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The objective of the work reported in this paper is to determine if saliva addition has an effect on the
rheology of xanthan gum solutions. The reasons for the interest was that it has been previously reported
that flavour release from high viscosity xanthan thickened foods is not reduced in the same way as foods
thickened by other hydrocolloids at comparable viscosities. It was previously postulated that this could
be due to an interaction between saliva and xanthan that could change the microstructure and rheology
of xanthan solutions. In this work the effect of saliva on the rheology of CMC and xanthan solutions was
compared. Solutions of molecularly dissolved xanthan gum and CMC mixed with water or human whole
saliva at a ratio of 5:1 showed little impact of the presence of saliva on steady shear or dynamic viscosity
for the two hydrocolloids. In filament thinning experiments saliva addition significantly increased fila-
ment break-up time for xanthan gum while it had little effect on the break-up time of the CMC filament.
Also, filament thinning appeared a lot less even and was not as reproducible in the case of xanthan gum.
Addition of CMC and hydroxypropyl methylcellulose (HPMC) to xanthan gum solutions showed a similar
increase in break-up time to saliva, but to see this effect the viscosity of the added CMC or HPMC solution
had to be very much higher than the viscosity of saliva. The results are discussed in the context of the
structure of xanthan gum and the reported extensional rheology of saliva.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

For many years there has been substantial interest in the taste
and flavour perception from viscous solutions. It is universally
observed that increase in viscosity inhibits taste and flavour
perception due to increasingly poor mixing with saliva and there-
fore slow transport of tastant and flavour molecules to the taste
buds (Baines & Morris, 1987; Morris, 1993). Mixing efficiency has
also been linked with the good taste and flavour release from
starches, which retain their granular formwhen swollen, compared
to a molecular solution of hydroxypropyl methylcellulose (HPMC)
that was of the same shear viscosity at 50 s�1 (Ferry et al., 2006).
Rheologically, the two types of solution differ in droplet break-up
behaviour as measured rheooptically (Desse, Mitchell, Wolf, &
Budtova, 2011) and by mixing a solution containing a marker dye
with water (Ferry et al., 2006). However, a recent study on model
. Wolf).

er Ltd. This is an open access artic
soups thickened with swollen particles of physically modified
xanthan gum andmolecularly dissolved xanthan gum revealed that
superior mixing behaviour and shorter filament break-up times did
not coincide with enhanced taste and flavour release (Abson et al.,
2014). The sensory panel was also not able to distinguish taste and
flavour perception between the tomato flavour intensity in xanthan
and modified starch thickened tomato soup. Morris (1993) found
that xanthan gum gives better taste perception at high viscosity
than solutions thickened with other molecularly dissolved poly-
saccharides. The cited observations could suggest that predicting
the sensory properties of hydrocolloids from measurements in
water could be misleading and that the appropriate fluid to predict
sensory behaviour based on flow properties would be saliva.

In this paper the rheological properties of xanthan gum solu-
tions following mixing with water and saliva were analysed in
steady shear, oscillatory shear and in uniaxial extensional flow. For
the scope of this initial study behaviour in extensional flow was
quantified by filament break-up times acquired in a capillary break-
up extensional rheometer. The results were compared to solutions
of carboxymethyl cellulose (CMC). This was chosen partly because
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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like xanthan it is not only a polyelectrolyte with a cellulose back-
bone, but also because it is frequently used in the formulation of
artificial saliva (Hahnel, Behr, Handel, & Buergers, 2009). Unusual
strand-like phase separation has been found for xanthan poly-
electrolyte blends, but is not seen in mixtures of xanthanwith non-
polyelectrolytes (Boyd et al., 2009). Thus, the addition of solutions
of CMC and the uncharged hydroxypropyl methylcellulose (HPMC)
to xanthan gum solutions was included to see if either hydrocolloid
gave similar effects to saliva addition.

