition shows

how this can be done despite the fact that K2 is not an increasing process, so long as one does
not change the obstacle (L?> =0).
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Proposition 9. Let f satisfy (Ager) with parameters (o, p’, A, r, h) and be such that o =
£(-,0,0) € L™ let g € L® be bounded by » and v € BMO. Let also &' € L> and L'
be upper bounded. Assume that there exists a solution S' = (Y', N', K1) to the RBSDE (2) with
data (f, g, v, Sl, Ll). Now leté2 € L™ and o* € L°°! (and L? = 0). If

2
o= 20l 12, 5

2100 (1712, , +2)

then there exist S = (Y2, N2, K?) where Y> € S®, N2 € BMO(P) and K? has finite
variation, solving the perturbation equation

= 182l + & oot < €0(p, 21, 7) =

dy? = —dav3(y®, N?) — dK? + dN?,
Y2 = g2,
Yl y2s 114 g2 (14)
dK'+dK* >0 and 1y y2op142(dK' +dK?) =0
with drift given by

dV2(Y3, N, = [fGs, Y2+ Y], 2205 + Z1oy) — (5, YL, Z1oy) + @2]dCy

+d<v+ / ng(Nl)L,(Nz)l> +gsd (VD) .

s

SoS = S' + §2 is a solution to the RBSDE (2) with data (f +a?, gV gl 4 g2 LY.

We th k that R < Ro(22, — L Where2)\ =2A
e further know that for any 0(2A, 1) = 252)\(||r||§02+2) where exp(p||r|| )

if 6D < exp(— ,o||r|| 2) 35 then this solution satisfies
1217 = V2] %0 + ||N2||%MO<Q) < R%.

Note that while S = (Yz, N2, Kz) is not the solution to a reflected BSDE, (Y2, N2, ?2)
is. However the drift there would be dV2(Y?, N?), — d Kl whose residual action (when
(Y2, N?) = (0,0)) is ozSZdCY — dKl, and this has no reason to be small. We can therefore

not simply invoke Proposition 8 to construct (Y2, N2, K ) and we need to argue further.

Proof. The majority of computations that would need to be done here, related to the dynamics of
Y2, is very similar to those in Proposition 8 about small RBSDEs, so we only do the part which
is different.

Define f(s,y,2) = f(s,y + Y1,z + Zloy) — f(s, Y]}, Zloy) + 2. Note that since f
satisfies (Ager), f satisfies (AlocLlp) with parameters (8,7, 2A, 1), where B = frC, YL, Zlo)
andy = £.(-, Y', Z'0). We have || Bllco1 < plIrlI2, L <+4ocandy € Lo

Following the same approach as for RBSDEs, we first look at the underlying problem of
finding §> = (Y2, N2, K?) solving the perturbation equation (14) when the drift process is

dV} =dvi(*nd), = [f(s, 2+ Y], Z2os + Zloy) — f(s, 1), Z)oy) + a2]dC,
+d<u+ / zgd(N1>L,(n2>L> + g5 (1)) .

If 2 is a solution Ez = S! + $Z is then solution to the reflected BSDE (7) with drift process
given by dV =dVI(Y', NYs+dV2(y2 n?)y = [f(s, y2 + V), 2oy + Z)oy) + o?]dCs +
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d(v, (NHYL + @1 + g d (NHE + (n?)1),. But Proposition 6 guarantees the existence and
uniqueness of such an Ez, hence that of the sought S2. This allows to define a map Sol’ from
8> x BM O to itself.

Now, to find a solution S? to the perturbation equation (14), we proceed like in Propositions 7
and 8, the difference being in dealing with 4 K2 which is not monotonous anymore here. Up to
doing the usual transformations (Proposition 8), let us assume that the drift is purely quadratic as
in Proposition 7. Then, It6’s formula first leads to the estimates

)
)

T
E)—FZE(/ AY2dAK?
t
T
ft>+2E(/ Y2dK?
t

T
|AY?? + E(/ d{AN?),

t

T
< ZE(/ AY2dAV?
t

T T
|Y,2|2+E</ d(N?), ft>s||s2||§o+2E(/ YidV}
t t

For the term in AY2d AK? one has (even if L2 # 0)
AY?dAK? = (YY) - Y?)d(K? — (¥ - Y?)dK?
= (P = V)dE —dK") - () = V) dK’ —dK")
= (7 - V)a®y - (7 - 7)dK’
=@ -7) @ — (¥ -T°)dK_ =<0.

