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Abstract

The effect of the Earth’s gravitational potential on a quantum wave function has only been observed
for massive particles. In this paper we present a scheme to measure a gravitationally induced phase
shift on a single photon traveling in a coherent superposition along different paths of an optical fiber
interferometer. To create a measurable signal for the interaction between the static gravitational
potential and the wave function of the photon, we propose a variant of a conventional Mach—Zehnder
interferometer. We show that the predicted relative phase difference of 10~ rad is measurable even in
the presence of fiber noise, provided additional stabilization techniques are implemented for each arm
of alarge-scale fiber interferometer. Effects arising from the rotation of the Earth and the material
properties of the fibers are analysed. We conclude that optical fiber interferometry is a feasible way to
measure the gravitationally induced phase shift on a single-photon wave function, and thus provides a
means to corroborate the equivalence of the energy of the photon and its effective gravitational mass.

1. Introduction

Interferometry has proven to be an effective tool for high-sensitivity measurements in physics. For example, the
recent groundbreaking detection of gravitational waves [ 1] relied on Michelson interferometers to measure
ripples in the curvature of space—time predicted 100 years ago by the theory of General Relativity (GR). This
achievement indicates that state-of-the-art technology enables the realization of interferometers capable of
detecting gravitational effects even on quantum particles. While there exists a well developed framework
incorporating general relativistic gravity into quantum physics—quantum field theory on curved space—time [2]
—its most distinctive predictions, such as Hawking radiation from black holes, are nowhere close to be testable
in the near future. Various experiments have been proposed to test its other predictions, e.g. general relativistic
corrections to the Newtonian gravitational phase shift for massive particles [3, 4]. Yet, the size of the
interferometric setups that are necessary to observe these corrections is still beyond the reach of the present-day
technological capabilities. Rapidly advancing quantum optics technology allows for quantum states of light to be
transmitted over increasingly large distances, which sparked proposals for experiments probing the effects of the
space—time curvature on photons [5]. As a first important step towards this goal, we propose an experimental
scheme for observing the gravitational phase shift on a single photon. We discuss the gravitational effects on the
single-photon state inside a Mach—Zehnder interferometer (MZI), which is placed vertically inside the Earth’s
gravitational field. We show that the use of optical fibers together with a modification of the classic Mach—
Zehnder scheme allows to obtain a detectable signal, even in the presence of noise.

The first experiment testing the influence of a gravitational potential on a quantum wave function was
performed by Colella, Overhauser and Werner using neutrons in a matter-wave interferometer [6]. Subsequent
measurements of the gravitational acceleration g have also relied on atoms and molecules [7]. However, because
these experiments all used massive particles, they can be interpreted within the framework of Newtonian gravity;

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/aa638f
mailto:christopher.hilweg@univie.ac.at
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa638f&domain=pdf&date_stamp=2017-03-16
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa638f&domain=pdf&date_stamp=2017-03-16
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

IOP Publishing NewJ. Phys. 19 (2017) 033028 CHilwegetal

g wave packet 1 I detectors

BS

>
wave packet 2
N

time

Ap/w
=t —

M

Figure 1. Schematic of a conventional Mach—Zehnder interferometer of area A = Ih placed vertically inside Earth’s gravitational field.
A beam splitter (BS) transforms a single photon into a coherent superposition between the two possible arms. The wave function
evolves along two different paths and arrives at the merging beam splitter at the same time but slightly shifted in phase due to the
presence of a gravitational potential.

on the other hand, gravitational tests with massless particles, e.g. measurement of the Shapiro delay [8], require a
general relativistic explanation [9]. In order to detect GR effects on a single photon wave function, a MZI with
arms located at different heights above the Earth can be used [9, 10]. The time of emission of the photon serves as
a‘clock’, keeping track of the evolved proper time along each path of the interferometer [9]. By reading the state
of the clock we gain information about the path taken by the photon inside the MZI, which should lead to a drop
in visibility according to the quantum complementarity principle [11, 12]. We therefore expect the visibility to
start decreasing once the relative GR proper time difference between the arms approaches the photon coherence
time (the precision of the clock). The observation of such a drop in visibility would constitute a genuine test of
the interplay between GR and quantum mechanics. Unfortunately, interferometers with arm lengths of a few
thousand kilometers would be required for such an experiment. Such large-scale interferometers are currently
only feasible for space-based experiments [13]. However, a smaller interferometer still allows for measuring
gravitationally induced phase shifts as we discuss in this work. A successful demonstration of this phase shift
would constitute e.g. a verification of the equivalence between the energy of a single photon and its effective
gravitational mass [10].

A conventional MZI, with arms of length I separated in height by a distance h, placed vertically inside Earth’s
gravitational field is illustrated in figure 1. The relation between the enclosed area A = Ih and gravitational phase
difference is approximately given by [10]

2mANg
A(;Sg A v

> ()]

where Nis the group effective index of the transmissive medium for light propagation, gis the gravitational
acceleration, \is the central wavelength used to excite the interferometer and cis the speed of light in vacuum.
The gravitational phase shift can be interpreted to be a result of the coupling of the average energy of a photon
with effective mass m = % = % to the Newtonian gravitational potential [ 10]. If the coherence time of the
photon is much larger than the proper time difference experienced between different paths the fringe visibility is

high and the detection probabilities at the two output detectors are given by

P = (1 £ cos(Ady + 6(1)), @

where ¢ () denotes the time varying phase-noise contributions present in any real interferometric setup.

