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ABSTRACT We describe the approach for modelling solid-state fluorescence spectra of organic 

crystalline materials, using the recent implementation of time-dependent density-functional 

theory (TD-DFT) within the plane-wave/pseudopotential code CASTEP. The method accuracy is 

evaluated on a series of organic cocrystals displaying a range of emission wavelengths. In all 

cases the calculated spectra are in good to excellent agreement with experiment. The ability to 

precisely model the emission spectra offers novel insight into the role of intermolecular 

interactions and crystal packing on solid-state luminescence of organic chromophores, allowing 

the possibility of in-silico design of organic luminescent materials. 
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Introduction 
Organic luminescent materials are highly important due to their application in the production 

of light-emitting diodes, lasers,
1,2

 sensors,
3
 dyes

4
 and pigments.

5
 They provide opportunities for 

constructing novel devices, such as curved multicolor displays,
6
 tunable dye lasers

7
 and organic 

solar cells.
8
 With such a broad range of applications, the ability to tune or at least model the 

luminescence of an organic material remains a challenge of considerable importance. One of the 

promising approaches for the design of materials with modified colors
9–11

 and tunable 

luminescent properties
12–14

 is cocrystal formation, i.e. the formation of multi-component crystals 

composed of a molecular fluorophore in combination with one or more cocrystal former 

(coformer) molecules. As the interaction between the fluorescent building block and the 

coformer is based on complementary supramolecular interactions (e.g. halogen
15

 or hydrogen 

bonding, ππ stacking etc.), cocrystallization enables the synthesis of libraries of multiple 

fluorescent materials based on the same emissive component. Importantly, different coformers 

will lead to the formation of different crystal structures. This provides a unique opportunity to 

place a fluorescent emissive component into different solid-state environments, thereby allowing 

the fine-tuning of the fluorescent emission properties. However, this approach to generation of 

emissive organic solids is largely based on trial-and-error experiment, since the relationship 

between the optical and luminescent properties of these materials and their crystal structure is 

poorly understood. The development of novel luminescent cocrystals, therefore, remains based 

on screening multiple chromophore-coformer combinations in order to achieve a material with 

desirable properties. 

Recently, our team, and others, have demonstrated the use of molecular
16,17

 and periodic
9,18

 

density-functional theory (DFT) to rationalize the colors of organic crystalline solids, including 

cocrystals. However specific modelling, and prediction of emissive properties of crystalline 
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solids also necessitates the consideration of their time-dependent electronic behavior.
19

 This 

requires the implementation of time-dependent density-functional theory (TD-DFT), a rapidly 

developing area whose emerging potential has so far been used to address problems such as 

exciton behavior,
20

 optical absorption,
21

 dynamics of photoexcited polymers
22

 and photoelectron 

spectroscopy.
23

  

We now present the use of a plane-wave implementation of TD-DFT based on Hutter’s linear 

response formalism
24

 for highly accurate modeling and prediction of the luminescent emission of 

organic crystalline materials, using as model systems the recently reported highly emissive 

cocrystals of 1,4-bis-(2-cyanostyryl)benzene (A).
12

 Importantly, we previously demonstrated that 

halogen bond-driven cocrystallization
25

 of A with halogen bond donors, including 

1,4-diiodobenzene (1), 1,4-diiodo- (2) and 1,4-dibromotetrafluorobenzene (3) as well as  

4-bromo-tetrafluorobenzoic acid (4) results in new materials whose fluorescent emission maxima 

are significantly shifted compared to pure crystalline A (Figure 1). Through the use of TD-DFT 

modelling codes described below we are now able to model and explain, for the first time, the 

luminescent behavior of such multi-component organic materials. Hitherto, and before the 

introduction of periodic TD-DFT, the modelling of luminescence spectra of crystalline materials 

was based on molecular clusters extracted from known crystal structures.
26,27

 Although such an 

approach can, in principle, yield accurate results, it is important to ensure that the cluster is 

sufficiently large to adequately mimic the periodic environments found within crystals. In 

contrast, calculations in a periodic plane-wave basis set are inherently free of complications 

associated with such limitations. It will be shown that highly accurate emission wavelengths can 

be calculated by preforming periodic calculations on primitive cells, making for an affordable 

and straightforward algorithm for calculating solid state fluorescence spectra. 
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Figure 1. Molecular structures of compound A and coformers 1-4. The colors of the 

corresponding cocrystals under UV light are shown underneath molecular structures.
12