2. Materials and methods

2.1. Materials

Xanthan gum (KELTROL�-T) and carboxymethyl cellulose
(CEKOL�-20000) with a degree of carboxymethyl substitution in
the range 0.75e0.85 (manufacturers data) were provided by CP
Kelco UK Ltd (Leatherhead, UK). Hydroxypropyl methylcellulose
(METHOCEL� K4M) was obtained from Dow Wolff Cellulosics
(Bomlitz, D). The methoxyl degree of substitution and the
hydroxypropyl molar substitution were 1.4 and 0.21 respectively
(manufacturers data). The aqueous solutions were prepared with
double distilled water and also contained sodium chloride (Sigma
Aldrich, Gillingham, UK) and the antimicrobial sodium azide
(Sigma Aldrich, Gillingham, UK) at a level of 0.2%w/w and 0.05%w/w
respectively. Human whole saliva was used following collection
from a healthy volunteer. All protocols involving saliva were pre-
viously approved by the local ethics committee and the biological
safety officer.

2.2. Polysaccharide solution preparation

Each polysaccharide was added in appropriate quantity to an
aqueous solution of 0.2%w/w NaCl and 0.05%w/w sodium azide to
make a 1%w/w stock solution while mixing on a magnetic stirrer
hot plate at 70 �C. The dispersion was stirred continuously for 1 h
and kept at room temperature until further use but at least over-
night. The desired concentration of each polysaccharide solution
was obtained by mixing the stock solution with 0.2%w/w sodium
chloride solution on a roller mixer for at least 2 h at room
temperature.

2.3. Saliva sample preparation

Mechanically stimulated saliva was collected from a healthy
volunteer between 10 am and 12 pm. The volunteer was asked to
not eat and drink, with the exception of water, for 2 h prior to
donation. The donor chewed on a small piece of laboratory self-
sealing film (Parafilm, Bermis Flexible Packaging, Neenah, USA)
(approximately 5 cm � 5 cm) to stimulate flow of saliva over a
period of 10 min. Saliva was expectorated every 30 s into an ice-
chilled container whereby the saliva from the first 30 s was
discarded as it was likely to contain food and other debris that
may have been present in the oral cavity. The collected saliva
sample was gently swirled, transferred to a centrifuge tube and
centrifuged at 10,000g for 30 min at 4 �C to remove cell debris.
The supernatant of the centrifuged sample was stored in
a �80 �C freezer and used for experiments within two weeks of
collection.

2.4. Mixing of polysaccharide solution with saliva

The frozen saliva was defrosted in an ice-chilled water bath just
before experiments. 1 g of saliva was added to 5 g of 0.5%w/w
xanthan gum solution or 0.65%w/w CMC solution in a 50mL conical
tube. These solutions were prepared by diluting the stock solution
with 0.2% NaCl. Mixing was carried out on a roller mixer for 2 h at
4 �C. Control samples were prepared by replacing saliva with
double distilled water under the same conditions.

2.5. Steady shear and oscillatory shear rheology

All rheological measurements were carried out in duplicate and
at 20 �C with a stress controlled rotational rheometer (MCR 301,
Anton Paar, Graz, A) using a cone and plate geometry (0.5� angle,
50 mm diameter). Steady shear viscosity data were collected at
shear rates between 0.1 and 1000 s�1. Strain sweeps were per-
formed from 0.1 to 1000% strain at the angular frequency of 1.59 Hz.
Frequency sweeps were conducted from 10 Hz to 0.1 Hz at 0.5%
strain which was in the linear viscoelastic domain.

2.6. Filament break-up

Extensional rheology tests were carried out at 25 �C using a
capillary break-up extensional rheometer (CaBER-1, Thermo Haake
GmbH, Karlsruhe, D) equippedwith 6mmdiameter plates. Samples
were carefully loaded to ensure the absence of air bubbles between
the upper and lower plates with an initial gap of 3 mm. The upper
plate was moved up rapidly (within 20 ms; shorter times were not
feasible as then the sample would de-wet the upper plate) to a pre-
set height of 19 mm to form a filament. The thinning of the filament
diameter was monitored at the mid-point of the filament length
which corresponds to the standard set-up of the equipment used.
Due to the difficulty in loading the sample in the shape of a perfect
cylinder and almost certain inhomogeneity of the samples at mo-
lecular level, at least 20 replicate measurements were performed
and representative results were chosen for analysis.