The required interferometric area for a given wavelength depends on the phase difference as given by
equation (1). Due to the small effective mass of the photons, the required area of the interferometric set-up is
much larger than the area needed for matter-wave interferometry [6, 10]. For photons in the optical regime
(Ao ~ 107° m), an area of about 10° m*leads toa phase shift on the order of A@; ~ 107" rad. In order to
achieve such large-area interferometers, optical fibers are ideally suited for compact arrangements even at the
table-top scale. Remarkably, commercially available fiber spools containing 100 km of fiber do not exceed
2 x 107* m’ of volume and 10 kg of weight which makes them suitable for implementations in the laboratory
despite the long path lengths required.
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Figure 2. Sketch of the interferometric scheme used to resolve the gravitationally induced phase shift of single-photons. (a) Schematic
drawing of the complete setup: the photons (orange and blue paths) are used as interfering particles whereas classical laser light (blue
path) is used to stabilize the interferometer by means of an imbalanced MZI in each arm as the angle of inclination (¢) changes. The
laser exciting arm 1 can also be used to calibrate the interferometer to operate at the quadrature point in horizontal position (0 = 0).
(b) Stabilization mechanism: the entire interferometer can be kept at the quadrature point during rotation—without erasing the
gravitational phase information—by means of an imbalanced MZI in each arm. (c) Phase detection: single photons are coupled into
the stabilized interferometer and are used to observe the gravitationally induced phase shift by measuring the difference in photon
counts between the detector in arm 2 and the detectors in arm 3 for each angle 6. The high frequency modulation provided by the
optical switch creates a time-varying gravitational signal in alow-noise band at the detectors.

2. Measuring gravitational phase shifts for single photons

In a noise-free environment the measurement of the gravitational phase shift would be straightforward. The MZI
could first be calibrated by orienting the setup horizontally—such that the area (A) is parallel to the surface of the
Earth—to equalize the optical path lengths of the arms; then, by orienting the interferometer vertically (figure 2), we
could determine the gravitational phase by simply observing the difference in count rates between the detectors. In
reality, however, fiber interferometers can also be used as sensors for various physical and chemical variables due to
their high sensitivity for external perturbations [14]. This leads in our case to noise induced signal fading [15, 16],
which is a change in the amplitude of the detected signal as a function of time. It is therefore necessary to design an
experiment capable of distinguishing the static gravitational signal from time-dependent noise. Tanaka proposed a
possible solution for an all-fiber MZI [17], where the arrangement can be rotated about an axis parallel to its arms.
The phase difference between the two arms is angle-dependent and can be measured for all intermediate angles
between the horizontal and vertical orientation of the interferometer. Measurements are only taken when the angle
between the surface of the Earth and the area of the interferometer is fixed. Due to the static nature of this rotation and
the impossibility of calibrating the interferometer for different angles without losing the desired information, this
scheme relies heavily on passive stabilization of the fibers. For the proposed area of 5000 m? phase-noise larger than
10~ rad within the detection band must be suppressed. Although such stability has been demonstrated in fiber
interferometers [ 18—20], achieving this precision for such a large-scale interferometer is a challenge. In the scheme we
present here, we modulate the gravitational potential difference even when the interferometer is at a fixed position
during the measurements (figure 2).

2.1. Setup

Our scheme consists of a rotatable 3-arm MZI (figure 2). Each of the three arms is made up of a fiber beam
splitter (FBS), a fiber phase shifter and an optical fiber of length /. The interferometer can be shielded from
external noise, arising from temperature fluctuations and air currents, by placing it in a vacuum chamber. In
order to reduce coupling to vibrations, the entire set-up can be placed on an actively stabilized vibration isolation
system. An optical switch (OS), consisting of an electro-optical modulator (EOM) and a polarizing beam splitter,
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is used to connect the additional arm to the conventional MZI, directing the photons either alongarm 2 or arm 3
as a function of time. This technique effectively creates two two-arm MZIs with different spacings between their
arms resulting in different gravitational potential differences. Therefore a time-varying signal, modulated at the
EOM frequency, is received at the single-photon detectors (SPD) and can be extracted by post-selecting data at
the frequency of modulation performed by the EOM. The rotational degree of freedom (e.g. aboutarm 1,

figure 2) is used to calibrate the interferometer in the horizontal position as well as creating an angle dependent
signal by slowly rotating the interferometer and performing measurements at fixed positions.

2.2. Calibration and measurement

To avoid signal fading for different angles in the presence of noise without extinguishing the gravitational
information in each of the arms, the following strategy may be applied. The interferometer can be calibrated in
the horizontal position—where gravitational differences are absent—using a frequency stabilized laser source in
arm 1 (figure 2). We can operate at the most phase-sensitive point (quadrature point) of the MZI by adjusting a
phase difference of % between arm 1 and arms 2 and 3. To keep the MZI at this point for all angles and during
rotation, the length of each arm is kept constant by means of an additional, imbalanced MZI consisting of the
corresponding fiber spool and a short segment of fiber (blue lines in figure 2) together with a frequency stabilized
laser source in each arm. The length of this segment can be chosen to be as short as possible, so that we can
assume the noise to be negligible in the passively isolated, noise reducing vacuum chamber. This allows to
monitor and thus minimize the noise in the long fiber spool, where the vacuum environment minimizes
common-mode noise for each of the three additional interferometers. A linewidth for the stabilizing lasers in the
kHz regime is required for good visibility in these unbalanced MZIs. The interferometer can now be slowly
rotated (e.g. about arm 1) to change the gravitational potential difference in a controlled way. Because of the
active stabilization provided by the imbalanced MZI in each arm, an observer located at one of the rotated arms
will measure a stable path length during the entire rotation. After fixing the entire setup at a given angle, single
photons—with frequency different from the lasers—are coupled into the interferometer via the first FBS

(figure 2(c)). The single photons will now experience a different gravitational potential depending on which path
they take leading to a relative phase shift. SPDs in arms 2 and 3 can be used to resolve this phase difference. The
dynamic EOM-modulation together with the controlled (static) rotation of the interferometer and the active
stabilization preserving the calibration condition, allows us to measure the gravitationally induced phase shift on
the single photons. In designing this interferometer it is crucial to identify all the physical phenomena that could
introduce noise that would swamp the gravitational effect we wish to observe.

