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Abstract 

Remanufacturing has gained increasing attention due to its economic, environmental 

and societal benefits as well as its contribution to the sustainability of natural resources. 

Disassembly is the first and usually the most difficult process in remanufacturing a 

product. Disassembly sequence planning, which aims to find the optimal disassembly 

sequence, is required to improve efficiency and reduce cost. There have been many 

investigations in this field and several disassembly sequence planning methods have 

been developed. This paper reviews the main existing disassembly sequence planning 

methods from the perspectives of disassembly mode, disassembly modelling and 

planning method. The characteristics of different methods are analysed and summarised 

from those perspectives. Future trends in disassembly sequence planning are also 

discussed to reveal gaps in existing research. 

Keywords: Remanufacturing, disassembly model, optimisation algorithm, disassembly 

sequence planning, disassembly sequence optimisation 

 

1. Introduction 

Traditionally, many manufacturing companies have tended to be driven by profits 

without due regard to energy consumption, pollutant emission and material conservation. 
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This paradigm is no longer viable and modern manufacturing industry must focus on 

environmental friendliness and sustainable energy and material usage. Remanufacturing 

provides an economically and environmentally sound way to achieve this by closing the 

materials use cycle and forming a closed-loop manufacturing system.1 The essence of 

remanufacturing is to renew an End-of-Life (EoL) product through appropriate recovery 

techniques instead of disposing of it through recycling, landfill or incineration.2 Landfill 

and incineration can do harm to the environment, causing air pollution and soil 

contamination. Recycling of EoL products promotes resource sustainability and can be 

more environmentally friendly. However, energy consumption could be high for some 

recycling processes. On the other hand, remanufacturing can save energy, production 

cost and raw materials as well as providing high-value components quickly for 

production.3 Remanufacturing of an EoL product invariably starts with taking it apart to 

recover its components. As the condition of the product is not known after years of 

usage,4 traditional disassembly processes have to rely on human operators, which can 

lead to high costs. 

Research efforts have been spent on introducing robots to replace manual labour in 

disassembly. When dealing with complex disassembly work, humans are more flexible 

than robots, because machines do not have the knowledge humans use to perform tasks, 
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nor the same capabilities for sensing, perception, reasoning and manipulation. To enable 

robots to see the product to be disassembled, machine vision has been applied to extract 

structural information about a product such as its geometrical and locating features.5,6,7,8 

To give robots knowledge about how to disassemble a product, researchers have used 

knowledge bases for storing historical disassembly information and the robots can 

flexibly deal with their current disassembly tasks using the stored data.9,10 To optimise 

the disassembly plan,11 intelligent optimisation algorithms including Particle Swarm 

Optimisation (PSO),12 Bees Algorithm,13 Artificial Bee Colony (ABC)14 and Ant 

Colony Optimisation (ACO)15,16,17 can be employed. 

A well-designed disassembly sequence helps to improve disassembly efficiency and 

reduce disassembly cost. The method of finding this well-designed disassembly 

sequence is called “disassembly sequence planning” (DSP) which is a non-deterministic 

polynomial (NP) problem18,19. DSP20,21,22,23 is to determine the optimal disassembly 

sequences for given EoL products with considering disassembly precedence 

relationships. As shown in Figure 1, three steps are involved in DSP, namely, deciding 

the disassembly mode, building a disassembly model and applying a selected planning 

method. Of all the steps in DSP, the primary task is to determine suitable disassembly 

mode for EoL products. After the disassembly mode is determined, disassembly 
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modelling for the EoL product needs to be performed to describe the disassembly 

precedence relationships between parts or subassemblies. Finally, planning methods 

should be used to find the optimal solution from various alternatives. 

The disassembly mode should be chosen according to the particular situation (such 

as complete24,25 or partial disassembly26). After that, the disassembly model, which 

describes the disassembly precedence relationship of products,27 should be built to 

avoid generating unfeasible disassembly sequences. The hybrid disassembly graph was 

employed to model the contact and non-contact constraints between different parts.26 

Petri net which includes markings, places, transitions and arcs is an efficient method to 

generate feasible disassembly sequences.28 The component-fastener graph was adopted 

to describe the precedence relationship of EoL products.29 After the disassembly model 

is built, a suitable planning method is selected to produce the optimal disassembly 

sequence plan. Planning methods can be differentiated according to the disassembly 

objective and the optimisation technique used. In terms of disassembly objectives, 

Shimizu et al.30 combined the time deviation ratio and cost deviation ratio to calculate 

the fitness function. Kongar et al.31 proposed fitness functions based on disassembly 

time, time penalty of method change and time penalty of direction change. Zhang et 

al.32 considered the following factors in calculating fitness: disassembly methods, 
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disassembly types, disassembly directions and corresponding weight. The total 

disassembly time consisting of standard time, tool changing time and direction changing 

time was used as the optimisation objective.33 For optimisation method, intelligent 

algorithms are the most widely used methods to solve this combinational optimisation 

problem34,35, ACO,26 genetic programming30, PSO,32 Scatter Search33 and Genetic 

Algorithm (GA)36 have been used to find optimal disassembly sequence. 

Although there have been many publications on DSP,37 no recent works are 

presented to systematically discuss these methods. This paper conducts a detailed 

review of DSP techniques from the perspectives of disassembly mode, disassembly 

modelling and planning methods. The objective of this review is to discuss the 

characteristics of the different techniques and identify future research trends. 

 

2. Disassembly mode 

Table 1. Complete/partial disassembly. 
Disassembly mode References 

Complete disassembly 

 
Yeh et al.,38,39,40 Chen et al.,41 Xia et al.,42,43,44,45 Pornsing et 
al,46 Xing et al.,47 Lu et al.,48 ElSayed et al.,49,50,51 Go et al.,52 
Chen et al.,53 Zhang et al.,54,55,56 Li et al.,57 Xu et al.,58 Azab 
et al.,59 Kheder et al.,60 Jin et al.,61 Tian et al.,62,63,64 Deng et 
al.,65 Kuo,66,67 Guo et al.,68 Hsu,69 Zhang et al.,70 Huang et 
al.,71 Wang et al.,72 Jue et al.,73 Zhang,74 Wang et al.,75,76,77 
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Dong et al.,78 Wei,79 Agrawal et al.,80 Zhao et al.,81 Zhang et 
al.,82 Yang et al.,83 Alshibli et al.,84 Song et al.,85 Gungor et 
al.,86,87 Shan et al.,88 Kang et al.,89 Moore et al.,90 Lambert,91，

92 Rai et al.,93 Adenso-Diaz et al.,94 Gonnuru,95 Tang et al.,96 
Wu et al.,97 Kongar et al.,98 Fang et al.99 and Lu et al.100 
 

Partial disassembly 

 
Luo et al.,101,102 Smith et al.,103,104,105,106,107,108 Xia et al.,109 
Guo et al.,110 Li et al.,111,112 Rickli et al.,113,114 Jin et al.,115 
ElSayed et al.,116 Han et al.,117 Song et al.,118,119 Percoco et 
al.,120 Liu et al.,121 Wang et al.,122 Mitrouchev et al.,123 Wang 
et al.,124 Ullerich et al.,125 Wang et al.,126 Chung et 
al.,127,128,129 Kara et al.,130 Fang et al.,131 Li et al.,132,133,134 Lu 
et al.,135,136 Lambert,137,138 Tripathi et al.139 Ma et al.,140 Wu 
et al.,141 Xue et al.,142 Giudice et al.,143 Kang et al.,144 Zhang 
et al.,145 Kheder et al.146 and Deng et al.147 
 

Of all the steps of DSP, choosing suitable disassembly mode is the first procedure we 

need to consider. From the literature reviewed, existing disassembly modes can be 

grouped in two ways: 1. complete/partial disassembly; 2. sequential/parallel 

disassembly, as shown in Table 1 and Table 2.  

