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Abstract: The stability of self-assembled RS-Au-SR (R = CH2CH3) /Au(111) 

interface at room temperature has been investigated using scanning tunneling 

microscopy (STM) in conjunction with density functional theory (DFT) and MD 

calculations. The RS-Au-SR staple, also known as Au-adatom-dithiolate (AAD), 

assembles into staple rows along the [112]  direction. STM imaging reveals that 

while the staple rows are able to maintain a static global structure, individual staples 

within the row are subject to constant breaking and remaking of the Au-SR bond. The 

C2S-Au-SC2/Au(111) interface is under dynamic equilibrium and it is far from rigid. 

DFT/MD calculations show that a transient RS-Au-Au-SR complex can be formed 

when a free Au atom is added to the RS-Au-SR staple. The relative high reactivity of 

the RS-Au-SR staple at room temperature could explain the reactivity of thiolate-

protected Au nano-clusters such as their ability to participate ligand-exchange and 

intercluster reactions.  

                                            
 Correspondence and requests for materials relating to modelling should be addressed to Dr H-P Lin, email: 
hplin@suda.edu.cn. For information relating to experiment, Dr. M Pan, email: minghupan@hust.edu.cn and Dr Q 
Guo, email: Q.Guo@bham.ac.uk. 
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Introduction 

Self-assembled monolayers (SAMs)[1-6] of alkanethiol molecules have been 

extensively studied during the last three decades as a model system for smart surface 

engineering and nanotechnology. A well-known application of such SAMs is the 

passivation and stabilization of gold nano-particles.[7,8] Early studies on Au(111) 

using surface-related techniques[9-22] suggested that –SR (R= -(CH2)nCH3) is the basic 

unit attached directly to an unreconstructed Au(111) surface. This early understanding 

has been challenged by the discovery of Au-adatom-dithiolate (RS-Au-SR) from both 

scanning tunneling microscopy (STM) imaging[23] on Au(111) and high-resolution x-

ray diffraction[7] of thiol-coated Au nanoparticles. Recent investigations have greatly 

improved our understanding of the RS-Au system.[24-42] So far, imaging with the STM 

has clearly identified the existence the RS-Au-SR motif for monolayers of both the 

simple akylthiolates such as methylthiolate,[23,30,32] ethylthiolate,[26,30] propylthiolate[43] 

and phenylthiolate,[44] and the more complex thiolates such as 1,3,5-tris(4-

mercaptophenyl) benzene[45] on Au(111). The involvement of the Au-adatom and the 

formation of the RS-Au-SR-like motif seem to depend on the structure of the gold 

crystal plane. For example, a recent investigation suggests that the bonding between 

mercaptobenzoic acid and the Au(110) surface does not involve Au-adatoms.[37] The 

structure of R in SR also affects the binding of SR to the gold substrate. 41 
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Therefore, the stability of alkanethiol SAMs is an important issue to consider when 

they are used either to protect gold nanoparticles or as a passivation layer for a metal 

against corrosion. Previous studies have shown that when a gold single crystal with a 

thiolate monolayer is brought into contact with a diakyl disulfide solution, the surface 

thiolate can be substituted by molecules from the solution.[46] Such a ligand exchange 

reaction has also been observed to occur on the surface of gold nanoparticles.[47] A 

recent high-resolution STM study in conjunction with density functional theory (DFT) 

calculations has attempted to explain how one of the RS branches in RS-Au-SR can 

be replaced.[48] Here, we present the findings from our recent study of the CH3CH2S-

Au-SCH2CH3 (C2S-Au-SC2) SAM on the Au(111) surface. We have observed, via 

direct imaging with the STM, the breaking and re-making of the S-Au bond. DFT 

calculations reveal that at RT there is a finite probability for one of the –SC2 units to 

leave the C2S-Au-SC2 staple if there is a Au adatom in the vicinity. By incorporating 

an extra Au adatom into a C2S-Au-SC2 staple, a (C2S-Au-Au-SC2) complex can be 

formed. The complex can further decompose giving rise to two Au-adatom-

monothiolate (C2S-Au) species.[35] The spontaneous breaking and re-making of the S-

Au bond mediated by the Au adatom at RT may play an important role in previously 

reported ligand exchange reactions[47] and inter-cluster interactions[8] involving thiol-
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protected Au nanoparticles. Our finding further emphasizes the importance of the 

dispersive interaction among the alkane chains in stabilizing the SAM because the S-

Au bond is vulnerable to thermally induced rupture at RT. The notion “thiolate” has 

been widely used in literature, 40 although a recent study has suggested that S is in the 

radical thiyl state. We have decided to follow the tradition in the literature and use the 

term thiolate for adsorbed –SR.  