3. Noise analysis

3.1. Effects of the rotation of the earth

The rotation of the Earth introduces an additional relative phase-shift (A¢.) between the spools, an effect first
observed in bulk interferometric setups [21]. The calibration of the interferometer in the horizontal position
effectively sets A¢, between the different arms equal to zero. However, as f increases, this difference for arms 2
and 3 with respect to arm 1 constantly changes in addition to A¢,. We can estimate this effect by assuming the
velocity of the photon to be constant as seen by an observer in the laboratory. We can then calculate (see
appendix A) the resulting phase-shift between the two outermost arms—represented by spools 1 and 3 in
figure 2—within the framework of special relativity to be (up to first order in ?)

22 2
Aé, — 1_bw2+vz(

Cc

2w Al _ 2R}
A Ac

cos ¢ - (cosEF (w, ayq3) + sin @ sin EF' (w, a1,3))), 3)

where b is the radius of the spool, v, is the (average) light speed along the direction of the cylindrical symmetry
axis of the spool, Al = Njl} — N;I3 = L; — L;is the optical path-length difference and wis the (average) angular
speed of the light circling around the spool. The angles ¢ and 6 represent the latitude coordinate of the lab on
Earth and the spool inclination angle, respectively, as shown in figure 3. We define £ as the angle between the
normal projection of the symmetry axis of the spool(s) to the surface of the Earth and the unit vector pointing
South. By definition, £ = 0 defines a vector pointing South at the location of the lab, whereas £ = /2 definesa
vector pointing East. The term linear in Al in equation (3) is the usual phase term for standard fiber
interferometry, here multiplied by a factor originating from the rotation around the spools axis. Because of the
expected value for the gravitational phase (h = 3 m, I = 10°> m) we can calculate a bound on the optical path
length difference of about Al < 107! m. The oscillating term contains two functions defined by

Fw, ay3) = sin(w—L1 + 041) — sin(w—L3 + a3) + sin(as) — sin(ay), 4)
c c
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X

Figure 3. Spool geometry used to calculate the phase-corrections due to the rotation of the Earth. The x-axis is always pointing South,
the z-axis is normal to the surface of the Earth and the y-axis is pointing to the East. The photons enter the spool in a plane defined by
the angle «v;, where 7 is indexing the corresponding fiber spool.

L L
Fl(w, aq3) = cos(g + oq) — cos(u + a3) + cos(as) — cos(ay), (5)
c c

that describe an effect arising from the special geometry of the fiber spools. The angles o and «a; describe the
planes in which the photon enters the fiber spools at time = 0 in the laboratory frame. From equation (3)—
which can be interpreted as a coupling between the rotation of the Earth and the rotation around the fiber spool
—itis easy to observe, that the amplitude is independent of the length I (mod 27b) of the fiber. Usingb = 0.2 m,
w~10°rads™ ', v, ~ 400 ms ™', A = 1550 nmand ¢ = 48.21° we can expect a phase-shift on the order of
0.5 rad. Comparing A¢, to the gravitationally induced phase shift (equation (1)) by taking the same numbers
and the effective refractive index to be N = 1.468 for a fiber of reasonable length I = 10> m, we expect Ag, tobe
approximately three orders of magnitude smaller. Fortunately, it is relatively easy to align the geometric angles
o and o to be parallel for all spools. For simplicity we consider from now on a3 = «; = 0 withoutloss of
generality. We require the effect to be independent of the angle between the fiber spool symmetry axis and the
surface normal of the Earth (e.g. between ‘horizontal’ and ‘vertical’ position in the laboratory), in contrast to the
gravitational effect”. This can be done by choosing ¢ = n7 (1 € Z), indicating that the axis of rotation between
the ‘vertical’ and the ‘horizontal’ position should be parallel to the line connecting the cardinal directions West
and East. In this case A¢, o< 2 sin (iAl ) cos (;—Cl ), where we defined I := L + L. Therefore the oscillating

term in equation (3) reduces to

2,2 2
Agos = WéhrbRQ cosqﬁsin(iAZ)COS(il)’ 6)
c 2 ¢ 2c 2c

where the argument in the sine function is periodic with a period of 47b. The periodicity together with the
geometry of the model used for calculating equation (3) allows for the interpretation of the sine-term as
describing the plane perpendicular to the fiber symmetry axis, where the photon leaves the fiber spool. Note that
this term only arises because of the geometry of the fiber spool and would not be observable in a straight fiber
interferometer. Setting an upper bound for the maximal angular displacement between the planes of the spools
where the photon can leave by using equations (1) and (6), we obtain a required stability of about Al ~ 13 prad.
With a spool radius of about 0.2 m this translates to an angular stability of about 7 mdeg. Though feasible, this is
certainly one of the most challenging parts of the experiment. This means that in order to not swamp the
gravitational effect by the rotation of the Earth, all of the three possible input planes (described by the ;) and all
of the three possible output planes (described by Al and b) must not change more than 7 mdeg during rotation
from the horizontal—where this effect is not present due to calibration—to the vertical.