Table 2. Sequential/parallel disassembly. 
Disassembly 

mode References 

Sequential 
disassembly 

Yeh et al.,38,39,40 Chen et al.,41 Xia et al.,42,43,44,45,109, Pornsing et 
al.,46 Xing et al.,47 Lu et al.,48 ElSayed et al.,49,50,51,116 Go et al.,52 
Chen et al.,53 Li et al.,57 Xu et al.,58 Azab et al.,59 Kheder et 
al.,60,146 Jin et al.,61,115 Tian et al.,62,63,64 Deng et al.,65 Kuo,66,67 Guo 
et al., 68,110 Hsu,69 Huang et al.,71 Wang et al.,72 Jue et al.,73 
Zhang,74 Wang et al.,75,76,77 Dong et al.,78 Wei et al.,79 Agrawal et 
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al.,80 Zhao et al.,81 Yang et al.,83 Alshibli et al.,84 Gungor et al.,86,87 
Shan et al.,88 Moore et al.,90 Lambert,91,92,137,138 Rai et al.,93 
Adenso-Diaz et al.,94 Gonnuru,95 Tang et al.,96 Wu et al.97,141 
Kongar et al.,98 Fang et al.,99 Lu et al.,100 Luo et al.,101,102 Smith et 
al.,103,104,105,108 Li et al.,111,112 Rickli et al.,113,114 Han et al.,117 Song 
et al.,118,119,148 Percoco et al.,120 Liu et al.,121 Wang et al.,122 
Mitrouchev et al.,123 Wang et al.,124 Ullerich et al.,125 Wang et 
al.,126 Chung et al.,127,128,129 Kara et al.,130Fang et al.,131 Li et 
al.,132,133,134 Lu et al.,135,136 Tripathi et al.,139 Xue et al.,142 Giudice 
et al.,143Zhang et al.145 and Deng et al.147 
 

Parallel 
disassembly 

 
Zhang et al.,54,55,56 Zhang et al.,70 Zhang et al.,82 Kang et al.89,144 
Smith et al.,106,107 and Ma et al.140 
 

Complete disassembly involves dismantling an EoL product into individual 

components while partial disassembly does not entail the complete breakdown of the 

product. From Table 1, it is obvious that complete disassembly is the more frequently 

investigated disassembly mode compared with the partial disassembly mode. Complete 

disassembly takes longer and costs more, partial disassembly which is to recover 

high-value components or parts that are difficult to obtain by other means should be 

considered whenever appropriate. 

Table 2 shows references to publications discussing sequential and parallel 

disassembly. With sequential disassembly, which is the most frequently studied mode, 

parts are removed from the product one at a time (or in pairs, as in the case of 
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disassembling a nut and a bolt). Parallel disassembly, which involves removing several 

components simultaneously, can be more efficient. For large complex EoL products, this 

method should be considered as it can reduce disassembly time compared with the 

sequential disassembly mode. 

Regarding disassembly mode, the numbers of reviewed papers of complete and 

partial disassembly are respectively 63 and 47, the numbers of reviewed papers of 

sequential and parallel disassembly are respectively 100 and 10. It is apparent that the 

focus of research so far has been on complete disassembly. However, there are many 

cases where only partial disassembly is needed. For example, when the aim of 

disassembly is to retrieve a particular component located in the middle of disassembly 

process, this component is used for repair, replacement or recycling. Until now, much 

attention has been paid to sequential disassembly than parallel disassembly. Future work 

might concentrate on the parallel disassembly due to its potential for high efficiency. To 

date, the only research group invested both partial and parallel disassembly has been 

conducted by Smith et al.107 It is expected that this area will expand in the future when 

high disassembly efficiency is considered. 

 

3. Disassembly modelling 
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After the disassembly mode is determined, disassembly modelling for the EoL product 

needs to be performed to describe the disassembly precedence relationships between 

parts or subassemblies. It ensures that unfeasible disassembly sequences are eliminated. 

Disassembly modelling consists of a pre-processing stage and a model construction 

stage as shown in Figure 2. 

3.1 Pre-processing 

The pre-processing method extracts the precedence relationships between different parts 

from known information about the product such as its computer-aided design (CAD) 

model. From the literature reviewed, pre-processing tends to be performed manually, as 

shown in Table 3. 

Table 3. Pre-processing methods. 
Methods References 

Manual work 

Yeh et al.,38,39,40 Xia et al.,42,43,44,45,109 Pornsing et al.,46 Xing et 
al.,47 Lu et al.,48 ElSayed et al.,50,116 Go et al.,52 Chen et al.,53 
Zhang et al.,54,55,56 Li et al.,57 Xu et al.,58 Azab et al.,59 Kheder et 
al.,60,146 Jin et al.,61,85,115 Tian et al.,62,63,64 Deng et al.,65 Kuo,66,67 
Guo et al.,68,110 Hsu,69 Huang et al.,71 Wang et al.,72 Jue et al.,73 
Zhang et al.,74 Wang et al.,75,76,77 Dong et al.,78 Wei,79 Zhao et 
al.,81 Zhang et al.,82 Yang et al.,83 Alshibli et al.,84 Gungor et 
al.,86,87 Shan et al.,88 Kang et al.,89,144 Moore et al.,90 
Lambert,91,92,137,138 Rai et al.,93 Adenso-Diaz et al.,94 Gonnuru,95 
Tang et al.,96,149 Wu et al.,97,141 Kongar et al.,98 Fang et al.,99 Lu 
et al.,100 Luo et al.,101,102 Smith et al.,103,104,105,106,107,108 Li et 
al.,111,112 Rickli et al.,113,114 Han et al.,117 Song et al.,118,119,148 
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Percoco et al.,120 Wang et al.,122 Wang et al.,124 Ullerich et al.,125 
Wang et al.,126 Chung et al.,127,128,129 Kara et al.,130 Fang et al.,131 
Li et al.,132,133,134 Lu et al.,135,136 Tripathi et al.,139 Ma et al.,140 
Xue et al.,142 Giudice et al.,143 Zhang et al.145 and Deng et al.147  

Visual 
processing & 

matching 
ElSayed et al.49,51

 and Alshibli et al.84  

Module of 
SolidWorks Agrawal et al.80 

WFlow Liu et al.121 

There are 105 papers using manual work to finish pre-processing (NB: if the 

pre-processing method is not clearly explained in a paper, here, it is taken by default as 

manually carried out). Due to the powerful recognition and reasoning ability of humans, 

manual pre-processing is suitable for almost all cases; however, it can be a cumbersome 

task to extract precedence relationships and generate the disassembly model manually. 

When the product is complex, manual pre-processing is also an error-prone task which 

easily leads to the generation of inaccurate models. Thus, automatic pre-processing 

should be considered to avoid these disadvantages. ElSayed et al.49 employed visual 

processing and pattern recognition for pre-processing. They used visual processing to 

identify specific components and convolution/correlation-based 2D template matching 

to compare the extracted component with the given templates. Their technique was not 

fully automatic pre-processing because the template had to be provided manually in 
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advance. Apart from the methods just mentioned, Solidworks80 and WFlow121 have also 

been employed to perform pre-processing, but the details were not clear from these 

publications. 

Regarding pre-processing methods, it is obvious that most pre-processing methods 

require manual work. This is because humans are much more flexible and can deal with 

much more complicated tasks than machines. However, it is time-consuming and 

error-prone for humans to finish complex tasks when the number of components is large. 

In addition, most pre-processing methods can be finished only if CAD models are 

provided. However, after years of usage, EoL products can rarely be described 

accurately by original CAD model. Thus, manual work is necessary to adjust existing 

CAD models or create new representations of actual components. Some researches try 

to use visual information to exact the precedence relationships between different 

parts,8,9 but that simply is not enough. For example, contact forces between different 

components in disassembly process could also yield useful information on the condition 

of disassembly process which helps to build accurate disassembly model. However, no 

research has been conducted on this. 