—_—
<0 >0 >0 =0

7).

For the term in Y2d K2 one has however, since L2 = 0,
Y2dK? = (Y? = L?)dK? + L*dK?
= (7 =YY= @ - L"))dK? + L2dK>
= (7 =T — (' = L") (@K - dK") + L?dK>
— (W —THdK =V = THdK' = (¥' = LYdK +(¥! — LYdK' +L2dK>
-0 >0 >0 =0
< L*dK* =0.

Having observed this, the rest is like the analysis of the map Sol and the ¢ is the same. So in
the end, provided that

2
e 2017

2100 (1712, , +2)

8D = ||E2 oo + ll0%[lco.1 < €0(p, 24, 1) =

there exists a solution (Y2, N2, K 2) to the perturbation equation (14). [

Remark 10. Note that uniqueness holds for the perturbation equations. First, under (Ager),
(AjLip) holds and so does uniqueness for reflected BSDEs. Then, one can argue that if ¥ 2 and
(Y2)' are two solutions to (14), then Y= y! +YZ%and (72)/ = Y! 4+ (Y2) are two solutions to
the same reflected BSDE, so 72 = (72)’ , and therefore Y2 = (Y?)'. Alternatively we can also
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argue that if (Y2, N2, K?) is a solution to (14), then (Y2, N2, fz) solves a reflected BSDE (2)
for which uniqueness holds.

4.4. Existence theorem
We can now prove the existence theorem of this section.

Theorem 11. Let f satisfy (Ager) With parameters (p, p’, A, r, h) and be such that f(-,0,0) €
L Letve BMO, g € L™ be bounded by A, & € L™, and L be upper bounded. There exists
a solution (Y, N, K) € S x BM O x A to the RBSDE (2) with data (f, g, v, &, L).

Proof. The proof is done in two steps. First, we show that one can indeed reduce the problem to
the case L < 0, by translation. Existence for the RBSDE with L < 0 is then proved by repeatedly

perturbing a solution to a similar RBSDE with smaller data.
Step 1. If (Y, N, K) is a solution to the RBSDE, and U is an upper bound for L, set

—
Y =Y — U. We see that
— —
dY =dY —dU =—-dV —dK+dN —0=—-dV —dK +dN,
s —
Yr=§-U=§,
— —
Y=Y-U>L-U= 1L,
1{7>L—U}dK = lyy>1)dK =0.
Here we defined
—
dV =dV(,N)
%
=dV(Y +U,N)
— f(s, Y + U, Zo)dC +d{v, N*) + gd(NY)
Zie vV 1 1
= f(s,Y,Zo)dC+d{v, N7)+ gd(N—).

—
It is clear that f still satisfies (Ager) With parameters (p, o', A, r, ). And from the assumption
on f) one has

3 2
[ f(5,0,0) =|f(s,U,0) <|f(s5,0,0)| + pr;U,

0@ = £(-,0,0) € L®!

Intheend, (Y, N, K) € S x BMO x Ais a solution to the reflected BSDE of parameters
(7, v, g, E), Z’) satisfying the same assumptions, but with Z’ <0.

Step 2. We now focus on the case L < 0. Consider €( given by Proposition 9. For n € N*, we
define £ = rlléf and o™ = rlla (where @ = f (-, 0, 0)). We split the data uniformly, that is we
consider Si = 5(”) and ol = o™ foralli € {1, ..., n}. We choose n big enough so that one has
D™ = EW o + [la™ 0,1 = 3D < 0.

First, by Proposition 8, there exists a solution (Yl, NI K1) to the RBSDE (2) with data
(f —a+a',v,g & L). . } .

Next, for i = 2 to n, having obtained a solution (71_1, N fl_l) to the RBSDE (2)
with data (f — o + @iy, g, E"l, L), Propositiqn 9'pr0yides a solution (Yi, N, Ki) to the
perturbation equation (6) and therefore a solution (7’ , N , f’) to the RBSDE (2) with parameters
(f—a+a,v,8 & ,L).Fori =n,since§ =&anda” =, (Y"',Z",K") is a solution to the
RBSDE of interest, which ends the proof. O
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4.5. Stability in S x BM O

Given that uniqueness holds, the a posteriori bounds that come with the construction of a
perturbation §S = S’ — S to a solution S in Proposition 9 readily shows the continuity of the map
(€,a) — (Y, N), from L™ x L% to S® x BMO.