3.2. Internal fiber noise
Another factor that limits the sensitivity and stability of any fiber interferometer is internal noise originating from
thermal properties of the fiber itself [20, 22, 24-26]. External noise, mainly from temperature fluctuations, air currents

6 To avoid possible relative pressure induced changes in the refractive index for the fiber spools during rotation, it is beneficial to keep the
symmetry axis of the spool and the surface normal to the Earth always parallel.




10P Publishing

NewJ. Phys. 19 (2017) 033028 CHilwegetal

|
o]
o

-100

-120}

-140}

-160 -

Phase noise (dB rel. rad/rt(Hz))

10 1000 10° 107
Frequency (Hz)

Figure 4. Theoretical curve for the Wanser thermal noise theory. The root-mean-square amplitude of the phase noise fluctuations at
room temperature in the fibers as a function of frequency, as given in [22], is shown. The plot represents the expected phase noise for a
fiber interferometer operating at a wavelength of A = 1550 nm and a total length of 2/ = 200 km. The used fiber parameters are:
thermal conductivity k = 1.37 W mK !, refractive index temperature coefficient dn/dT = 9.52 x 107° K1, effective refractive
indexn = 1.468, coefficient of linear expansion ap, = 5 x 1077 K™}, thermal diffusivity D = 0.82 x 107° m? s~ !, mode-field
radius wy = 5.2 pm and fiber outer radius ag = 62.5 um. The Wanser theory is in excellent agreement with experimentally observed
noise figures for Fourier frequencies above 1 kHz [20, 23].

and acoustic noise can be greatly reduced by housing the fiber-spool inside an evacuated chamber, shielded
additionally from acoustic noise by active vibration isolating systems. In fact, without this shielding it has been shown
to be impossible to measure a meaningful signal due to signal fading [ 18]. In most applications for short-scale fiber
interferometry, the shot noise limit sets alower bound on the phase-sensitivity of an interferometer. For large-scale
fiber interferometers, intrinsic thermal noise of the transmissive medium itself can limit the performance, and must be
carefully analysed for the application at hand. There are several theoretical investigations attempting to model the
observed noise floors for optical fiber interferometers. The measured power spectral density (PSD) for typical fibers
used in optical fiber sensing (see e.g. [20, 23]), hasa 1/f dependence in the low frequency regime, which shows good
agreement with theories for mechanical dissipation in optical fibers [24]. For frequencies over 1 kHz, the observed PSD
curves show excellent agreement with another theory for thermal phase noise by Wanser [22]. The PSD has a rapid cut-
off for Fourier frequencies above 100 kHz, indicating a lower noise contribution in this frequency regime. The root-
mean-square amplitude of phase noise fluctuations depends strongly on the geometry and material of the fiber. Using
the fiber parameters for Corning’s standard single mode fiber SMF-28 [23], the noise contribution from intrinsic
thermal phase noise for an interferometer with total length 21 = 200 km can be” estimated to be around 10~° rad
Hz /% at 100 kHz according to Wanser’s theory (figure 4). A better estimation for this bound can only be given by
measuring the crucial parameters for the fibers actually used in this experiment, although the order of magnitude
should not change for commercially available optical fibers. One can see, that the thermal noise contribution can be
tailored to be lower than the gravitationally induced phase shift by an appropriate choice of signal band-pass filtering at
the detectors and proper choice of the modulation frequency with the OS. Passive stabilization by noise damping
foundations and vacuum environment are necessary for keeping external noise contributions to a minimum. This
might also reduce the need for an active stabilization loop for the short fiber segments connecting the three arms of the
interferometer (orange lines in figure 2). Active stabilization of the fibers performed by the imbalanced MZIs in each
arm keeps the interferometer at the desired quadrature, independent of the inclination angle 6.

3.3. Polarization and dispersion
Optical fiber interferometers are also sensitive to polarization effects [27]. The states-of-polarization (SOP) of
the two interferometer arm outputs determine the mixing efficiency at the merging beam splitter, where perfect
polarization overlap occurs for parallel SOPs resulting in a maximal visibility [28]. The proposed setup relies on
rotation around one of the arms of the MZI, so special care must be taken to preserve perfect mixing and avoid
polarization drifts and rotations. One possible approach to overcoming drifts in polarization is to use
polarization-maintaining (PM) fibers. The main disadvantages of using PM fibers are the much higher
transmission losses (~0.5 dB (km nm) ™" instead of ~0.18 dB (km nm)™") and the much higher costs. Therefore it
is most practical to use standard single-mode fibers with an active stabilization of the polarization in each arm
[28]. The required quality of this stabilization depends mainly on the chosen frequency of the optical switch.
Because we are aiming for measuring small optical phase shifts with large scale fiber interferometers,
dispersive effects might also be of great importance. We assume the single-photon states to have Gaussian

w—wp)?