3.2 Disassembly model building 
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Disassembly model building method is used to produce a model representing the 

disassembly precedence relationships through specific methods like graphs and matrices. 

Table 4 shows that disassembly models can be divided into four categories: graphs, Petri 

nets, matrix-based and other model types. 

3.2.1 Graphs 

The use of disassembly trees was proposed by Bourjault et al.150 The tree starts from the 

root node which indicates the original EoL product. The branch nodes represent 

subassemblies or parts of the product.38 As shown in Figure 3, R indicates the original 

product while S represents a subassembly. Through disassembly (directed edges in 

Figure 3), different subassemblies are generated. 

{ , , }G V E Ra=                                 (1) 

Disassembly network graphs are used to describe the structural relationships 

between parts. According to different descriptions of the constraint relationships, a 

disassembly network graph as shown in Figure 4 can be a three-element, four-element 

or five-element graph. The minimal part in a disassembly network graph is a component 

or a connection. A three-element disassembly network graph is described by Equation 

(1),53 where G is the disassembly network graph, V represents the minimum part, Eij is 
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the directed edge from i to j indicating that component i should be disassembled before 

component j, Ra is a set of arcs (an actual arc stands for an “AND” relationship and a 

virtual arc means an “OR” relationship between different parts). Using this method, the 

structural relationship between different parts can be clearly described. However, the 

relationships between different parts cannot be simply represented as “AND” or “OR” 

relationships, the precedence relationship between contact components and non-contact 

components should also be considered. Thus, in addition to elements V and E, a 

four-element disassembly network graph includes the relationship sets Efc and Ec which 

are respectively described as directed solid edge and directed dotted edge.54,55,82 Efc and 

Ec respectively give the disassembly precedence relationship between contact parts and 

that between non-contact parts. Song et al. added a selective constraint set to the 

four-element disassembly network graph to provide further structural relationship 

information and give a five-element disassembly network graph.118,119 A part belongs to 

the selective constraint set if it has constraint relationships with many other parts and 

can be disassembled once one of those parts is removed. 
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Table 4. Disassembly model building methods. 

Methods Description References 

Graph-based 
method 

Disassembly 
tree 

The tree starts from the root 
node which indicates the 
original EoL product; the branch 
nodes represent subassemblies 
or parts of the product. 

 
Yeh et al.,38,39,40 Xia et al.,42,45 ElSayed et al.,49,50,51,116 Go et al.,52 Azab et 
al.,59 Kuo,67 Wang et al.,76,77 Alshibli et al.,84 Lambert et al.,91,92,137,138 
Gonnuru,95 Kongar et al.,98 Guo et al.,110 Han et al.,117 Lu et al.,135 Tripathi et 
al.,139 Ma et al.140 and Xue142 
 

Disassembly 
network graph 

Three-element graph: This 
includes the minimal 
disassembled part, directed 
edges and the relationship 
between pairs of parts. 

Chen et al.,53 Tian et al.,63,64 Wang et al.,72 Wu et al.97 Fang et al.,131 Li et 
al.132,133,134 and Deng et al.147 

Four-element graph: This 
includes the minimal 
disassembled part, 
undirected/directed edges and 
directed dotted edges. 

Zhang et al.,54,55,56 Zhang et al.82 and Wu et al.141 

Five-element graph: This 
includes the minimal 
disassembled part, one 
undirected edge and three 
directed edges which indicate 
different constraint 
relationships. 

Song et al.118,119,148 
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State 
representation 

based 
disassembly 

graph 

This describes the structure of 
the EoL product at several 
disassembly levels. 

Tian et al.,62 Jue et al.,73 Wei,79 Wang et al.,122 Mitrouchev et al.123 and Kara 
et al.130 

Directed flow 
disassembly 

network 

This graph-based method starts 
from one node and ends in 
another node. 

Huang et al.,71 Kang et al.89,144 Rickli et al.,113,114 Liu et al.,121 and Ullerich et 
al.125 

Petri net 
method 

Simplified 
Disassembly 

Petri net 

This includes the number of 
places and transitions, places, 
transitions, place-transition 
matrix and transition-place 
matrix. 

Rai et al.,93 Xia et al.109and Zhang et al.145 

Extended 
disassembly 

Petri net 

This Petri net includes only one 
non-leaf output place exists in 
each transition. 

Tang et al.149 

Extended 
stochastic 

disassembly 
Petri net 

This is a high level Petri net 
with arbitrary distribution. Deng et al.65 

Disassembly 
tree Petri net 

This comprises four steps: 
identification, determination of 
the disassembly rate, 
construction and evaluation. 

Kuo66 

Disassembly 
Petri net 

This includes an 8-tuple: places, 
transitions, input and output Guo et al.68 and Moore et al.90 
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functions, marking, disassembly 
cost, recycling value and weight 
function. 

Fuzzy 
attributed Petri 

net 

Fuzzy sets theory is combined 
with Petri net to handle the 
uncertainties in the disassembly 
process. 

Hsu69 and Tang et al.96 

Synchronous 
net 

This employs reduction 
principles which include 
S-Combination, T-Combination 
and place combination. 

Dong et al.78 

Fuzzy 
reasoning Petri 

net 

This is derived from the basic 
Petri net and its objective is 
knowledge representation and 
logic reasoning. 

Zhao et al.81 

Matrix-based 
method 

Disassembly 
interference 

matrix 

Simple case: the element aij is 
set to nonzero if disassembly 
operation i precedes operation j, 
and 0 otherwise.sss 

Zhang74 and Yang et al.83 

6-direction matrix: This 
describes the relative position 
(±x, ±y, ±z) between different 
components. 

 
Xia et al.,43,44 Xing et al.,47 Xu et al.,58 Jin et al.,61,85,115 Wei,79 Agrawal et 
al.,80 Gungor et al.,86,87 Shan et al.,88 Adenso-Diaz,94 Fang et al.,99 Lu et 
al.100 Percoco et al.,120 Wang et al.,126 Lu et al.,135,136 Giudice et al.143 and 
Kheder et al.146 
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Multi-direction matrix: this 
includes the global precedence 
matrix and local precedence 
matrix. 

Li et al.57 and Luo et al.102 

Multi-layer 
representation 

method 

This method includes several 
levels and the corresponding 
representation matrix to reduce 
storage space and search time, 
compared with the traditional 
matrix representation method. 

Wang,75 Luo et al.101 and Wang et al.124 

Disassembly 
sequence 
structure 
method 

Four-matrix method: This 
includes disassembly matrices 
for fasteners and components 
and motion constraint matrices 
for fasteners and components 

Smith et al.103,107,108 

Five-matrix method: Besides the 
description matrices used in the 
four-matrix method, there is 
also a projection matrix for 
components. 

Smith et al.104,105,106 

Dynamic 
disassembly 
precedence 

matrix 

The precedence matrix is 
generated iteratively according 
to the dynamic disassembly of 
the product. 

Pornsing et al.46 and Luo et al.102 

Disassembly 
transition 

In this matrix, each row and 
column respectively represent Huang et al.71 
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matrix the resulting subassembly and 
disassembly operation. 

Enhanced 
support matrix 

The fasteners are regarded as 
separate parts and added into a 
support matrix which describes 
the support relationship among 
parts for stability analysis. 

Lu et al.48 

Hybrid 
disassembly 

matrix 

This method includes 
connectivity matrix, topological 
disassemblability matrix and 
rating matrix of 
disassemblability level. 

Chung et al.127 

Two 
disassembly 

matrices 

This method includes 
subassembly division 
precedence matrix and part 
disassembly route matrix. 

Chung et al.128,129 

Other 
method 

Generic 
constraint 
handling 
algorithm 

The disassembly operation is 
divided into disassembly 
operations with and without 
constraints. Each disassembly 
operation with constraints 
should be gradually handled, 
and then, disassembly 
operations without any 
constraints should be inserted. 