We now derive an estimate which shows that it is locally Lipschitz, by a sort of bootstrap
argument on the above stability result, as well as a BMO-norm equivalence. In the proposition
below, we consider a fixed set of data (f, v, g, &, L) and the associated solution S = (¥, N, K),
and we define o = f(-, 0, 0). Now, for close data ( f +da’, v, g, &', L) and (f+8a”, v, g, &", L),
we consider the solutions S’ and S”. Set 6§’ = &’ — & and 8&” = &” — £. We use the notation
88 =8 — 8,88 = 8" — § for the perturbations around S and AS = §” — §' = 85" — 65'.
What we show is that if (§&/, da’) and (8&”, ) are sufficiently small, the distance | AS|| is
linearly controlled by the distance AD = || A& |loo + || Alloo.1 = 1E” — &' |l + 18" — 80| 001
That is, (¢/, @’) — (Y’, N’) is locally Lipschitz at the point (§, o).

Proposition 12. Suppose that | satisfies (Ager) with parameters (p, p', A, r, h), that a =
£(-,0,0) € L that v € BMO, that g is bounded by ) and that L is upper bounded. We
consider & € L and the solution (Y, N, K) to the reflected BSDE of parameters (f, v, g, &, L).
Now, for any (&',8a’) and (£",8a”) € L® x L®! let ' = (Y',N',K’) and §" =
(Y",N", K" be the solutions to the reflected BSDEs of parameters (f + 8a’, v, g, &', L) and
(f +8a”,v,g,&", L) respectively.
If D' = 168" loo + 180" lco,1 and 8D" = ||8&" [loo + 180" [|0o,1 satisfy

1 o~ 2Blc

~ V2202 (IR, +2)

1
8D and D" < —eo(B,2A, 1)
V2 p

where E = fy(-, Y, Zo), then we have

1Y" =Y llso < 22e2WPl1 (6" — &'llog + lla” = &'l|oo,1)  and

IN" = N'llsmopy < 2°C(¥, N) 2Pl (JIE7 — &'l|oo + la” — & [lo0,1).
where C(Y, N) is a constant depending on (Y, N).

Proof. We know that ?(s,_cﬁy, 8z) = f(s,¥s + 8y, Zsos + 82) — [ (s, Yy, Zsoy) satisfies
(AjocLip) With parameters (8,7, 2A, r), where 8 = f,(-,Y, Zo) and ¥ = f.(., Y, Zo) satisfy
IBllso1 < plrll%, ,and ¥ € L%, s and UV = v + [2gdN € BMO. We linearize f like in
Proposition 8: f (s, 8y, 82) = B8y + V,8z + h(s, 8y, 82).
Since the difference AY = Y” — Y’ has the dynamics
dAYy = —[Aas + ByAYs + Y AZsos + {h(s, 8Y,, 8 Z] o) — h(s, 8Y', 8 Z,0,)}]d Cy
—d(V, (AN)T)s — gd((BN")" + (SN')*, (AN)1); — dAK, + d AN,
doing the usual transformations, with % =&( f 70‘1d M +7v) and B =ch Budc,,’ the standard
computations give, like in (11),
—_— —_— A2 —_— —_— —_—
IAS|IG <22 AE + 27227 (Ir |12, 5 + 2*(18S”11 + 18S"15) 1AS 5.

_ But 85" and §S’ are the unique solutions to the perturbation equation (14) with data
(f +8a”,v,g,88”, L) and (f + 8/, 7V, g,88', L), and by the way they were constructed in
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Proposition 9 (recall that D', $D” < exp(—||B|lco. 135 I Ro(2h, r)) we know that they satisfy

= = Ro(2h, 1)
18871, 18815 < ——5——, so

1

18S711% + 185'1% < Ro(h.r)* = —— :
210237 (|| + 2)2

Reinjecting this in the previous estimate we have ||ZT9||2Q < 2AE + %HZEHZQ and therefore
IASIG = IAY %~ + 1 AN 3y000) < 2'°AE.

Then this 1mphes that ||AY||$oo < 25AD and so |AY s < 20 2lBll.t AD. For the same
reason, JVANHBMO(Q) < 25¢2Bl1 AD. By Theorem 3.6 in Kazamaki, |AN||zpopy <

C(Q)IIAN| Bmo(p) where the constant depends only on Q, or equivalently on the martingale
f?a_ldM +7v,and in fineon (Y, N). 0O

Note that the interesting part of the above result is the martingale estimate. Indeed, the estimate
for Y” — Y’ in 8% actually holds for any size of data (as can be seen by linearizing the drift,
doing a change of measure to get rid of all the terms in N and solving for Y). As mentioned in
the introduction, we know that (&, @) — N is global Lipschitz in H”, and %-Hdlder in BMO.
The above estimate shows it is in fact locally Lipschitz in BM O.