V4 o . . . .
spectralamplitude [29] f (w) = (ﬁ) Meit—en=11" |\ here o2 is the variance of the spectral intensity and

7 . . . . . .
Because of the optical switch, only two arms of the MZI are involved at a given time instant.
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wy is the central frequency of the pulse. Allowing for pulses to evolve differently in distinct fibers we can rewrite
the detection probability (equation (2)) for a conventional MZI as (appendix B)

A¢2

!/ _ g
P~ 1[1 + ZLE i cos(Ag, + ¢ (1) |, 7)

12
T4+ T

where 72 = 75 + A7?and 7, is the initial temporal width of the photon®. The time-domain broadening is given
by A7 := D,,IA X with D,, representing the dispersion coefficient (ps (km nm)™"), I the length of the fiber (km)
and A representing the spectral width (nm). The prime in equation (7) indicates the second fiber with different
material coefficient. The Gaussian pre-factor depends on the ratio between path difference, represented by the
gravitational phase shift, and pulse length represented by the broadening of the initial pulse in the time domain.
It can be shown by using equation (7) that the dispersion broadening results in an effect that is about two orders
of magnitude smaller than the gravitational phase shift for photons with spectral width achievable in recent
experiments [30]. Thus dispersion is not a limiting factor in the proposed experiment.

3.4. Attenuation and integration time

While the interferometer’s path lengths should be as large as possible to increase the relative gravitational phase
difference between the arms, longer optical fiber paths also introduce more noise and reduce transmission, thus
increasing the integration time required for statistically significant measurements. In this setup, the gravitational
phase can be resolved by means of a difference in count rates as a function of # and the modulation frequency of
the optical switch. To determine an upper bound on the required integration time, we assume the single photon
source to possess photon statistics following a Poisson distribution at the detectors after passing through the
fibers. In order to be visible over the Poissonian noise, the difference in photon counts due to gravity should be at
least \/71;, where 7; is the average number of photons registered by the ith detector per time ¢. Because the optical
switch directs the photons either along arm 2 or arm 3, the set-up reduces to a conventional MZI, where the
difference in gravitational potential can be seen as phase change modulated by a phase-shifter. The amplitude in
this model is proportional to the potential difference between arms 2 and 3 and the modulation frequency is
given by the one of the EOM. The integration time of the detectors can thus be estimated by (see appendix C)

t > M > (€))
(Nan(A — P))?
where N is the number of photons per unit time provided by the single photon source, 77is the quantum
efficiency of the detector, n4 is the dark count rateand a = 10(7% o O"") is the overall attenuation factor of the
interferometer with « the attenuation coefficient of the optical fiber, / the length (m) of the horizontal arms of
the MZI and the ; are the various attenuation coefficients of the fiber optic components used in the
interferometer. The detection probability for the detector in question at an angle  at the quadrature point is
denoted by P. The detection probability for the ‘horizontal’ position (f = 0), where gravity has no effect, is
denoted by A. Because of the large area needed to observe even a small gravitational phase shift, it is desirable to
work at a wavelength where the optical fibers have high transmission. For standard single-mode fibers this is
usually around a wavelength of 1550 nm. To achieve high quantum efficiencies and low dark count rates for
photon detection at this particular wavelength, superconducting nanowire SPDs (SNSPDs) may be used. The
dark count rate for SNSPDs have been shown to be as low as 1 Hz for detectors with quantum efficiency >90%
[31]. Because the integration time is inversely proportional to N, a single-photon source with high brightness is
beneficial. Spontaneous parametric down conversion (SPDC) in nonlinear crystals is one of the most versatile
and reliable technologies to produce single-photon states of light. The last 20 years have witnessed significant
technological improvements in the performance of such sources, which can now reach brightnesses of up to 10°
pairs (s GHz)™' per mW of pump with typical bandwidths of the order of 100 GHz [30]. By inserting the
nonlinear crystal in an optical cavity, it is possible to narrow the bandwidth up to 10-100 MHz, while keeping
high brightness, of the order of 10* pairs (s MHz) ™" per mW of pump power [32]. Typical pump powers that
ensure real single-photon regimes range between 1 and 10 mW. Based on these and equation (8), we expect a
maximal required integration time for § = g of about two days.

4. Conclusion and outlook
Optical fiber interferometry is a promising technique for table-top experiments aimed at measuring
gravitationally induced phase shifts on a single photon wave function. Here we have presented a scheme for

overcoming the static nature of the gravitational interaction by exploiting a modified MZI. An additional arm

8 The phase-change due to chirping is too small to be observable and thus neglected.
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allows us to create a time-varying signal controlled by an optical switch operating at a high frequency chosen
to minimize internal fiber noise. By rotating the setup around one of the arms, it is possible to calibrate the
interferometer in the horizontal orientation to its most sensitive point of operation. We have shown that by
addingan unbalanced MZI in each arm of the MZI, the calibration condition can be preserved during
rotation. Single photons injected into the interferometer will therefore be subject to only a gravitational
potential difference, depending on the path taken. Due to the fiber spool geometry, the rotation of the Earth
can manifest itself as a phase shift large enough to swamp the gravitational phase shift. It is therefore necessary
to keep a stringent geometric relation between the various fiber entrance and exit planes during rotation to
successfully perform the experiment. Polarization drifts, especially during rotation of the setup, can be
avoided by preserving the SOP in each interferometer using an active feedback loop. A successful
measurement of the gravitationally induced phase shift would probe the equivalence between the energy of
the photon and its effective gravitational mass. While extremely challenging, this experiment has the potential
to open the path for table-top experiments capable of testing the interplay between general relativity and
quantum mechanics.
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Appendix A. Derivation of the phase shift due to the rotation of the earth

We now give the derivation for the phase shift arising from the rotation of the Earth (equation (3)) to first order in

RO
“,

€

(A.1)