Li et al.111,112 
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A state-representation-based disassembly graph describes the structural 

relationships of a product at different levels or disassembly stages.62 With this method, 

several parts are disassembled during each disassembly stage (in Figure 5(a)) or 

disassembly level (in Figure 5(b)). The method provides good visualisation of the 

disassembly process and can also be applied to complex products. Tian et al.62 used 

disassembly models similar to that depicted in Figure 5(b), but ignored details such as 

disassembly direction. As mentioned previously, to remedy this, Mitrouchev et al.123 

used sets of disassembly of removal (SDR) to obtain the possible removal directions 

for each component. From the SDR, the detachability of each component can be 

determined. 

Unlike a disassembly network graph, a directed flow disassembly network113 starts 

from one node which stands for the assembled product and ends at another node which 

represents the complete disassembly of all parts,114 as shown in Figure 6. However, 

disassembly details (such as disassembly time, tool and direction) are usually ignored 

in this method. To address this, Liu et al. included a feasibility graph which not only 

describes the constraint and adjacency relationships between different parts or 

subassemblies but also contains other disassembly information (disassembly tool, time 

etc.).121 The optimal disassembly sequence (bold arrows in Figure 6) can be chosen 

from the available solutions. 

3.2.2 Petri net methods 

Xia et al. used the simplified disassembly Petri net method which was defined as a 

five-tuple as shown in Equation (2).109 
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* *( , , , , )n m m nDPN P T I O M=                            (2) 

where P and T respectively represent the sets of EoL products (named places) and 

disassembly operators (named transitions), n and m are respectively the number of 

places and transitions, matrix I and matrix O respectively indicate the 

places-transitions matrix and transitions-places matrix, M represents the disassembly 

state of the product. Similarly, a simplified representation of the disassembly Petri net 

approach was presented, which included places P, transitions T and arcs.66 An 

eight-tuple disassembly Petri net was also used to describe the geometric constraint 

relationships, removal states and AND/OR logical relationships of all the 

components.68 In addition, to provide rich descriptions of the disassembly structure, as 

shown in Figure 7, the five elements of the simplified disassembly Petri net method109 

were supplemented with the removal cost c and reuse value of components and the set 

of weight functions w related to the transition. Based on the standard Petri net, a higher 

level Petri net, the “Extended stochastic disassembly Petri net” was proposed.65 In this 

method, parameters related to the disassembly process such as the disassembly time 

probability density functions of the transition, the quality condition function and the 

probability value of the transition were included. 

Traditional disassembly Petri net methods have disadvantages of complex 

reachability graph generation and heavy computational burden. When EoL products 

have complex structures, it is difficult and can take long time to generate the 

reachability graph. Dong et al.78 proposed a disassembly model based on a 

synchronous net to simplify the Petri nets. Through reduction principles, the complex 
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reachability graph problem is solved. In addition, the traditional disassembly Petri net 

method is not robust enough to handle uncertainties during disassembly process. 

Compared with traditional Petri net models, the predicate/transition net which is a 

high-level Petri net was developed to have a compact size and powerful modelling 

capability. A novel high-level Petri net, the “Fuzzy attributed and timed 

predicate/transition net” (FATP/T), was developed to deal with uncertainty problems.69 

The Fuzzy Reasoning Petri net (FRPN) proposed by Zhao et al. handles uncertainty 

problems in a different way from FATP/T.81 Apart from the basic elements of a 

disassembly Petri net, FRPN also incorporates rules with associated confidence levels 

to enable knowledge-based reasoning and decision making to address the problem of 

combinational explosion. Petri net was also combined with Bayesian learning to deal 

with the uncertainties in the disassembly process to reduce the impact of inaccuracy of 

decision making.149 

3.2.3 Matrix-based methods 

The matrix-based methods use several matrices to describe the disassembly 

precedence relationships between different parts. The disassembly interference matrix 

method is the most common matrix-based method. The simplest way of constructing a 

disassembly interference matrix was described in publications.74,83 With this method, 

regardless of details such as disassembly directions and disassembly operations, if 

component i should be disassembled before component j, element bij of the 

disassembly interference matrix is nonzero. Otherwise, it is ‘0’. However, actual 

disassembly process is more complex due to non-ignorable factors such as disassembly 
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directions and disassembly tools. Based on the CAD model of the product, disassembly 

interference matrices (CX+, CX-, CY+, CY-, CZ+, CZ-) can be generated in six directions 

(X+, X-, Y+, Y-, Z+, Z-) according to the spatial interference relationship between 

different parts.47 If there is spatial interference between parts i and j along a specific 

direction, element bij of the disassembly interference matrix is ‘1’ in that direction. 

Otherwise, it is ‘0’. After the disassembly interference matrices of all the directions are 

obtained, the feasible disassembly sequence can be generated. However, connections 

are different from components in the actual disassembly process. Therefore, according 

to the same interference rules mentioned above,43,44,120 the disassembly interference 

matrices of components and connections were respectively introduced as independent 

matrices which are row-column matrices and disassembly interference matrices.42,43,44 

However, the actual disassembly directions of parts are not always the simple 6 

directions (X+, X-, Y+, Y-, Z+, Z-) but could be complex directions. They may change 

with different structures of components, which results in the previously mentioned 

methods not meeting the requirements of actual disassembly situations. The extended 

interference matrix method was proposed to handle those situations.57,102 With this 

method, a global coordinate system and a local coordinate system were simultaneously 

used to increase the diversity of disassembly directions. The global coordinate system 

was employed to describe interference relationships between components viewed from 

a common frame of reference while the local coordinate system was adopted to 

describe the disassembly interference from the perspective of individual components. 

The translating and rotating relationships between the global coordinate system and 
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local coordinate system were used to establish the extended interference matrix 

method. 

As with the methods used in publications,43,44,120 the connections and components 

were considered separately by different description methods. Smith proposed the 

disassembly sequence structure method to represent the spatial relationships between 

components and connections.103,107 With this method, the disassembly matrices for 

components and connections (2 matrices) and the disassembly motion matrices for 

components and connections (2 matrices) were simultaneously built. The disassembly 

matrices were used to record the disassembly direction of each part, and the 

disassembly motion matrices, to record touching parts that constrain the disassembly of 

target components in specific directions. This method helps to reduce model 

complexity compared with other matrix-based methods. By adding the projection 

matrix for the components, Smith et al. proposed the five-matrix disassembly sequence 

structure method.104,105,106 Besides the four-matrix method,103,107 the projection matrix 

for the components was used to record the number of blocking components for each 

component. Compared with the four-matrix disassembly sequence structure method, 

this method further decreases the time to search for feasible sequence solutions. An 

obvious disadvantage of these method is that the matrices should be generated 

manually which may be a cumbersome task. 

The disassembly interference matrix method needs to record all the relationships 

of parts even if there are no precedence relationships between them, which naturally 

results in data redundancy. To reduce processing time and data size, the multi-layer 
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representation method was proposed.75,101 The Bill-of-Materials (BoM) represented by 

a list of elements from the product all the way down to basic components was used to 

generate the natural structure of the product which comprises different layers and 

nodes. For every subassembly of each layer, a matrix was used to describe the 

constraints between different components of the subassembly. Compared with the 

disassembly interference matrix, this method needs a smaller space to store the product 

model.101 

The above-mentioned methods are static description methods because they cannot 

be altered dynamically according to the actual disassembly situation. To deal with 

changing conditions, the dynamic disassembly precedence matrix was proposed.46,102 

Based on the same rules,74 the disassembly interference matrix was iteratively updated 

through the following rule: if all elements in column i are 0, then component i will be 

disassembled, after which, all the elements in row i of the disassembly interference 

matrix will be set to 0.46 Slightly different from the method of publication,46 

component i should be disassembled if there is only a non-zero element in column (or 

row) i, after which, the corresponding row i and column i are deleted dynamically.102 

In terms of disassembly operations and support relationships, there also exists 

matrix-based methods that are different from the above. The disassembly transition 

matrix considered the disassembly operation to form a disassembly transition matrix of 

which the column and row respectively represent the disassembly operation and 

resulting subassembly.71 An obvious disadvantage of this method is that all the feasible 

subassemblies and disassembly operations should be enumerated, which is a 
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time-consuming process. Because actual disassembly operations are affected by gravity, 

to be closer to real situations, the enhanced support matrix was proposed.48 The base 

component supporting other parts or fasteners was determined first and then the 

support relationships between different components were considered. Furthermore, the 

hybrid disassembly matrix127 and two disassembly matrices128,129 were also studied. 