2.7. Experimental design and data analysis

The concentration of the xanthan gum solution was set to 0.5%
w/w to correspond to a value typically found in thickened foods.
Similarly, the concentration of sodium chloride of 0.2%w/w is found
in popular brands of tomato soup. To gain insight into the role
charge has to play in the interactionwith saliva, CMCwas chosen as
a negatively charged food hydrocolloid as it is often used as food
thickener. A 0.65%w/w concentration of the CMC solution was
selected to be shear viscosity matched at a shear rate close to 50 s�1

at 20 �C with 0.5%w/w xanthan gum following dilution of five parts
of polysaccharide solution with one part of water. The shear rate of
50 s�1 was chosen as the shear rate often used to assess the vis-
cosity of liquid foods in correlation with sensory behaviour
(Christensen, 1980; Ferry et al., 2006; Koliandris et al., 2010;
Moskowitz & Arabie, 1970) and it corresponds to the value
applied in the paper motivating this study. The mixing ratio of 5:1
was chosen based on the maximum flow rate of stimulated saliva
reported by Humphrey and Williamson (2001), an estimated
serving size of 10 mL of liquid food and an in-mouth residence time
of roughly 15 s.

To aid the discussion of the main study data further solutions of
CMC at lower concentration and HPMC solutions at two concen-
trations typically found in food products were included. HPMC is
uncharged and mixing xanthan solution with either CMC or HPMC,
maintaining the mixing ratio of five parts of xanthan to one part of
diluent, filament break-up experiments of these two types of
mixtures were conducted. The aimwas to gain insight into the role
of viscosity and charge of the diluent. Shear viscosity of these CMC
and HPMC solutions was also measured and viscosity at 50 s�1 is
reported.



Fig. 2. Effect of saliva on small deformation viscoelastic moduli of xanthan gum and
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All shear rheological data are reported in form of graphs
showing one data trace from two independent measurements
which would have overlapped on the scale chosen for the graphs.
Data correction was not required as a cone and plate geometry was
used. Shear viscosity at 50 s�1 is reported as the average of the two
measurements. Filament break-up data are reported as evolution of
the normalised diameter, calculated as the actual filament diameter
divided by the diameter of the filament before onset of thinning,
with time. Full analysis of the thinning data for extension rate and
viscosity was outside the scope of this preliminary study on the
impact of saliva on the flow properties of hydrocolloid solutions.
This would require certainty that the filament thins in the middle
where the diameter is monitored in our set-up. Break-up times are
reported as average over at least 15 measurements. Analysis of
variances (ANOVA) followed by Tukey’s post hoc test was used to
investigate if there were any significant differences between the
filament break-up times of samples (P > 0.05).

3. Results and discussion

3.1. Shear rheology properties

Figs. 1 and 2 display the effect of saliva addition on the steady
shear viscosity and the small deformation viscoelastic moduli of
xanthan gum and CMC solutions. For both hydrocolloids the gen-
eral form of this relationship is consistent with many previous
studies (Sworn, 2009). The addition of saliva as opposed to water
shows no difference in the large and small deformation shear
rheological responses.

3.2. Filament break-up behaviour

In contrast to the shear rheological properties, saliva addition
does have an effect on the filament thinning behaviour. Figs. 3(A)
and (B) compare the changes in normalised filament diameter with
time until break-up for xanthan gum and CMC solutions showing
five selected data traces for each sample. In contrast to CMC which
showed smooth curves xanthan filaments thinned more unevenly
and less reproducibly. This was the motivation for conducting the
large number of replicate measurements. Immediately obvious
Fig. 1. Effect of saliva on steady shear rheology of xanthan and CMC solutions showing
one data trace for each sample (CV < 2%). One part of saliva or water was added to five
parts of hydrocolloid solution.