 

Theory 
Periodic DFT algorithms can be divided into two categories, namely those using localized all-

electron basis sets and those utilizing the plane-wave approach with core pseudopotentials. The 

same division extends to the time-dependent domain. TD-DFT with localized basis sets has been 

implemented within the code CRYSTAL,
28,29

 where it has been used to model optical properties 

of metals
30

 and semiconductors.
31

 Herein we present the recently-developed implementation of 

periodic TD-DFT in a plane-wave code CASTEP and illustrate its capabilities by modelling 

solid-state fluorescence spectra of organic multicomponent crystals. 

The TD-DFT algorithm used in CASTEP follows Hutter’s implementation
24

 based on linear 

response using the Tamm-Dancoff approximation (TDA).
32

 In the TDA occupied–virtual 

contributions (see equation 17 in Hutter
24

) are disregarded whilst retaining the virtual–occupied 

ones, since the contribution from the former is assumed small. In their implementation, Hutter 

reformulated the equations of time-dependent Hartree-Fock (TD-HF) theory such that they could 

be efficiently implemented in codes using a plane-wave basis set. The TD-HF equations are non-
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Hermitian eigenvalue equations which are solved, in CASTEP, using a preconditioned block 

Davidson solver.
33

 Hutter’s original formulation assumed that the special k-point gamma is used. 

In this work we have used an extension of Hutter’s derivation to a single arbitrary k-point. Such 

an extension was made possible by using a complex representation of the response density. 

Geometry optimization in the excited state was performed using forces obtained according to 

procedures described in CASTEP development reports.
34

  

Occasionally TD-DFT calculations produce so-called “spurious” excited states, which do not 

correspond to any physical excitation processes.
35

 . In the Hutter formulation of linear-response 

TD-DFT for plane-waves, the operator diagonalized to determine the excitation energies can be 

split into two parts, one corresponding to the Kohn-Sham eigenvalue difference and the other 

arising from applying a response potential to the ground state wavefunction. Solutions of the 

matrix equations that provide a pure Kohn-Sham orbital transition, with no contribution from the 

exchange-correlation terms, are considered spurious.  

The use of Hybrid functionals with TD-DFT is a straightforward extension to local-functionals 

within CASTEP with the addition of a HF-like response term. We note that using purely HF 

exchange for TD-DFT in the TDA is equivalent to CIS (configuration interaction with single 

substitutions).
36

 

As a first step of our calculations we performed ground state geometry optimizations of the 

different crystal structures using a semi-local GGA-type PBE
37

  functional combined with 

Grimme D2 dispersion correction.
38

 In this process we allowed full relaxation of atom 

coordinates as well as unit cell parameters, subject only to the symmetry constraints of their 

respective space groups. The unit cell parameters obtained in this step were then fixed for the 

remainder of the calculation of the fluorescence spectra. This was required by the inability of the 
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current CASTEP TD-DFT implementation to calculate stress tensors and perform variable cell 

optimization. The limitation, however, was deemed an acceptable approximation, since 

molecular crystals are not expected to undergo significant unit cell distortions upon electronic 

excitation. 

Following the ground state geometry optimization, it was then necessary to decide on how to 

treat Brillouin zone (BZ) sampling for the excited state TD-DFT calculations. When performing 

periodic total energy calculations, it is necessary to integrate over the entire BZ. This integral is 

commonly approximated by weighted averaging over certain “k-points”, usually at high 

symmetry points within the BZ. In the case of Hutter’s TD-DFT implementation
24

 we were 

limited to the use of a single k-point, which is generally insufficient to obtain accurate excited-

state energies in solids. Creating a suitably large supercell was, computationally, prohibitively 

expensive due to the cost of periodic TD-DFT calculations for large simulation cells. We 

therefore turned our attention to the idea of a mean-value k-point, as proposed by Baldereschi.
39

  

In this approach an optimum single k-point representing the average of the entire Brillouin zone 

can be found for each crystal lattice. Indeed, calculations using this mean-value k-point are 

expected to provide results closer to those obtained with a converged k-point grid at a fraction of 

the computational cost. In order to verify the validity of this approach we have calculated the 

emission spectrum of the A:1 cocrystal using a mean-value k-point, as well as the high-

symmetry gamma k-point. Indeed, the mean-value approach provides far better agreement with 

experiment (SI Figure S1). The details of our procedures for selecting the mean-value k-point 

and calculating the fluorescence spectra are described in the SI. 