3.2.4 Other methods 

To propose a universal method to handle various disassembly models, the generic 

constraint handling algorithm was proposed by Li et al.111,112 Disassembly operations 

are divided into two parts: those with, and those without, constraints. First, the 

positions of disassembly operations without any constraints should be kept unchanged. 

Then, the element positions of disassembly operations with constraints should be 

adjusted according to the disassembly precedence relationships. A feasible disassembly 

sequence will be obtained after all the positions of disassembly operations with 

constraints have been adjusted. To be a generic constraints description method, the 

algorithm ignores many details such as the tools used and the disassembly directions 

which are important for disassembly. 

Regarding the disassembly model building methods, graphs (58 papers) are the 

most common methods to build the disassembly model, followed by matrix-based 

method (40 papers). Graphs give an intuitive way to describe precedence and contact 

information among the parts of an EoL product. Matrix-based methods provide a more 

convenient means for the computer to handle disassembly constraint relationships. For 

matrix-based methods, redundant data is a common problem faced by existing 
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description methods, as most of the methods need to record the relationships between 

all parts even when no such relationships exist. On the other hand, Petri net (12 papers) 

gives detailed geometrical and topological information on the components of the EoL 

product. Generally, it has been noted that the actual disassembly process is full of 

uncertainties and randomness. At the end of its service life, a product may not have a 

structure consistent with its original structure, which leads to deviations from the 

disassembly model. Moreover, most disassembly model building methods are static 

methods. To handle uncertainties caused by unplanned problems such as damaged or 

missing parts, disassembly models must be capable of dynamic adjustment. 

4. Planning methods 

After the disassembly mode and disassembly model have been determined for a given 

EoL product, planning methods should be used to find the optimal solution from 

various alternatives. This section covers existing planning methods from two points of 

view: disassembly objectives (Section 4.1) and optimisation methods (Section 4.2). 

4.1 Disassembly objective 

The disassembly objective deals with the criteria for the optimal disassembly plan 

(low cost, environmental impact or high revenue). After the disassembly models are 

created, specific disassembly objectives are described to make the optimisation process 

move in specific directions. In the reviewed articles, disassembly objectives are 

summarized as shown in Table 5. From Table 5, it can be seen that the disassembly 

objectives are divided into four approaches: disassembly cost, disassembly revenue, 

environmental indices and other indices. 
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Table 5. Disassembly objectives. 
Disassembly objectives Description References 

Disassembly 
cost 

objectives 

Disassembly  
time 

Basic disassembly 
time 

Time required for disassembling a regular 
component 

 
Yeh,38,39 Chen et al.,41 Xia et al.,42 
Pornsing et al.,46 ElSayed et al.,49,50,116 Go 
et al.,52 Zhang et al.,54,55,56 Azab et al.,59 
Hsu,69 Zhang,74 Wang,75 Tang et al.,96 Luo 
et al.,101,102 Smith et al.,108 Li et al.,111,112 
Jin et al.,115 Song et al.,118,119 Percoco et 
al.,120 Wang et al.,124 Giudice et al.143 and 
Kang et al.144 
 

Additional 
disassembly time 

Extra time caused by issues such as 
geometric complexity and process 
complexity 

Wang,75 and Luo et al.101,102  

Direction-change 
disassembly time 

Extra time required to change directions of 
movement during disassembly 

 
Yeh et al.,38,39,40 Chen et al.,41 Xia et 
al.,42,43,44 Pornsing et al.,46 Xing et al.,47 Lu 
et al.,48 Go et al.,52 Chen et al.,53 Li et al.,57 
Xu et al.,58 Azab et al.,59 Kheder et al.,60,88 
Jue et al.,73 Wang,75 Dong et al.,78 Agrawal 
et al.,80 Zhang et al.,82 Yang et al.,83 
Gungor et al.,86,87 Shan et al.,88 Moore et 
al.,90 Adenso-Diaz et al.,94 Wu et al.,97,141 
Kongar et al.,98 Fang et al.,99 Lu et al.,100 
Smith et al.,103,104,105,107,108 Guo et al.,110 
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Jin et al.,115 Percoco et al.,120 Wang et 
al.,126 Li et al.,132,134 Xue,142 Giudice et 
al.,143 Zhang et al.145 Deng et al.147 and Mi 
et al.151 
 

Tools-change 
disassembly time Time required for changing tools 

 
Yeh et al.,38,39,40 Chen et al.,41 Xia et 
al.,42,43,44 Lu et al.,48 ElSayed et 
al.,49,50,51,116 Go et al.,52 Chen et al.,53 
Zhang et al.,55 Li et al.,57 Xu et al.,58 Azab 
et al.,59 Kheder et al.,60,146 Wang et al.,72 
Jue et al.,73 Zhang et al.,74 Dong et al.,78 
Agrawal et al.,80 Zhang et al.,82 Yang et 
al.,83 Alshibli et al.,84 Gungor et al.,86,87 
Shan et al.,88 Moore et al.,90 Adenso-Diaz 
et al.,94 Wu et al.,97,141 Kongar et al.,98 
Fang et al.,99 Lu et al.,100 Smith et al.,108 
Guo et al.,110 Li et al.,132,134 Lu et al.,135,136 
Xue et al.,142 Zhang et al.,145 Deng et al.147 
and Mi et al.151 
 

Travelling time 
between different 

disassembly points 

Time for moving between different 
disassembly points 

ElSayed et al.,49,50,51,116 Azab et al.59 and 
Alshibli et al.84 

Stochastic time Disassembly times are stochastically 
distributed 

Yeh et al.40 Chen et al.,53 Tian et al.,62,63,64 
Deng et al.,65 and Kuo66  
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Fuzzy time Disassembly times are represented as 
triangular fuzzy numbers Zhang et al.70 

Disassembly tooling cost Cost of tooling for disassembly operation 

 
Xia et al.,43 Kuo,66 Guo et al.,68,110 Zhang 
et al.,70 Wang et al.,72 Wang et al.,76,77 
Kang et al.,89 Lambert,91,137,138 Gonnuru,95 
Smith et al.,108 Rickli et al.,113,114 Han et 
al.,117 Song et al.,118,119 Ullerich et al.,125 
Chung et al.,129 Lu et al.,135 Tripathi et 
al.,139 Ma et al.140 and Giudice et al.143 
 

Labour cost Cost of disassembling an EoL product per 
time unit 

 
Pornsing et al.,46 Tian et al.,63,64 Deng et 
al.,65 Kuo,66 Hsu,69 Tang et al.,96 Smith et 
al.,108 Jin et al.,115 Song et al.,118,119 
Percoco et al.,120 Ullerich et al.125 and 
Kang et al.144 
 

Parts number Total number of parts disassembled 

Xing et al.,47 Lu et al.,48 Kheder et al.,60 
Agrawal et al.,80 Gungor et al.,86 Luo et 
al.,101 Smith et al.,103,107,108 Jin et al.,115 
Wang et al.126 and Deng et al.147 

Operation number The total number of operations in the 
disassembly process Chung et al.129 
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Disassembly distance Distance moved in disassembling a 
component Xing et al.47 