CMC solutions. One part of saliva or water was added to five parts of hydrocolloid
solution. (A): Amplitude sweep at 1.59 Hz, (B): Frequency sweep at 0.5% strain.
from the graphs is that mixing with saliva, compared with water,
has an impact on filament thinning for xanthan gum. Mixing with
saliva imparts a longer filament life time. For CMC the impact of the
use of water or saliva as diluent is much less pronounced. Filament
break-up times are reported in Table 1. Standard deviation for
xanthan gum mixed with water is >10% and around 5% or less for
the other samples. Analysis of the data for extensional viscosity was
outside the scope of this short communication in part due to the
extent of the data scatter and the limitation that the CaBER records
filament diameters at filament mid-point which may not corre-
spond to the thinnest diameter.

While this study was concerned with the difference in interac-
tionwith water or saliva and the impact on the flow properties and
less so with the differences between the two hydrocolloids, it is
worth mentioning that the shorter break-up time for xanthan gum
based samples is not surprising. The two types of hydrocolloid
solution were shear viscosity matched at 50 s�1. Over the whole
shear rate range (Fig. 1), the xanthan gum systems have a higher
viscosity at lower shear rates and lower viscosity at higher shear
rate which is due to the exceptional shear thinning nature of xan-
than gum solutions. CMC on the other hand is a flexible polymer
showing a zero shear plateau followed by shear thinning which is



Fig. 3. Normalised filament diameter as a function of time for xanthan (A) and CMC (B)
solutions. Five representative data sets are depicted for each sample.
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less pronounced than for xanthan gum. The filament thinning
experiment follows a rapid stretch of the sample in which the rod-
shaped xanthan gum molecules align in stretch direction whereas
the flexible CMC molecules will be entangled. Thus, break-up time
is shorter for the xanthan gum system in agreement with literature
Table 1
Filament break-up times for the different hydrocolloid solutions diluted with water or
statistical analysis of all samples containing xanthan gum. Samples with same superscri

Samples Shear viscosity of added solutions at 50 s
�1

Added solution Viscosity (mPa s)

0.5% Xanthan þ water (5:1) Waterb 1
0.5% Xanthan þ saliva (5:1) Salivac 1e2
0.65% CMC þ water (5:1) Water 1
0.65% CMC þ saliva (5:1) Saliva 1e2
0.5% Xanthan þ 0.1% CMC (5:1) 0.1% CMC 4
0.5% Xanthan þ 0.25% CMC (5:1) 0.25% CMC 19
0.5% Xanthan þ 0.5% CMC (5:1) 0.5% CMC 74
0.5% Xanthan þ 0.35% HPMC (5:1) 0.35% HPMC 19
0.5% Xanthan þ 0.65% HPMC (5:1) 0.65% HPMC 74

a Averaged over at least 15 measurements.
b Literature value of water at 20 �C (Mezger, 2006).
c Literature value of centrifuged saliva (Bongaerts, Rossetti, & Stokes, 2007).
reports on the impact of molecular confirmation on filament break-
up behaviour (Haward, Sharma, Butts, McKinley, & Rahatekar, 2012;
Jones, 1990). It has also been reported previously that increased
viscoelasticity, which is the case here for the xanthan samples
compared to the CMC samples, will lead to quick thinning and
breaking of a fast stretched filament (Chan et al., 2009). Another
factor which could partially explain the shorter break-up time of
xanthan along with its uneven thinning might be the more par-
ticulate structure of “molecularly” dissolved xanthan. This is
probably not only due to the large size of individual xanthan
molecules which have an end to end length of w1 mm, but also the
more complex structures found in reordered materials including
microgels (Capron, Alexandre, & Muller, 1998; Gulrez, Al-Assaf,
Fang, Phillips, & Gunning, 2012; Morris et al., 2001).

To gain further preliminary insight into themechanismbywhich
saliva protects xanthan against filament break-up, CMC and HPMC
solutionswere used as charged and uncharged diluent, respectively.
Fig. 4 shows representative data traces for the normalised diameter
for a range of diluent concentrations mixed with xanthan gum so-
lution. Filament break-up times for these mixtures have been
included in Table 1. An obvious hypothesis is that shear viscosity
impacts onfilament break-up kinetics so also shown inTable 1 is the
viscosity of the added solution (water, saliva, or hydrocolloid).