The oscillator strengths were calculated using Tamm-Dancoff approximation,
40,41

 therefore 

these values could only be used for qualitative selection of the excited states with greatest 
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contribution to the emission spectra. For the triclinic structure A:1, only the 1
st
 electronic excited 

state showed a large oscillator strength, resulting in a single band in the emission spectrum. The 

monoclinic unit cells of the isostructural cocrystals A:2, A3 and A:4 contain two molecules of 

A
12

 leading to pairs of nearly degenerate electronic bands, HOCO-1 with HOCO and LUCO with 

LUCO+1. Transitions between these bands resulted in the formation of two distinct electronic 

excited states S1 and S3 accompanied by a spurious
42–44

 state S2. Based on the oscillator strengths 

the S3 electronic state was found to give the largest contribution to the emission spectrum (for 

details see SI sec. 2.2.4).  

The selected excited states were geometry-optimized to account for Stokes shift resulting from 

the vibrational relaxation of the electronic excited states following electronic excitation. 

Additionally, it was necessary to consider the limitations of plane-wave DFT with regard to 

hybrid functionals. It is known that hybrid functionals (e. g. PBE0,
45,46

  B3LYP
47,48

 or HSE06
49

) 

provide more accurate band gap values
50,51

 and excitation energies
21,41

 compared to local and 

semi-local functionals. Unfortunately, the computational cost of plane-wave DFT codes, with 

hybrid functionals,
52

 compared to localized basis set implementations, makes it impractical to 

use these functionals for geometry optimization within TD-DFT. In order to achieve higher 

accuracy at a lower computational cost, we performed TD-DFT geometry optimizations using 

PBE
37

  functional combined with Grimme D2 dispersion correction.
38

 The PBE optimizations 

were followed by single-point B3LYP calculations to obtain a correction to the electronic band 

gap beyond PBE.  

We note that the addition of a small amount of Hartree-Fock exchange (such as found in HSE, 

B3LYP or PBE0) has been shown to improve the spectral properties and geometries of excited 

states in periodic-TDDFT calculations. PBE alone does not renormalize the Coulomb term in the 
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response equations leading to an incorrect long-range tail (corresponding to G=0 in reciprocal 

space).
53

 This results in poor performance of PBE with extended covalent systems, such as 

graphene
54

 which must be treated with hybrid TD-DFT to obtain reasonable geometries of 

electronic excited states. Hybrid functionals show improved behavior in the G→0 limit due to 

the contribution of Hartree-Fock (HF) exchange. The materials in our study, however, are 

molecular crystals held together via comparatively weak non-covalent interactions, which makes 

the effect of PBE long range error less significant for the excited state geometries.  

As a verification for the correctness of the geometries of PBE-optimized excited states we 

compared the geometrical changes occurring in crystal structures during TD-DFT geometry 

optimization with the corresponding gas-phase calculation. The gas-phase TD-DFT calculation 

was performed in Gaussian 16
55

 using a hybrid B3LYP functional. Consistency between periodic 

PBE and gas-phase B3LYP geometrical parameters is expected to serve as a good indicator for 

the validity of our periodic TD-DFT methodology. 

In order to validate the excitation energies calculated with B3LYP hybrid functional (20% 

Hartree-Fock exchange) we have performed additional TD-DFT single point calculations with 

PBE0 (25% HF exchange) and TD-HF calculations (SI section 1.2.4, Tables S14-S22). The 

excitation energies predicted by PBE0 were generally 0.1-0.2 eV higher than their B3LYP 

counterparts but showed consistency in terms of band populations. The TD-HF calculations were 

not expected to produce accurate excitation energies. Indeed, they overestimate hybrid TD-DFT 

energies by 1 eV or more. The purpose of these calculations was to verify the ordering of excited 

states in terms of band populations. In that regard TD-B3LYP, TD-PBE0 and TD-HF 

calculations showed consistency with respect to the lowest energy excited states used for 

modelling the fluorescence spectra. 
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In order to assess the role of cocrystal coformers on the formation of electronic excited states 

we have performed density of states (DOS) and projected density of states (PDOS), as well as 

band structure (BS) calculations. These calculations were performed in CASTEP using PBE 

functional and the DOS plots were calculated with OptaDOS
56,57

 code. Since the PBE functional 

is known to underestimate the calculated band gaps as well as generate unphysical low energy 

charge transfer states, we have also calculated BS plots with a hybrid B3LYP functional. Since 

calculations involving HF exchange are computationally inefficient in plane-wave formalism, we 

have used CRYSTAL14
28

 periodic DFT code with localized basis sets for this purpose. 