5. Existence under more general assumptions

In Theorem 11, the existence of a solution was proved under (Ager), SO in particular under the
assumption that f is a Lipschitz function of y, and therefore at most linear in y. In this section,
we extend this result to more general assumptions on f.

To some extent, we would like to replace p, p’, A which are constants in (Ager) by arbitrary
growth functions (while of course still assuming that f ends up with a growth in y compatible
with existence of solutions). Looking back at Proposition 9, we see that when p is a growth
function, the maximal size € allowed for a perturbation (£2, @?) of the parameters would depend
on the size ||Y!|| s of the solution. It is therefore not clear that one can choose €y and the
decomposition £ = Y " &, o = Y " | o uniformly for the perturbation procedure in the
proof of Theorem 11, or to put things differently, that a series of perturbations could terminate in
finitely many steps. This however can be guaranteed if one can obtain an a priori bound for the
solutions to reflected BSDEs with drift (f, v, g).

Case of a superlinear growth in y

In the following theorem, we extend Theorem 11 to the case where f can have slightly-
superlinear growth in y.

Theorem 13. Consider a set of data (f, v, g, &, L) satisfying the assumptions of Theorem 11,
but with p, p’, & in (Ager) being growth functions instead of constants. Further assume that
| f(t,y,0) <|f(t,0,0)| + ¢(y) for a growth function ¢ such that f1+o° ﬁdy = +4o00. Then
there exists a solution (Y, N, K) to the reflected BSDE (2) with data (f, v, g, &, L).

Proof. We will apply the perturbation procedure as was done previously when p, o', A were
constants.
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First, by the estimate in Theorem 1 in Kobylanski et al. [21], we know that there exists a
function F increasing (a growth function) such that for any set of data (f, v, g, &, L) satisfying
the assumptions and for any solution (Y, N, K) we have ||Y||sx < F(||€|lco, lle|lc0,1). Now, for
a fixed set of data, we define ppax = ,o(F(||§ lloos ||oz||oo,1)). We fix n big enough that

- D zpmaxiir”cz,oz
DY = = €0(Pmax, 2A(1), r).
210(2k(1))(||r||2 2+2) ma

We will construct 7 solutions S’ of reflected BSDEs or perturbation equations such that for each
equation, the size of the data is D' = D™ and the size of the solutlon 1s such that || Y goe < 1.
Note that the ~ here indicates the multiplication by B! = exp(f; fy(S,, hac, )-

‘We know that we can do a translation to be reduced to the case L < 0 so we assume from
now on that L < 0. Define, fori = 1...n, é;:i = ’g‘(”) = %S and of = o™ = %a (uniform
decomposition of £ and «).

For i = 1, we first build a solution S' = (Y', N', K!) to the reflected BSDE (2) with
parameters (f —a4a', v, g, &', L). Proposition 8 as it is stated does not strictly apply, but we can
adapt the proof. We define the integrating factor B = ¢/ P4C with B = EO = f4(,0,0) € L]
and the new measure Q by dP = 5(f yoldM +v) Where y =7%° = £:(,0,0) € LBMO

Then, like in Proposition 7, we look for a solution (¥ 1, N 1, K l) to the reflected BSDE with no
linear term, via the fixed point theorem. We look for a solution in a ball of radius R and now
further demand that R < 1, so that the conditions to be met are that
—_— 1
R < Ro(2A(1),r) = —— > and
252)t(1)(||r||00,2 +2)

5i_D _ Re@i(D.r) _
n 25

co2n(1), ),

~2omax Il
e

where 2)t(1) = e”ﬁ lleo.1 (2.(1)). Now, since we have chosen 1 such that 2 - > R
210<2A<1>>(||r|| 2+2)

ﬁ ”ﬁ I 1D B o1 o= 2Pmax I I3 5 o218 o1 p=2Pmax 713 5
’ n T 2@ +2) 202D (I, +2)
1 —_—
= = eo(2r(1), 1)

21020()(I7 12, 5 +2)

because [|B 1l < /o(O)||r||iO 5 and p(0) < pmax by construction. So we indeed get a solution