It is clear from this data that the delay in filament break-up upon
addition of saliva is not related to its shear viscosity. To produce a
similar effect on filament break-up to saliva the viscosity of an
added CMC solution has to be about 40 times higher than that of
saliva. The extensional viscosity of centrifuged saliva has recently
beenmeasured with a stagnation point extensional flow device and
Trouton ratios as high as 100 were reported (Haward et al., 2012).
Several other studies including measurements of filament break-up
(Stokes & Davies, 2007; Zussman, Yarin, & Nagler, 2007) have
shown that saliva is an elastic fluid due to the presence of high
molecular weight mucins of high persistence length in particularly
MUC5B (Haward, Odell, Berry, & Hall, 2011). The concentration of
this component in human saliva is w0.02% (Rayment, Liu, Offner,
Oppenheim, & Troxler, 2000). Using plausible values for the mo-
lecular weight of MUC5B (Haward et al., 2012) calculated values for
the overlap concentration c* may be as low as 0.006%. So here
where saliva was diluted fivefold with hydrocolloid solution, its
concentration is above c* and its elasticity still impacts on the
behaviour in an extensional flow situation. It manifests itself as a
protection against filament break-up. This effect was more pro-
nounced for xanthan gum than for CMCwhichmay be explained by
the rigid rod versus flexible polymer conformation as well as charge
repulsion in case of CMC. There is scope for more extensive work
including physicochemical analysis of the donated saliva as saliva
saliva (mean and standard deviation). Superscripts (letters) indicate the results of
pt are not statistically different from each other.

Hydrocolloid concentrations in the mixture Filament break-up
time (ms)a

Xanthan (%) CMC (%) HPMC (%)

0.42 e e 57 � 5A

0.42 e e 70 � 3D

e 0.54 e 75 � 2
e 0.54 e 82 � 3
0.42 0.02 e 62 � 3B

0.42 0.04 e 66 � 3C

0.42 0.08 e 69 � 3CD

0.42 e 0.06 77 � 4E

0.42 e 0.11 88 � 6F



Fig. 4. Effect of added hydrocolloids on filament thinning of xanthan. One part of
hydrocolloid solution or water was added to 5 parts of xanthan solution.
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rheology including filament thinning behaviour will depend on the
source, age of donor, time and methods of collection and whether
or not the saliva samples have been centrifuged to remove cell
debris (Stokes & Davies, 2007). However, the objective of this short
study to gain some preliminary insight if saliva has an effect on the
rheological behaviour of xanthan gum has been achieved. The
original hypothesis (Abson et al., 2014) that xanthan will mix more
efficiently with water than with saliva due to phase separation
involving the mucin polyelectrolytes is not supported by this data.
The filament thinning data suggest that xanthan solutions in saliva
will have somewhat longer textures than in water, rather than the
shorter textures related to good mixing. The addition of the non-
polyelectrolyte HPMC induces a greater delay in filament break-
up than CMC at comparable viscosities of added hydrocolloid. In
this context it may be of some relevance that HPMC droplets are
extremely difficult to break-up in a counter rotating shear device
(Desse et al., 2011).

4. Conclusions

Inspection of the filament break-up behaviour of xanthan gum
has revealed an impact of saliva on its extensional flow properties
that is more pronounced than for CMC. The presence of saliva had
no impact on the shear rheological properties both in large and
small deformation. The research thus far allows concluding that the
interaction behaviour between the rigid rodmolecule xanthan gum
and saliva differs from the behaviour of other flexible or semi-
flexible hydrocolloid molecules classically included in taste
perception studies. In terms of the saliva specific components
responsible for this interaction behaviour it can be hypothesised
that it is the large molecular weight mucin fraction. Further
fundamental studies including purified systems and hydrodynamic
interaction studies are part of future work.
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