Further details of the calculations, including the selection of mean-value k-points for each 

crystal structure, parameters of ground state and TD-DFT periodic geometry optimizations, as 

well as the methodology for gas-phase calculations are provided in SI. 

 

Figure 2. Fluorescence spectra of compound A  and its cocrystals A:1 to A:4. Data acquired 

from Yan et al.
12
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Results and Discussion 
Comparison of measured cocrystal fluorescence spectra (Figure 2) and fluorescence lifetimes

12
 

for A, A:1, A:2, A:3 and A:4 reveals significant variation of emissive behavior depending on the 

coformer choice. In particular, A:1 displays green fluorescence similar to that observed for pure 

compound A, while also showing a similar fluorescence lifetime of ~20 ns. On the other hand, 

cocrystals containing fluorinated coformers A:2, A:3 and A:4, exhibit blue emission with a 

much shorter emission lifetime (~1 ns). Additionally, the emission line shapes of the materials 

are considerably different: the green-emitting A:1 cocrystal has a bell-shaped emission line, 

while the A:2-A:4 materials produce emission spectra with three maxima, which are likely 

caused by a vibrational progression characteristic of polyaromatic molecules.
58,59

 Two potential 

explanations for the observed differences in emission behavior of the cocrystals may be offered. 

First, the variations in fluorescence emission may result from differences in orbital overlap 

between the molecules of A and those of the coformers. It may be speculated that the non-

fluorinated coformer 1 and fluorinated coformers 2-4 have different HOMO and LUMO 

energies, causing variations in fluorescence emission. 

Alternatively, changes in fluorescence emission might be explained by the effect of different 

arrangements of A itself, e.g. due to changes in π-π stacking interactions between molecules of 

A. In order to decide between these two possibilities, we conducted TD-DFT modelling of 

fluorescence spectra for all four cocrystal structures.
12

 Cocrystal A:1 crystallizes in a triclinic 

unit cell with a centrosymmetric space group P-1. The chromophore molecules A form π-π 

stacking interactions with neighboring chromophore molecules. In these stacks each molecule is 

offset by ~2/3 of its length relative to the nearest neighbors, which is illustrated in Figure 3 (top). 

The mutually isostructural cocrystals A:2, A:3 and A:4 crystallize in a monoclinic space group 

P21/n. Crystal packing diagrams (Figure 3, bottom) reveal that chromophore molecules in these 
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structures are offset sideways, greatly reducing the overlap between the neighboring π-systems. 

The lack of π-π stacking interactions in the monoclinic cocrystals may account for the blue shift 

in fluorescence emission compared to the triclinic cocrystal A:1.  

 

Figure 3. Molecular packing diagrams of A:1 triclinic structure and A:2 monoclinic structure 

(bottom). Each structure is shown in three different orientations, and different colors are used for 

clarity. In the triclinic A:1 structure chromophore molecules form partially-overlapping  π - π 

stacks, while in the monoclinic structure A:2 chromophore molecules show no stacking 

interactions. 

 

The calculated fluorescence spectra are in good agreement with experiment (Figure 4), with 

the absolute error in calculated emission maxima always less than 0.2 eV. Such an accuracy of 

periodic TD-DFT calculations was sufficient to correctly predict the emission color, which is of 

major practical importance for the computational design of organic luminescent materials.  
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Figure 4. Experimental and calculated spectra fluorescence spectra: a) A:1, b)  A:2, c) A:3 and 

d) A:4. Experimental spectra are shown with dashed/dotted lines, while spectra calculated with 

TD-DFT/B3LYP are shown with solid lines. The colors of the spectral lines were calculated 

from the corresponding spectra using the ProPhoto RGB color space. 