 

Methods 

The experiments are conducted in an ultra-high vacuum (UHV) chamber with a base 

pressure of 5×10-10 mbar using an Omicron variable temperature STM (VT-STM). 

The gold sample is a (111)-oriented Au film deposited on a highly oriented pyrolitic 

graphite substrate. The C2S-Au-SC2 monolayer is prepared by exposing the clean gold 

sample to 1×10-5 mbar of ethanethiol vapor at RT in vacuum. Initially, a full coverage 

of ethylthiolate with a coverage of 1/3 monolayer (ML) is prepared on the Au(111) 

substrate. Subsequent thermal annealing under UHV leads to gradual reduction of the 

surface coverage via thermal desorption and the change of surface structure from (3 × 

4) to various striped phases.[26]   

 

The DFT calculations were performed with the Vienna ab initio Simulation Package 
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(VASP).[49,50] The electron-ion interactions were described using the projected 

augmented wave (PAW) method.[51] The exchange-correlation energy was calculated 

with the general gradient approximation (GGA) functionals of Perdew-Burke-

Ernzerhof (PBE).[52] An energy cutoff of 400 eV was selected for the plane-wave 

expansion. The dispersion corrections of the molecules and Au surface interactions 

were included by the van der Waals density functional (vdw-DF) proposed by 

Dion.[53-55] The Au surfaces were modeled with periodic slabs consisting of five 

atomic layers. A vacuum of 15 Å was adopted to avoid the periodic image 

interactions normal to the surface. A Monkhorst-Pack grid of 2 × 4 × 1 was employed 

to sample the surface Brilloun zone. In all cases, the top three layers of atoms were 

allowed to relax in three dimensions. The first principles STM simulations were 

conducted with the Tersoff-Hamann method and the bSKAN code.[56,57] The 

molecular dynamics (MD) simulations were performed at 300 K with NVT ensemble. 

The simulation time was 1000 fs with a time step of 1 fs.  

 

Results and discussion 

Both the full coverage (3 × 4) phase and various low coverage striped phases C2S-Au-

SC2 on Au(111) have been reported and discussed in detail in a previous publication. 

[26] Here we focus on one of the striped phases, (6√3 × √3)-R30o, which consists of 
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rows of C2S-Au-SC2 aligned in the [112] direction. In the orthogonal [110] direction, 

the period of the rows is 9a where a is the nearest neighbor distance of surface Au 

atoms. Figure 1a and b shows STM images from such a striped phase at RT, with a 

corresponding ball model shown in Fig. 1c. The (6√3 × √3)-R30o phase has a 

coverage of 0.23 ML and is achieved by thermally desorbing 0.1 ML of adsorbate 

from the dense 3 × 4 phase which has a coverage of 1/3 ML.[26] This is done by 

heating the sample to 378 K. As can be seen in Fig. 1c that the C2S-Au-SC2 rows 

appear in pairs. The distance between two paired-rows along the [110] direction is 

3.5a while the distance between two neighboring pairs is 9a. Each C2S-Au-SC2 is 

characterized by two protrusions in the STM image, arising from the two ethyl 

branches. The two protrusions from each C2S-Au-SC2 are separated by a typical 

distance of 0.65 nm. As shown in Fig. 1c, because of the pairing of C2S-Au-SC2, the 

two ethyl branches on the opposite sides of the Au adatom are in symmetry 

nonequivalent positions and hence they appear with different heights.[26]  Each C2S-

Au-SC2 in Fig. 1a and b has an  branch and a  branch.  The pairing of C2S-Au-SC2 

follows a head-to-head scheme where the branch from one C2S-Au-SC2 sits next to 

the  branch of another C2S-Au-SC2 (Fig. 1c). These two branches are separated by 

a rather short distance of ~ 0.3 nm.[26]   The distance between the  and branch of 

the same C2S-Au-SC2 unit is ~0.65 nm.[26]    The presence of the C2S-Au-SC2 units on 
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in STM corresponding to the two C2S branches. (b) STM image, 25 nm × 25 nm, 

taken from the same area as that of (a) three minutes later. Circles highlight locations 

where clear changes are observed between the two images. (c) Structural model 

verified by DFT of the (6√3 × √3)-R30o striped phase. Both the planar and the cross 

sectional views are given. Orange spheres are Au adatoms; light yellow spheres are S 

atoms; grey spheres are C atoms and white spheres are hydrogen atoms.  A section of 

the STM image taken from (a) is overlaid onto (c) so that a direct comparison 

between the protrusions in STM images and the locations of ethyl chains can be made. 

For each C2S-Au-SC2, there are two nonequivalent R branches: the  branch and the 

 branch with the branch appearing taller in the images.  