({/\1, ]f\rl, I/(\l) and doing the reverse transforms gives a solution § = !, N, K") to the
reflected BSDE with the linear terms. -
For i = 2...n, we have a solution S to the reflected BSDE (2) with parameters

(f—a+a 1 v, g, Ei“, L) and want to construct the appropriate perturbation S*. We simply do

— —i—1
the same computations as in Proposition 9, using the integrating factor B | = e/ P dC where
,3 = fi(, Yl 1, 7" 1(7) and the change of measure < TP S(f 7~ lo=1dC 4+ v'~!) where

Yl = £ Z 7 o) and vl = v 4 [2gd(N' )L
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Because we know, by the a priori estimate on solutions of the reflected BSDE, that

”?l-_lnsmfF(‘(";_l)gH =1

o

n 00,1

) < F(lI€lloo, lolloo,1),

—i—1 —i—1 .
we know that ||ﬁl loo,1 < ,o(||Yl ||5c>c>)||r||c2>o2 < ,omax||r||c2>0 ,- Therefore, just as above,

we find that the size D! of the data is indeed small enough, and so we can construct the
perturbation S*. [

As can be seen from the proof above, the key to the generalization is to have an a priori
estimate ||Y|lge < F(||§]lco, l@|loo,1) for some growth function F.

Case of f monotone and with arbitrary growth in y

We can also generalize the result of Theorem 11 to the case where f is so-called monotonous
(or 1-sided Lipschitz) in y, with arbitrary growth.

Theorem 14. Consider a set of parameters (f,v,g,&, L) satisfying the assumptions
of Theorem 11, but with p, p’, A in (Ager) being growth functions instead of constant.

Further assume that | f (t, y,0)| < |f(t,0,0)| + @(y) for a growth function ¢ and that there
exists a constant | such that forall y, y', z, s, o,

O =D(f6Y D = fl v ) sprl Y =y
Then there exists a solution (Y,N,K) to the reflected BSDE (2) with parameters
(fv v, ga é’ L)

As remarked above, it is enough to have an a priori estimate for || Y || 5. One can use the one
obtained in the proof of Theorem 3.1 in [32]. Alternatively, having argued that it is enough to
study the case where the obstacle is negative, one can linearize the driver in the N variable, and
do a measure change. Then, using Ito with | - |? to take advantage of the monotonicity condition,
one could conclude via standard estimations that

4 2 2
1Y 1150 < 2e" 102 (1181120 + 2012 1) =t F(IElloos lllos,1) -

6. Conclusion

We obtained the standard well-posedness results (comparison, uniqueness, existence) for a
general class of quadratic reflected BSDESs driven by a continuous martingale.

We also proved under minimal assumptions the special comparison theorem (which allows to
compare the increasing processes of two solutions), using a new proof which does not rely on
comparison for BSDEs (which requires regularity assumptions on f') but is more in the spirit of
the Snell-envelopes view of reflected BSDEs.

Finally, we also showed a local Lipschitz estimate in BM O for the martingale part of the
solution, which improves on the previously known regularity. The idea is somehow to bootstrap
an existing, weaker regularity result.

For the existence of a solution, we first worked under the standard assumption that f is
Lipschitz in y and adapted the technique introduced by Tevzadze in [30]. The perturbation
procedure required a special attention here since perturbations to a reflected BSDE do not satisfy
a reflected BSDE. This is linked to the fact that the underlying problem for reflected BSDEs is a
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Snell envelope problem, and that if L and L’ are obstacles, the Snell envelope of L + L’ is not
the sum of that of L and that of L. The problems with the difference of increasing processes
not being increasing can be avoided if one does not perturb the obstacle during the procedure.
We therefore applied first a transformation to the reflected BSDE to be led to study only the case
where L < 0. We expect that this approach would also work for doubly reflected BSDEs if they
can be reduced to studying the case where the lower obstacle L is negative and the upper obstacle
U is positive.

However, this technique would probably not work in the case of an unbounded terminal
condition. In that setting indeed, the martingale part of the solution is not in BM O, a property
which is well put to contribution here.

We also showed the existence of solutions in the case where f has slightly-superlinear growth
in y and in the case where f is monotone with arbitrary growth in y. For this, and unlike in the
case where f is a Lipschitz function of y, we need to use an a priori bound to guarantee that
the perturbation procedure ends in finitely many perturbations (and can be carried uniformly).
Therefore, the same technique can be used to construct solutions in these three cases.
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