We consider the photon in a dielectric medium to be a point particle moving with velocity v < ¢. The motion of
the photon in a fiber spool is, first, calculated in an earth-centered inertial (ECI) coordinate system. The proper
time in this frame is denoted by ¢, and we place the lab initially at the center of the Earth. The Euclidean
coordinates of a photon in its spiral motion around the symmetry axis of the spool, located at a distance h away
from the origin, can be described by the trajectory

b cos a(t)
T =|bsina® ) (A.2)
v,t+ h

where b is the radius of the spool, «(#) is the angle from a predefined plane (figure 3) and v, is the velocity along the
symmetry axis of the spool. We now rotate the spool by an angle 6’ about the y-axis, as described by the matrix

cos@ 0 sin@’
R,(0") = o 1 o0 | (A.3)
—sinf’ 0 cos®’

where ' := /2 — 6. Thisis followed by a rotation about the z-axis, which determines the direction of the
symmetry axis of the spool, using the rotation matrix

cosé —siné 0
R, (§) =|siné cosé O (A.4)
0 0 1

We continue by shifting the trajectory to the surface of the Earth with radius R by an operator whose action is

defined by
a a
S(R)(b) = [ b ] (A.5)
c c+R
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To account for the latitude coordinate we rotate again about the y-axis using

cos¢’ 0 sing’
R(h=] o 1 o | (A.6)
—sing’ 0 cos¢’

where the latitude coordinate is given by ¢’ = 7/2 — ¢. The rotation of the Earth with an angular speed of 2
about the z-axis of the ECI frame by an angle ¢ (¢) := Qt 4 ) is described by

cosy(t) —siny(t) 0
R,(¥ (1)) = |sinyp(t) cos(t) O] (A.7)
0 0 1

Applying these operators to the vector defined in equation (A.2) results in a world line of the photon given by

x(t) = (ct, R () (DR, (NS (RIR(OR, (0N (1)) = (ct, DT (1)) (A.8)
with tangent
d . | db®- dl' (1)
Ex(t) =x() =] 5 L) + D(t)—dt (A.9)
and four velocity
ye O (A.10)

\1777(3&:1 X) ,

where the Minkowski metric diag(—1, 1, 1, 1) is used. Recall that the photon is considered to be a point particle
moving with velocity v < ¢, we can therefore calculate the amount of proper time, say 7 spent in the spool:

T dr 1 pT —
T:fo Edt::fo J—n(x, x)dt (A.11)

assuming that the photon enters the fiber at t = 0 and exitsat t = T. We have also used the relation

2
—c?=nu, u) = (j—;) n(x(t), X(t)) = v (% (), x(¢)), where ydenotes the Lorentz factor. In order to
calculate (A.11) we require the photon velocity to be constant as seen by an observer in the lab. Denoting the
speed of the photon in the lab by v and the four velocity of the lab by u; we get

2

c
N, w) = —cy V) = ——, (A.12)
or equivalently
2 4
LA (A.13)
Cz 772 (l/l, uL)

Letting #; be the lab-proper time, we can use (A.8) together with b = v, = h = 0to find
=0+ 0(Nt+C (A.14)

for some constant C. Hence a constant velocity with respect to the lab frame is equivalent to the requirement that
n?(u, uy)is time-independent to order €:

Lo, w) = 0. (A.15)
dt
The four velocity of the lab is given by
= 8O (A.16)

V=N, X1)
and can be calculated using (A.8) with b = v, = h = 0. Solving equation (A.15) by using (A.10) and (A.16)
results in an ordinary differential equation (ODE) with parameters for « (¢). The solution takes on the form
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a(t) = a(0) + wt + eai(t) + O(e?) [33] where wis the (average) angular speed of light circling around the
spool. After inserting «(¢) to order ¢ in equation (A.15)) we get

2 2 2
—M sin ¢’ (cos & cos(wt + ag) + cos&’ sin&(1 — sin(wt + «y))), (A.17)

021 =
where a (0) = oy and the approximation cos(a (t)) = cos(wt + a(0)) + O(¢) were used. We can now
calculate 7 (x, x) by inserting equation (A.17) and expand the square root in equation (A.11) to first order after

2,2 2
factoring out the constant term ,/1 — b w; " The result of this expansion is

> > sin ¢’ - (cos & sin(wT + ) + cos b’ sin€ cos(wT + ao))), (A.18)
c c

- b2w? + v} (T _ bRQ
where T = " with i representing the associated spool with length land group refractive index Nin the
interferometer. The phase difference between arms 1 and 3 of our setup after multiplying by the optical angular
frequency is given by

2me 2me bw? + v (2nAl - 27bRQ
Ad)c = TAT = T(T] — 7‘3) = 1 — 62 ( )\ — )\C COS(ZS
- (cos €F (w, oy 3) + sin 0 sin EF (w, 061’3))), (A.19)

which is equation (3) in section (3).
We finish this appendix with the following calculation, which reduces somewhat the computational
complexity of the above. Let us introduce the following notation

+ # isa Euclidean unit-length vector along the axis of rotation of the Earth;

+ ¢ isaEuclidean unit-length vector directed from the center of the Earth to the geometric center of the first coil
in the spool;

- i isaEuclidean unit-length vector along the axis of the spool;

- j (t)isaEuclidean unit-length vector orthogonal to i so that, in Euclidean coordinates in the lab, the position
of the photon is

tv,i + bj (1)
and where t — f (t) describes a motion on a flat circle with velocity ¢ (¢).