 

Having successfully modelled the fluorescence spectra, we next turned our attention to a 

rationalization of the origin of the different fluorescence behavior of the cocrystals.  Our first 

hypothesis was that the blue shift in fluorescence emission of A:2, A:3 and A:4 cocrystals results 

from orbital mixing between the chromophore and coformer molecules. The Density of States 

(DOS) calculations, performed using OptaDOS
56,57

 code, however, showed that in all cases such 

orbital mixing is insignificant (SI Figures S3-S10). An alternative explanation may be provided 

by considering variations in crystal packing. Indeed, π-stacking is present in cocrystal A:1 (mean 

stacking distance 3.5 Å), whereas the A-A interplanar distances in the isostructural cocrystals 
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A:2, A:3 and A:4 are approx. 7 Å, thereby resulting in very little π-stacking interactions (Figure 

3).  

Such stacking differences are unexpected given that coformers 1-4 are similar in size and 

contain two halogen/hydrogen bond donors at 180° orientation. In order to evaluate the role of 

crystal packing, therefore, TD-DFT calculations were performed on hypothetical crystal 

structures created by a) replacing the coformers in the monoclinic cell of A:2, A:3 or A:4 with 

coformer 1 and b) replacing the coformer in the triclinic cell of A:1 with 2, 3 and 4. Calculations 

for the hypothetical monoclinic A:1 structure indicated a blue-shift compared to the experimental 

triclinic structure (λmax 419 with a maximum in the violet-blue region), whilst hypothetical 

triclinic structures for A:2, A:3 and A:4 showed green fluorescence with λmax 550, 537 and 551 

nm, respectively. The resulting calculations, therefore, unambiguously indicated that it is the 

crystal packing which is responsible for the fluorescence behavior of the experimental cocrystals. 

We note that nature of the coformer, however, does determine the relative thermodynamic 

stability of the experimental and hypothetical structures. Ground state periodic DFT lattice 

energy calculations showed that the triclinic structure is lowest in energy for A:1, while the 

monoclinic structures are preferred for A:2, A:3 and A:4 – results indeed in agreement with the 

experimentally observed crystal structures (Table 1). 

 

Table 1.  Calculated relative lattice energies of triclinic and monoclinic crystal structures. It is 

evident that experimentally observed polymorphs (triclinic for A:1 and monoclinic for A:2, A:3 

and A:4) are lowest in energy for each cocrystal type. 

Cocrystal 
relative energy / kJ mol

-1
 

triclinic monoclinic 
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A:1 0.0 19.0 

A:2 22.5 0.0 

A:3 28.9 0.0 

A:4 15.1 0.0 

 

The differences in π-π stacking arrangements are also the likely reason for differences in line 

shapes of the triclinic and monoclinic structures. To investigate this effect we have calculated 

fluorescence emission spectrum of an isolated molecule A. The calculation was performed in 

Gaussian 16
55

 software at the TD-DFT/B3LYP level of theory with a 6-311G(d,p) basis set. 

Vibrational eigenvectors and frequencies were calculated for electronic ground and excited 

states, and vibrational line shapes were evaluated within Franck-Condon approximation. The 

calculated emission spectrum of an isolated molecule A contains a vibrational progression 

closely resembling the line shapes of the monoclinic cocrystals A:2-A:4 which lack π-π stacking 

interactions (Figure 5).  

 

Figure 5. Calculated S1 emission spectrum of molecule A in the gas phase, qualitatively 

resembling the solid-state fluorescence line shapes of cocrystals A:2-A:4. 
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Calculation of fluorescence line-shape for the structures containing π-π interactions would 

require constructing a molecular cluster, making the calculation prohibitively expensive and 

unfeasible. With further developments in the periodic TD-DFT approach we shall be able to 

perform excited state phonon calculations and explore the effects of crystal packing on the 

emission line shape. 

As a further validation of our TD-DFT calculations we have calculated band structures and 

band gaps using the B3LYP hybrid functional within a localized triple-zeta basis set specially 

modified for periodic calculations (pob-TZVP),
60

 as implemented in the periodic DFT code 

CRYSTAL14.
28

 These calculations allowed us to verify that TD-DFT excitation energies mirror 

the energies of the unperturbed Kohn-Sham states. In particular, the calculations show that the 

energies of S1 excited states at the ground state molecular geometry are in good agreement with 

the calculated band gaps (Table S31). 
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Figure 6. Plots of HOMO and LUMO orbitals of molecule A, as well as the bond numbering 

scheme used in Table 2. Since the molecule is centrosymmetric, only half of the bonds were 

labelled. The bonds experiencing increased bonding character in the LUMO are expected to 

shorten upon electronic excitation, while bonds getting more antibonding character are expected 

to elongate. 