Maintenance 
degree 

Type of maintenance required (no 
maintenance, corrective maintenance or 
preventive maintenance) 

Kheder et al.60,146 

MTTR Calculated by the summation of mean time 
to repair of each part.  Chung et al.127 

Disassembly 
revenue 

objectives 

Components 
revenue 

Non-destructive 
disassembly revenue 

of a component 

Revenue for a salvaged component 
undamaged by disassembly 

 
Chen et al.,53 Kuo,66 Guo et al.,68,110 Hsu,69 
Kang et al.,89,144 Lambert et al.,91,92,137,138 
Gonnuru,95 Tang et al.,96 Smith et al.,108 
Rickli et al.,114 Jin et al.,115 Ullerich et 
al.,125 Lu et al.135 and Ma et al.140 
 

Destructive 
disassembly revenue 

of a component 

Revenue for a component damaged by 
disassembly Smith et al.108 and Guo et al.110 

Recovered weight (or volume) Weight (or volume) of each component 

 
Xia et al.,45,109 Pornsing et al.,46 Chen et 
al.,53 Kuo,66 Li et al.,111,112 Jin et al.,115 
Smith et al.,108 Ullerich et al.,125 Tripathi et 
al.,139 Kang et al.144 and Kheder et al.147 
 

Recovered value A function of the reuse value of each 
reusable component and the recycling value 

 
Xia et al., 45,109 Pornsing et al.,46 Chen et 
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of each recyclable component al.,53 Kuo,66,67 Gungor et al.,86,87 Kongar et 
al.,98 Li et al.,111,112 Jin et al.115 and Tripathi 
et al.139 
 

Dynamic product value Product value modelled as a negative 
exponential function of time Rickli et al.114 

Profit probability Profit probability of a disassembly sequence Rickli et al.114 

Environment
al 

objectives 

Environmental impact of a 
component Effect of a component on the environment 

 
Xia et al.,45,109 Pornsing et al.,46 Kuo,67 
Gungor et al.,86,87 Moore et al.,90 
Gonnuru,95 Smith et al.,108 Li et al.,111,112 
Rickli et al.,113 Jin et al.,115 Percoco et 
al.,120 Ullerich et al.,125 Tripathi et al.,139 
Ma et al.140 and Giudice et al.143 
 

Environmental impact of a 
disassembly operation 

Effect of a disassembly operation on the 
environment Rickli et al.113 

Other 
objectives 

Feasibility Index relating to the feasibility of a 
disassembly sequence Rickli et al.113,114 

Stability 
Index relating to the stability of components 
connected in a particular way (soldering, 
welding, riveting, screwing) 

Lu et al.,48 Yang et al.83 and Deng et al.147 
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From Table 5, it can be noted that the disassembly cost objective is sub-divided 

into disassembly time, disassembly tooling cost, labour cost, parts number, operation 

number, disassembly distance and maintenance degree. The basic disassembly time is 

the time required for disassembling a regular component. However, the actual 

disassembly time for removing a component is not a constant value because it is 

influenced by other factors. To distinguish the disassembly times for operations with 

different degrees of difficulty, the idea of additional disassembly time was 

proposed.75,101,102 The additional disassembly time was combined with the basic 

disassembly time to be variable disassembly time. The additional disassembly time still 

does not take into account practical factors such as tool changes, direction changes and 

time for travelling between disassembly points. Researchers have supplemented the 

additional disassembly time with further allowances for tool changes, direction 

changes and movements between disassembly points. Tool changes incur time 

penalties for obvious reasons. In the case of direction changes, the larger the 

disassembly direction changes, the larger the penalty. In the reviewed papers, the time 

to travel between disassembly points is normally calculated using the Euclidean 

distance between different disassembly points and the speed of the transfer equipment 

(for example, a robot arm). However, in practice, the actual disassembly time for a 

component depends not only on the aforementioned deterministic time elements, but 

also on uncertainties in the disassembly process. Stochastic disassembly times53 and 

fuzzy times70 have been proposed to deal with those uncertainties. Depending on the 

problem, the randomly varying (stochastic) time for removing a component could be 
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taken as normally distributed or Gaussian distributed, whereas triangular numbers have 

been adopted to represent imprecise (fuzzy) disassembly time. Apart from disassembly 

time, the cost of tooling should also be considered. Tooling cost means the cost of 

tooling for disassembly operations such as the cost of torches, wrenches screwdrivers 

etc. In cases where manual disassembly is adopted to deal with uncertainties in the 

disassembly process, labour costs become a consideration.46 Other factors affecting 

disassembly costs are the parts number36 the disassembly distance,47 maintenance 

degree,60 mean time to repair (MTTR)127 and operation number.129 

The disassembly revenue for a component is also a disassembly objective. 

Disassembly revenue can also be divided into nondestructive disassembly revenue115 

and destructive disassembly revenue110 (again, if a paper does not specify the type of 

revenue, it is taken as nondestructive disassembly revenue by default). Table 5 shows 

that the existing literature mainly focuses on nondestructive disassembly revenue. Guo 

et al. considered the destructive disassembly revenue of a component.110 However, 

different destructive disassembly methods will result in different disassembly revenues 

although no paper so far has discussed this point. With a view to recycling, some 

authors have considered the recovered weight and recovered value of a component.109 

The above mentioned objective description methods are static methods. However, in 

practice, the properties of EoL products can change, among other factors, according to 

the time they were in use. To account for this dynamic scenario, the product value 

curve was taken as a negative exponential function of time.114 Apart from these, the 

profit probability was also studied.114 
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There has been less work on objectives connected to the environment than on 

those associated with costs and revenues. Environmental objectives are to reduce 

environmental impacts of components109 and of operations.113 The former concern 

potential harm by a component and the latter relate to that by a disassembly operation 

(such as wastage of cleaning fluid or energy). In addition, stability48 and feasibility113 

have also been taken as disassembly objectives. Rickli and Camelio113 used the ratio of 

feasible arcs over the total number of arcs in a disassembly graph as a feasibility index 

to be maximised. Other researchers also take into account how stably components are 

connected together (welding, riveting or press fitting, etc.).48 

Based on the statistics of publications in Table 5, it can be seen that work related to 

economic factors (disassembly cost and revenue, 97 papers) has received the most 

attention. However, considering the importance of environmental factors (18 papers), it 

is expected that they will attract more research efforts in the future. For both economic 

factors and environmental factors, suitable dynamic descriptions are needed for the 

parts of which the conditions are uncertain or variable. As stated in section 1, 

researchers have paid increasing attention to robotic disassembly which helps to 

promote the automation of disassembly process. When robotic disassembly is 

considered,49 as an important environmental factor, the energy consumption of robots 

in the disassembly process can also be optimised to promote sustainability.152 In 

addition, for robotic disassembly, the moving path or trajectory of robot arm should 

avoid the obstacle caused by the contour of EoL products. When DSP for robotic 

disassembly is considered, it is meaningful to combines the obstacle-avoiding path 
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planning or trajectory planning with DSP. However, there is no research focuses on 

this. 

4.2 Optimisation methods 

The optimisation methods deal with ways of efficiently finding the optimal 

disassembly sequences. Finding the optimal disassembly sequence under given 

objectives is an NP-complete problem requiring the use of heuristic algorithms. The 

main optimisation methods found in the reviewed literature on DSP are nature-inspired 

heuristic algorithms (NIHA), linear programming methods (LPM), rule-based methods 

(RBM), stochastic simulation (SSI) techniques and so on. 

4.2.1 Nature-inspired heuristic algorithms 

NIHA are derived from natural phenomena such as ants foraging and bees foraging. 

These algorithms can solve combinatorial optimisation problems. In the reviewed 

literature of DSP, they are the most common methods to find the optimal disassembly 

sequences. 