-k (t) is a Euclidean unit-length vector along d(_]: (1) / dt,thus 7, f (t)and k (¢) are all unitlength and pairwise
orthogonal, with

d-
T 0 =awko.

+ U(#) denotes a matrix of rotation by angle {2t around the axis of the Earth. We then have

iU(t) = QU @),
dt

where 2 is the rotation velocity and v = (t;) is a time-independent matrix with entries
tij = €ijk le.

It follows that t acts on vectors as a vector product:

()

v =j x il

We will only keep track of the leading order corrections in the calculations that follow. Note that there occur
some subleading corrections which are O (¢) but not of order 2. In order to isolate the leading order terms, we
note that in the new variables the world-line of the photon is

x(t) = (ct, UM)(RZ + v,ti + bj (1)),

10
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with tangent

()= UM QRE + v,ti + bj(t)) + i+ bai?(t)))

(c, cU(t)(et(f + —1 + —] (t)) k(t)))
c

~ (c, cU(t)(eE X+ Y3 + b—dl_('(t)))
c c

and four velocity u = cx / J—n(x, x).Setting
a(t) = wt + ex(t)

and denoting by ‘-’ the Euclidean scalar product and by ‘| | the Euclidean norm, we have

2

—nx %) /ctr~1 — & x it + &7+b—al_c'(t)
c c

2 )2 -
%l_v_zz—(biz)—%(fxﬁ)-(ﬁi +—k(t))
c c ¢
vE o (bw)? b2ewey v, bw=
~l o Y ) — 26 (Z x ) - (—Zi+—k(t)),
CZ C2 C2 C Cc

— g Gr |, et @xm - (H )
_n(x,x)/CN 1—?— o 1—¢€ l_V_zz_M .

2 2

c c

Set

Yl= 1=
C

a> cos(wt + ) = amth (t) = —(Z x i) - k (t).
C

Using these variables, we can write

2
NERTCH J'C)/c ~ 701(1 - 67%(%@1 + a + azw))

ﬁ ~ %(1 + evé(bz—:uo‘q toa+ azzp)].
Next, the world-line x; of the lab is obtained by setting b = 1, = 0 above:
x(t) = (ct, RU(1)?),

with tangent

£L(H) = (¢, RQU (H)t€) = (¢, ceU (t)(Z x i)
and four velocity u; = cx, / \/m .Wehave

—n (X, &) = ¢2 — 2 | x ii|* ~ c2.

To determine the relative velocity of the photon with respect to the lab we calculate
—n@, )/t l — (@ x i) - ( ; + b—wk) ~1— e(a+ ay),

_ n(x’ xL)
V Tl(x) x)n(xL) xL)

A constant velocity of the photon with respect to the lab means that

N2 5
~ Yo 1 + Yo 70&1 + ﬂo(ﬂ] + azw) .

b22 5 -
Vliﬁoaal (fXﬁ)Z)

dt

dt

. . 2
0 — i o .U(.x, XL) . ~ d (b fn + ﬂoﬂzw))
\ln(xs .X)’I’](.XL, xL) C

CHilwegetal

(A.20)

(A21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

Integrating this equation once one obtains (A.17) at the current order of approximation, leading again to (A.18).

11
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EL3 (w)
a1 (w) aa(w)
as(w)
Figure B1. Representation of a symmetric lossless beam splitter showing the annihilation operators associated with the input and
output fields.

Appendix B. Derivation of the detection probability for dispersive media
The commutation relation for the continuous-mode creation and annihilation operators for modes i and j is
given by [29]

[4; (w), a; (W] = &;6(w — W), (B.1)
where 1is the identity operator. A single photon entering the first BS (figure 1) is split into a coherent

superposition between arm 1 and arms 2 or 3 and recombines at the merging BS. Assigning the annihilation
operators for the inputs and outputs of the merging BS as defined in figure B1 we get the relation”

dy(w) = Tay(w) + Ray(w), (B.2)

where R and T are the reflection and transmission coefficients. The spectral width of the wave function is
assumed to be small, such that the properties of the BS can be assumed to be independent of frequency. We can
calculate the mean photon number in output-mode 4 for an arbitrary input state | x) by [29]

Ay = f df, (1), (B.3)

where f, (1) = (xlaj (t) 4y (t)|x) = (4] (t)a,4(t)) denotes the mean photon flux. The Fourier-transformed
operators d (t) and 4, (t) are defined by

ac) = % [ O; dwd (w)e— (B.4)
st e L [ quat () elet
A = j:  dwil (@) (B.5)

Inserting equation (B.2) into equation (B.4) gives
as(t) = Tai(t) + Ra,(¢). (B.6)
The flux operator is thus given by

a5 (Has(t) = (R¥a3 (1) + T*4 (1)) (Rax(t) + Tai(t)) = |RPa5 (1) a (1)
+ T4, (1)a (1) + R*Td; (H)a () + T*Ra; (H)dx (1), (B.7)

where an asterix (*) denotes the complex conjugate of R and T. The input state is—due to the action of the first
BS—entangled and given by

IX) = RI170) + T|01;) (B.8)
which is normalized by the condition |R|* + |T|* = 1. Thestates |1;) and |1;/) are defined by
1) = o) = [ayr wal o), (B.9)

9 . .
We restrict our analysis to output-mode 4.