Table 2. Effect of electronic excitation on the equilibrium geometry of molecule A in the 

triclinic structure A:1, monoclinic structure A:2 as well as in the gas phase. The elongation and 

contraction of C-C bonds is consistent with the positions of the nodes in the HOMO and LUMO 

π-orbitals. 

Bond 

number 

Bond lengths / Å 

A:1 triclinic A:2 monoclinic Isolated molecule 

Ground Excited Difference Ground Excited Difference Ground Excited Difference 

1 1.165 1.170 +0.005 1.165 1.167 +0.002 1.156 1.158 +0.002 

2 1.426 1.419 -0.007 1.424 1.421 -0.003 1.429 1.422 -0.007 

3 1.415 1.424 +0.009 1.416 1.421 +0.005 1.405 1.411 +0.006 

4 1.389 1.384 -0.005 1.389 1.386 -0.003 1.383 1.378 -0.005 

5 1.417 1.430 +0.013 1.419 1.425 +0.006 1.409 1.423 +0.014 

6 1.416 1.427 +0.011 1.416 1.422 +0.006 1.407 1.420 +0.013 

7 1.390 1.385 -0.005 1.390 1.387 -0.003 1.386 1.379 -0.007 

8 1.411 1.423 +0.012 1.413 1.419 +0.006 1.401 1.411 +0.010 

9 1.454 1.434 -0.020 1.456 1.445 -0.011 1.461 1.435 -0.026 

10 1.359 1.384 +0.025 1.360 1.375 +0.015 1.347 1.375 +0.028 

11 1.453 1.431 -0.022 1.452 1.439 -0.013 1.460 1.432 -0.028 

12 1.417 1.430 +0.013 1.419 1.427 +0.008 1.408 1.422 +0.014 

13 1.416 1.433 +0.017 1.416 1.425 +0.009 1.406 1.427 +0.021 

14 1.389 1.380 -0.009 1.389 1.384 -0.005 1.384 1.374 -0.010 
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As a final validation of our method we compared the effect of electronic excitation on the 

geometry of molecule A in solid state and in the gas phase. The plots of HOMO and LUMO 

orbitals of the chromophore molecule (Figure 6) reveal alternating regions of bonding and 

antibonding electron density. We may therefore expect a particular trend for bond length 

alternations in the π-system of the chromophore: the bonds experiencing an increase in bonding 

character are expected to shorten upon excitation, while the bonds with increased antibonding 

character shall elongate. The analysis of bond length variations in triclinic A:1 and monoclinic 

A:2 cocrystal structures as well as gas-phase molecule A meet these expectations perfectly 

(Table 2). This is particularly gratifying since the cocrystal geometry optimizations were 

performed with a PBE functional, while the molecular calculation was done using a hybrid 

B3LYP functional. This result proves that semi-local periodic TD-DFT calculations offer a 

correct description of electronic excitations in cocrystal structures. It is interesting to note that 

bond variations for the monoclinic A:2 structure are approximately half of those for the triclinic 

A:1 structure. We believe this is to do with the different number of molecules in the 

corresponding crystal structures. The triclinic A:1 cell contains one chromophore molecule, 

while the monoclinic A:2 cell contains two such molecules. The periodic TD-DFT calculation 

involves excitation of one electron per unit cell, therefore each molecule in the monoclinic cell is 

effectively excited by half an electron, leading to smaller geometrical variations between the 

ground and excited states. 

Conclusions 
To summarize, we have provided the first demonstration of how periodic TD-DFT calculations 

can be used to accurately predict solid state fluorescence spectra of organic crystalline materials. 

We have rationalized the blue-shift in fluorescence emission of monoclinic cocrystals A:2-4 as 
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being caused by the lack of π-π stacking interactions between neighboring A molecules. The 

differences in stacking arrangements between triclinic and monoclinic cocrystals were also 

linked to the changes in atomic vibrational motion and, consequently, fluorescence line shapes. 

Finally, we have shown how the nature of cocrystal chromophore may be used to control the 

intermolecular arrangements of the chromophore molecules, causing significant changes to the 

emission wavelength.  

We believe that our work bridges the gap between crystal structure and solid-state fluorescence 

emission and provides a strategy for efficient theory-driven design of novel luminescent 

materials. 
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