In NIHA, GA which is derived from evolution and genetics, is the most widely 

used method to solve disassembly sequence optimisation problems. The disassembly 

sequences are first coded into chromosomes, and then, the selection, crossover and 

mutation operators are used to find new chromosomes.52 In general, the new 

chromosomes may not meet the precedence relationship of EoL products. Therefore, 

GA was combined with precedence preserving crossover (PPX) in several studies to 

ensure the feasibility of new chromosomes.49,60,116 In addition, feasibility (FE) was 

added to the fitness function of GA.113,114 For GA, it is easy to be trap at local optimal 
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solutions. To solve this problem, GA with adaptive crossover rate and mutation rate 

(ACRMR)41 and GA with Gaussian mutation70 were used to improve the quality of 

solutions. Moreover, simulated annealing (SA) based GA,83 SA-binary tree (BTA) 

based GA,97 Tabu search (TS) based GA134 and Chaotic GA (CGA)145 were also 

proposed to improve the quality of solutions. 

The PSO which is derived from the flocking behaviour of birds, is also a common 

method used for disassembly sequence optimisation. With this method, the velocity 

and position of particles are updated in each iteration. Pornsing et al. used the discrete 

PSO to convert continuous velocity to discrete velocity through sigmoid and round 

functions.46 Xu et al. employed adaptive PSO to avoid premature convergence by using 

the inertia weight and adaptive mutation rate.58 To avoid local optima, Li et al. used the 

crossover operator, a shift operator and the escaping method to improve the quality of 

solutions.111 In addition, simplified swarm optimisation (SSO) is regarded as a type of 

PSO because the difference between PSO and SSO is only the position update 

mechanism.38 To ensure global convergence, a revised updating mechanism of SSO 

(RUM-SSO) was proposed by dividing the whole population into different groups.40 

Because the parameters of SSO play vital roles in determining the quality of 

solutions,38 the self-adaptive parameter control (SPC) method integrated with PPX, 

feasible solution generator (FSG) and repetitive pair-wise exchange method was 

developed to automatically tune the parameters of SSO.38,39 
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Table 6. Optimisation methods. 

Optimisation methods Descriptions References 

GA 

GA This includes three main steps: selection, crossover and mutation. 

Go et al.,52 Zhang et al.,54 Li et al.,57 Zhang,74 
Wang,75,77 Gonnuru,95 Kongar et al.,98 Chung 
et al.,129 Li et al.,132 Lu et al.,136 Wu et al.141 
and Giudice et al.143  

GA-PPX The genetic algorithm and precedence-preserving crossover are 
simultaneously used. 

ElSayed et al.,49,50,51,116 Kheder et al.60 and 
Agrawal et al.80 

GA-FE Feasibility is added into the disassembly objective functions of 
genetic algorithms. Rickli et al.113,114 

GA-ACRMR-PPX Adaptive crossover rate and mutation rate are used to ensure global 
convergence. Chen et al.41 

GA-GM Based on GA, Gaussian mutation operator is included to achieve a 
better solution. Zhang et al.70 

GA-SA SA is used after the mutation operation to achieve better 
performance.  Yang et al.83 

GA-SA-BTA Binary tree and SA are combined with the genetic algorithm. Wu et al.97 
GA-TS Tabu search is integrated with genetic algorithm. Li et al.134 

CGA Chaotic theory is applied on initial populations and operators of 
genetic algorithm. Zhang et al.145 

PSO 
PSO Velocity and position of each particle are updated in the iteration. Lu et al.135 

DPSO Velocity and position of particles are obtained using the sigmoid 
function and normal distribution respectively. Pornsing et al.46 
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IPSO Crossover, shift operators and escaping method are used to avoid 
local optimal solutions.  Jin et al.61 and Li et al.111,112 

APSO This dynamically adjusts inertia weight and adaptive mutation rate 
to avoid local convergence. Xu et al.58 

SSO 

RUM-SSO: A new updating mechanism is used. Yeh et al.40 
PPX-SSO: This includes PPX, FSG, SPC and repetitive pair-wise 
exchange procedures. Yeh38 

ISSO: Self-adaptive parameter control methods and the update 
mechanism are improved. Yeh39 

ACO 

ACO Ants choose a suitable path by detecting high concentration of 
pheromone. 

Xing et al.,47 Wang et al.,76 Shan et al.,88 Fang 
et al.,99 Lu et al.,100 Luo et al.,101 Wang et 
al.,126 Xue et al.,142 Kheder et al.146 and Mi et 
al.151 

IMMAS The concentration of pheromone is limited to a certain range [τmin, 
τmax]. 

Liu et al.121 

TSACO The first stage and second stage respectively correspond to 
operation selection and operation sequencing. Wang et al.,72 

ASGA This is used to tradeoff between speed and accuracy. Tripathi et al.139 

SS 
SS-PPX PPX is integrated with SS to preserve the precedence relationships 

of new solutions.  Guo et al.68,110  

SS-PR The path-relink combination operator is added to SS.  Guo et al.68 

ABC DABC This is inspired by the foraging behaviour of bees including 
onlookers, employed bees and scouts. Percoco et al.120 and Zhang et al.82 

IA AIA Selection and single-parent mutation operators are used. Lu et al.48 

SA A hill-climbing search method suitable for solving combinatorial Azab et al.59 
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and continuous optimisation problems. 

FFO This is derived by the foraging behaviour of fruit flies. Jue et al.73 

LPM 
BLPM BLBP, of which the decision variables are 0 or 1, is a type of LPM. Kang et al.89,144 Lambert91,92,137,138 Ullerich et 

al.,125 and Ma et al.140 

BAB This consists of setting the upper/lower bounds and branching 
operations. Zhang et al.,56 Gungor et al.86 and Han et al.117 

RBM 
RCM This reduces searching time and eliminates unrealistic solutions by 

employing rules. Smith et al.103,106,107,108 

RBM-GA RBM and GA are used to find optimal solutions of disassembly 
sequence. Smith et al.104,105 

SSI 

MCS This can handle the uncertainties in disassembly process. Chen et al.53 and Tian et al.63 

TPA Numerical solutions are used to solve stochastic problems based 
on time and frequency domain methods.  Tian et al.62 

NN-SSI Based on SSI, part of data is the training set and the remaining is 
the testing set of neural network. Tian et al.64 and Deng et al.65 

GA-NN-SSI Based on SSI, GA is used to optimize weight and thresholds of 
neural network. Tian et al.64 

STLBA This comprises a feasible solution generator, a teaching phase 
operator and a learning phase operator. Xia et al.42,43,44,45 

EM This enumerates all possible solutions and find the best one . Luo et al.,102 Jin et al.,115 Wang et al.122 and 
Wang et al.124 

OIM It is used to obtain the shortest disassembly path to the target 
object.  Song et al.118,119 

QL This includes state and action, the disassembly state matrix is 
updated through actions. Xia et al.109 
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FRS This encapsulates the fuzzy sets and rough sets to solve DSP 
problem. Zhang et al.55 

TS 
This consists of short and long-term memories, which are used 
respectively to prevent reversal and reinforce attractive 
components. 

Alshibli et al.84 

GRASP The solution construction step and local search step are included in 
GRASP. Adenso-Diaz94 

DA A typical algorithm to solve the shortest path problem. Lu et al.135 
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The ACO algorithm inspired by the foraging behaviour of ants has also been used 

to find the optimal disassembly sequence. According to the concentration of 

pheromone, the ants move to the next permitted destination.101 When the solution 

space is large enough, it is easy for ACO to converge to local optimal solutions. The 

max-min ant system was proposed to avoid premature convergence by limiting the 

concentration of pheromone to a certain range.121 Execution efficiency of ACO was 

also studied through a two-stage ACO method.72 The first stage ACO was employed to 

convert complex graph-based method into a simple weighted graph while the second 

stage ACO was used to find the optimal disassembly sequence. In addition, a 

self-guided ant algorithm (ASGA) was proposed to make tradeoff between efficiency 

and accuracy.139 

Scatter search (SS) is a systematic integrated method which includes 

diversification generation, solution improvement, reference set updating, subset 

generation and solution combination. It can achieve a balance between quality and 

diversity of solutions by forming high quality solution sets and diverse solution sets. 