 

The two STM images in Fig. 1 are collected from the same area of the sample at RT, 

with image in Fig. 1b acquired three minutes’ later than that in Fig. 1a. Direct 

comparison between the images shows that there is a stable global structure defined 

by the C2S-Au-SC2 rows giving an impression that the (6√3 × √3)-R30o does not 

change with time. However, a closer inspection reveals that local changes within each 

row take place constantly.  Circles and ovals added to the images highlight a number 

of locations where changes have been observed. For clarity, we have not labeled all 

locations in the figure where changes are observed. The change is identified as a 

characteristic lateral translation of the  branch. For example, by comparing the area 

inside the blue circle 1 in Fig. 1a and that inside the blue circle 1’ in Fig. 1b, we 

notice that two dots corresponding to two  branches have shifted sideways to the left 

by ~0.25 nm during the interval of acquiring the two images. This sideway shift gives 

an impression that the staple has been stretched from its initial length of 0.65 nm to 
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0.9 nm. Inside the green circle 2 in Fig. 1a, three  branches are seen to be in the 

“stretched” position. When Fig. 1b is collected, the same  branches are observed to 

have returned to their usual, non-stretched, positions. Inside the blue oval 3 in Fig. 1a 

there are again three stretched  branches with the same displacement to the right. In 

Fig. 1b, it can be seen that these three stretched  branches have returned to their 

normal positions. During the same time interval, two  branches from the neighboring 

row on the right hand side have displaced to the left.  

 

As we continuously image the same area, we find this “stretching” and “restoring” 

process occurring at random locations along the C2S-Au-SC2 row. In fact, the process 

is frequent enough such that we can capture a single “stretching” or “restoring” step in 

real time. As will be discussed later, the “stretching” and “restoring” are two steps of 

one reversible process involving the lateral displacement of the  branch. There is no 

real physical stretching of the molecular bond.  In Fig. 2a, as the tip scans from the 

bottom of the image upwards, an  branch is observed to suddenly shift from its 

initial position, pointed by a white arrow, to a new “stretched” position pointed by a 

blue arrow. The same branch is thus seen by the STM at two different locations before 

and after the displacement. The displacement occurs after the STM tip has scanned 

through ~1/3 of the branch with 2/3 of the branch seen at the new location. Similarly 
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in Fig. 2b, an  branch is captured to move from the “stretched’ position back to the 

normal position.  The sudden appearance of straight lines, such as those seen in Fig. 2 

a and b, in STM images is frequently associated with tip-induced movement. It is not 

always possible to distinguish thermal effect from tip-induced effect when 

molecules/atoms have gone through a displacement. However, the stretching and 

restoring phenomenon shown in Figs. 1 and 2 is mainly thermally excited. This is 

because we observe a large number of movements in between two frames, but only a 

small fraction of those movements are in conjunction with the appearance of straight 

lines, i.e., most of the changes take place when the STM is far away from the location 

of the event.  

 

We performed STM simulation searching for the final state of C2S-Au-SC2 after it has 

been “stretched”, by considering the incorporation of a Au adatom into the staple. The 

simulation is performed on an unreconstructed Au(111) because the herringbone 

reconstruction is lifted in the presence of ethylthiolates. The simulation begins with a 

single Au adatom sitting in the vicinity of a C2S-Au-SC2 staple. The final structure 

and simulated STM image are shown in Fig. 2(c) and (d), respectively. The calculated 

image shows the bright protrusions for the paired  branch rows, consistent with the 

STM images. In Fig. 2(c), one of the C2S-Au-SC2 staples has changed into C2S-Au-
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exhibited by the  branch can only be explained by a true physical translation of this 

branch. There is the possibility that the C2S-Au-SC2 staple breaks apart according to 

the following scheme. 

C2S-Au-SC2  = C2S-Au + -SC2    (2) 

As can be seen in Fig. 1c, there is a narrow channel with exposed Au atoms in 

between adjacent pairs of staple rows. Following bond breaking, -SC2  can move 

sideways to form a bond with the exposed Au atoms. In a study of hybridization of 

phenylthiolate and methylthiolate on Au(111), Maksymovych et al calculated the 

energy barrier for breaking the S-Au bond. They found an energy barrier of ~16.6 

kcal/mole for breaking the S-Au bond of CH3S-Au-SCH3 and 15.9 kcal /mole in the 

case of PhS-Au-SPh, suggesting that at RT breaking the S-Au bond is a possible 

reaction.[48] It is very difficult to distinguish the above two schemes based on the STM 

images. However, there is a significant difference between the above two schemes. 