12



10P Publishing

NewJ. Phys. 19 (2017) 033028 CHilwegetal

1) = a0y = [dif'0a 0o), (8.10)

where |0) denotes the vacuum state and f(¢) and f' () denote the shape of the wave packet in the time domain for
the different fibers used as arms in the MZI. In general f (¢) = f'(¢) for different fibers although the input
single-photon state into the interferometer is the same. For a single mode we get from equations (B.1), (B.4) and
(B.5) the commutation relation [d (¢), 4(¢')'] = 6 (¢t — t’)1 that can be used to calculate the mean photon flux
for equally transmissive arms

£ = [RPITPIf () + f'(D. (B.11)
We assume a Gaussian spectral amplitude for the input single-photon state
fw) = (ﬁ)we() (B.12)
Fourier transformation gives
fz=0,1) = (212)1/4eiw0te02<”n>2, (B.13)
7r

which describes the shape of the pulse in the time domain at the location of the first beam splitter and where #, is
the time at which the peak of the pulse passes the coordinate origin z = 0 [29]. The variance of the intensity given
by|f(z=0, t)Pis 1y = % To follow its evolution for z = 0 we can write [34]

1 0 . ‘
@0 =—= [ feomoogy, (B.14)
f vV 21 J-o0o f
where k (w) denotes the propagation constant and ¢ (¢) denotes a possible noise term at position zand time .

Expanding the propagation constant to second order around wy

dk (w) 1 d*(w)
d

k(w) = k(wo) + (w — wp)? + O(w?)

W — wp) + —
wo( 0 2 dw(z)

1 1
=ko+ —(w—wy + Ep(w — wp)® + O(WY), (B.15)
%
where L = 4 v, denotes the group velocity of the wave packetand p = Frlw
dwy — dw w:wO’ g group b P="q w=wy

expansion and the function for the spectral amplitude into equation (B.14) gives

. Inserting this

oy bl
f(z, t)z( ) e wlo el?@D) (B.16)

272 (2)

where

7

2,2
72(2)273(1 + ZZ ]:: T2 4+ AT? (B.17)
describes the temporal width (measured as square root of the variance) of the photon at a distance z away from
the origin. The dispersion coefficient as given in the standard form of the temporal broadening for an arbitrary
spectral shape AT = D, IA ), is related to the Gaussian shape used in this derivation via D,, = — Z;r# 10°
(ps km™ nm™). The quantity

z
2)+pz(tv—gt0)

1 p
D(z, t) = wot — koz + ¢(t) — —tan | ==
0 0 ¢ 2 27, 87%7’2(2)

2
= wot — koz + ¢(t) + =, (B.18)

represents the phase, where the term inversely proportional to 7 (z)? leads to the phenomenon of chirping [34].
Using equation (B.3), inserting (B.16) into (B.11) and neglecting = in the phase term due to its negligible
contribution as compared to the gravitational phase results for different broadening in the two noise-reduced
fibers in equation (7) of section (3)

2
1 i o
Pj: ~ 5[1 + m e Awfriir )COS(Ad)g + ¢(t)) > (Blg)

where Ag, = % in this context.
g
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Appendix C. Derivation for the estimated integration time

The single-photon source is assumed to produce on average N photons per unit time interval. We consider

symmetrical beam splitters where a single photon can be found in both output modes with equal probability.
The arms of the MZI are assumed to be equally transmissive and the attenuation coefficient can be calculated
from ¥;0; + a1l = 10 loglolfi“

out

respectively. After the merging BS there are now N - a photons detectable per unit time. The detector has a
probability of P to observe a photon with a quantum efficiency of nand a dark count rate of n4. Thus the total
number of photons expected to produce a signal at the detector after a time ¢ is given by

Aty = (N anP + ng)t. (C.1)

with lin km and Py, and P, representing the input and output power,

To estimate the integration time, we assume that we are Poisson noise limited, resulting in the inequality

V() < Tisig (1) (C2)

If we denote the detection probability in the absence of gravitational effects by A, we can calculate the expected
number of photons indicating the gravitational phase shift within a time interval tby

fisig (1) = (N a n(A — P))t.Solving equation (C.2) for ¢ results in an estimated time after which the
gravitational effect is visible over Poissonian noise given by

NanP + ngq
~ (Nan(A — P))*

In order to give a quantitative number for t we denote the SPD at the end of arm 2 by D1 and the detectors at the
end of arm 3 by D2 and D3 respectively. Because of the optical switch—effectively creating two 2-arm MZIs—
and the interferometer being calibrated to the quadrature point in the horizontal orientation, the probability of
detecting a photon in either detector depends on the arms composing the MZI at a given time. In particular, if
the noise is suppressed with the methods described in the main text, the detection probability for D11is 1/2 (arms
land2)or 1/4 (arms 1 and 3). Similarly the probability of detecting a photon in D2 or D3is 1/4 ifarm 2 is open
and 3/8 ifarm 2 is closed. The integration time is therefore estimated by using A = 1/4 in order to get alower
bound. To calculate Pwe can use equation (2) with 1/2 replaced by 1/4 for the 3-arm MZI, A¢, as given by

(C.3)

equation (1), ¢ (t) = /2 to account for the noise suppressed quadrature point, = 10°m,h = 1 m,n = 1.468
and A\ = 1550 nm. Using N = 10°s ', = 17dBkm ™', ¥;o; = 0.5dB, p = 0.9and ng = 1s~ ' wecan
calculate the estimated time (equation (8)) for the gravitational effect to be visible over Poissonian noise to be
almost 2 days. For other inclination angles the integration time is substantially longer, e.g. for § = 7 /2 and
equal values for the other parameters the integration time is almost 4 days.
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