According to scheme (1), the positions of the two -SC2  branches in C2S-Au-Au-SC2  

are strictly  correlated. In contrast, -SC2, after breaking away from C2S-Au-SC2  

according to scheme (2), has plenty of freedom to move. From Fig. 1 (c), we can see a 

narrow channel, about three Au atoms wide, of exposed Au atoms in between the 

thiolate rows. Within this channel, there are more than one adsorption sites that can 

accommodate the breakaway -SC2. Thus, we expect more than one possible distance 
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between this -SC2 and the residue of the broken staple -AuSC2. STM images, Fig. 4 (a) 

and (b) for example, show that the displaced  branch has only one fixed location 

relative to the initial staple. Thus, scheme (1) is a more realistic option than (2).  C2S-

Au-Au-SC2 can be formed by either inserting a Au atom into C2S-Au-SC2, or by 

joining two Au-SC2 together. Figure 4 (c) shows an interesting phenomenon 

suggesting the formation of C2S-Au-Au-SC2 rows. In this figure, the 0.65 nm distance 

covered by the red arrow in between the blue lines is the typical distance between the 

and the branch of a C2S-Au-SC2 staple. The 0.9 nm distance covered by the 

purple arrow in between the green lines is the longer distance between the displaced 

branch and the branch it was associated with before the displacement. This 

distance corresponds to the distance between the two methyl groups in C2S-Au-Au-

SC2. In Fig. 4(c), one can find two occasions where a C2S-Au-SC2 row sitting right 

next to a C2S-Au-Au-SC2 row. The image in Fig. 4(c) provides further evidence 

supporting scheme (1).  
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shape. For the (6√3 × √3)-R30o phase, there is a narrow channel of exposed Au atoms. 

The space provided by this channel can accommodate a displaced  branch from the 

left or the right, but not from both sides. Inspired by this vision, we studied the 

stability of the C2S-Au-SC2 staple in other phases. No displacement of either the  or 

the  branch can take place within the full coverage, (3 × 4) phase of C2S-Au-SC2, 

which has been demonstrated clearly in our previous work[26]. Figure 5 shows the 

STM images for typical (5√3 ×√3)-R30° striped phase and full coverage (3 × 4) phase. 

The (5√3 ×√3)-R30° striped phase is obtained by thermal annealing the sample with 

the (3 × 4) phase to 325 K. Neither the (5√3 ×√3)-R30° nor the (3 × 4) phase shows 

any sign of displacement of the  or the  branch at RT. These results suggest, two 

factors have to be fulfilled for spontaneous S-Au bond breaking/remaking: 1. a 

channel of exposed Au atoms. 2. the channel must be wide enough to accommodate a 

displaced  branch. Otherwise, the C2S-Au-SC2/Au(111) interface is stable. It is also 

expected that for thiol molecules with a longer alkane chain, the stronger van der 

Waals interaction between the chains would give rise to a stronger restoring force and 

hence make the staple more stable. Alkanethiol SAMs with practical applications are 

those from molecules with eight CH2 groups or more. In such cases, the van der 

Waals interaction among the alkane chains provides an important stabilizing factor for 

the SAM, while the relatively weak S-Au bond still allows effective ligand exchange.  
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the form of Au-SR or RS-Au-SR.  

One thing that we have not discussed yet is the defect-like feature observed along the 

paired bright  rows. As can be seen in Figs. 1 a and b, there are a very small number 

of missing chains in each image. The defect is not permanently located at one 

position and seems to move.  The defect gives an impression that a chain is missing 

from the expected position. However, it is possible that nothing is really missing. 

What we observe may be due to a temporary breaking of a S-Au bond at the  chain. 

The consequence of such a bond break is to generate a free –SR which may resume its 

bonding with the Au adatom and restore the C2S-Au-SC2 staple. The rare occurrence 

of the  chain is also observed for the, denser, (5√3 ×√3)-R30° phase. In Fig. 4a, 

there are a few dim or missing  chains. We cannot exclude the possibility that the 

missing  chain is due to a methylthiolate impurity.  

 

Conclusions 

In summary, we have directly observed spontaneous S-Au bond breaking and bond 

remaking at RT within a self-assembled monolayer of C2S-Au-SC2. We have found 

that free-diffusing Au adatoms can be efficiently inserted into the C2S-Au-SC2 staple 

by forming a transient C2S-Au-Au-SC2 complex. Thermally induced reaction in which 

C2S-Au-SC2 breaks apart into C2S-Au and SC2 is also possible. We have identified 
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that the structure of the SAM has a strong influence on the stability of the SAM. 

Steric hindrance within a denser layer retards the bond breaking process. Although the 

staple motif has been widely accepted as the building block for alkanethiol self-

assembled monolayers on the surface of Au(111) as well as on the surface of gold 

nano-particles, the initial assembly process leading to the formation of the staple layer 

still requires further clarification. Future work will help to understand how the 

concentrations of -SR, Au-SR, RS-Au-SR, and Au adatoms change with temperature. 

The roles of –SR and Au-SR in particular, require further investigation. 
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