Guo et al. used the PPX to preserve disassembly precedence relationships from one 

generation to the next based on SS.110 After that, Guo et al. continued to use the 

path-relink combination operator to disassemble large and complex products.68 

The Immune algorithm (IA) and ABC have also been used to solve DSP. The 

selection operator and the single-parent mutation operator were adopted to ensure the 

diversity and quality of the antibodies.48 A transition rule was added in the discrete 

artificial bee colony (DABC) algorithm to generate new candidate solutions which 
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helps to find the optimal disassembly solution more quickly.120 Other methods such as 

SA59 and fruit fly optimisation (FFO)73 have also been used. They are not so 

commonly used, and thus will not be discussed in detail. 

4.2.2 Linear programming methods 

LPM is popular method for solving constrained extremum problems. The binary 

linear programming method (BLPM) is a type of LPM with decision variable that is 

either 1 or 0.89 Compared with the integer linear programming method, BLPM helps to 

improve efficiency by using a simplified representation.91 However, it is difficult to 

employ BLPM to solve complicated DSP problems. The branch-and-bound algorithm 

(BAB) was also used to solve linear programming problems.117 BAB finds the optimal 

disassembly sequence by setting the upper/lower bounds and branching operations. To 

improve the efficiency of BAB, Askiner et al. used two user-defined variables to 

reduce the search space and the number of nodes.86 

4.2.3 Stochastic Simulation 

SSI is an efficient method of finding the optimal disassembly sequence of a 

stochastic disassembly process. Monte Carlo simulation (MCS) was used to obtain the 

optimal disassembly sequence with stochastic disassembly time.53,63 However, this 

method, which has the disadvantages of low accuracy and low efficiency, is easily 

influenced by the sample size. Tian et al. used a two-phase approach to address this 

problem. Disassembly probability density functions were generated by a time-domain 

or frequency-domain procedure.62 Furthermore, neural network (NN)64 and GA-NN 

based SSI64 were also proposed to find optimal disassembly sequences with stochastic 
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disassembly costs. 

4.2.4 Rule-based methods 

Smith et al.103,106,107,108 used rules to eliminate unrealistic solutions and generate 

feasible disassembly sequences. With this method, five rules are iteratively checked 

until the target component is obtained to produce a feasible disassembly sequence 

under the partial disassembly mode. After that, Smith et al.104,105 continued to combine 

RBM with GA to solve the DSP. Based on the disassembly sequence structure method 

(five-matrix method), Smith used RBM and GA to reduce the search time by 

narrowing the search space to find the optimal disassembly sequence. Compared with 

other methods, this reduces the search time by adding a projection matrix of 

components.103 

4.2.5 Simplified Teaching-Learning Based Optimisation 

Although NIHA performs well in disassembly sequence optimisation problems, it 

is essential to use suitable parameters under specific cases, which makes it 

insufficiently robust for different situations. Under this condition, a simplified 

teaching-learning based optimisation algorithm (STLBA) was applied in DSP.42,43,44 Its 

obvious advantage is that there is no need to tune the input parameters of STLBA to 

achieve the optimisation goal. Together with FSG, STLBA includes the teaching phase 

operator, which is used to improve the mean of learners’ results, and a learning phase 

operator, which is used to learn from each other. STLBA can solve complex 

combinatorial optimisation problems through fewer input parameters than NIHA.  

4.2.6 Other methods 
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Apart from the optimisation methods mentioned before, a reinforcement value was 

added to the Q-learning method (QL) to achieve the optimisation goal with a smaller 

number of disassembly operations.109 Enumerating methods (EM) were also used to 

solve small-to-medium-sized problems.102,115,124 When a complicated model is used, 

the processing time increases exponentially, which makes EM incapable of dealing 

with complex situations. In addition, the object inverse-directed method (OIM) is 

mainly used in the partial disassembly mode to generate the optimal disassembly 

solution.118 

Other methods such as fuzzy-rough set (FRS),55 TS,84 greed randomized adaptive 

search procedure (GRASP)94 and Dijkstra’s algorithm (DA)135 were also used in DSP. 

They are not so commonly used, thus will not be discussed in detail. 

Regarding the optimisation methods, there have been many publications on NIHA. 

GA (27 papers) is the most frequently used method in NIHA, followed by ACO (13 

papers). Most NIHA research has focused on improving either solution quality or 

efficiency. Different from NIHA of which the performance relies on the input 

parameters, STLBA was proposed to solve DSP without parameter adjustment.42 This 

makes STLBA easier to apply and it is expected to gain popularity in the future. 

However, most of the planning methods are static methods and the obtained results 

may not be usable in practice due to uncertainties in the disassembly process. To make 

optimisation results more suitable for practical processes, it is important to develop 

disassembly sequence re-planning methods to update the optimal disassembly 

sequence in response to the actual state of the disassembly. However, there is no 
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research in this regard. In recent years, deep reinforcement learning, as a promising 

artificial intelligence method, has been paid increasing attention.153,154 However, so far, 

there is no research using deep reinforcement learning to solve DSP problems 

involving uncertainties. This is an opportunity for researches in the area of disassembly 

planning. 

Finally, as it is likely that, in the short to medium term, disassembly cannot 

economically be carried out entirely by robots. Human works are still required to 

perform difficult disassembly tasks involving high degrees of uncertainty. In addition, 

to flexibly finish complicated tasks, human-robot collaborative mode155,156 realises the 

combination of robot efficiency and human flexibility.157 The human-robot 

collaborative systems have successfully been applied in cellular manufacturing 

field.158,159 More works would need to be done on how to find optimal disassembly 

sequences for situations when humans and robots work together. 

5. Conclusion and future trends 

This paper has reviewed the state-of-art of DSP from the perspectives that 

encompass the disassembly process for remanufacturing: disassembly mode, 

disassembly modelling and planning methods. This section concludes the results of this 

review and summarises the future trends of this field. 

Based on the analyses aforementioned, it affirms that: 1. most researches have 

focused on complete and sequential disassembly; 2. most of the pre-processing 

methods are manually finished only if CAD models of EoL products are provided; 3. 

most disassembly model building methods are static methods and can not be 
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dynamically adjusted by the uncertainties in disassembly process; 4. most researches 

consider economic factors and a few researches focus on environmental factors; 5. 

deterministic objectives are more frequently studied compared with the stochastic and 

fuzzy objectives; 6. most optimisation methods focus on NIHA; 7. much attention has 

been paid to off-line optimisation methods.  

Based on the findings, the following research potentials can be finished in the 

future: 1. more works can be finished on parallel and partial/parallel disassembly; 2. 

there a lack of completely automatic modelling methods to finish pre-process without 

CAD models; 3. dynamic disassembly model should be built to handle with 

uncertainties caused by unplanned problems in the future; 4. dynamic descriptions of 

economic and environmental factors should be needed for which the conditions are 

uncertain or variable for future studies; 5. when DSP is considered under robotic 

disassembly mode, energy consumption of robots in the whole disassembly process 

can be studied and optimised to promote sustainability in the future; 6. when robotic 

disassembly is considered, we cannot find any research that combines 

obstacle-avoiding path planning or trajectory planning of the robots with DSP; 7. 

limited research has been conducted on disassembly sequence re-planning to make 

optimisation results more suitable for practical disassembly process; 8. the researches 

are expected to pay more attention on applying deep reinforcement learning which is a 

promising artificial intelligence method to DSP in the future; 9. there is a lack of 

research on DSP under human-robot collaborative mode which takes both human 

flexibility and robot efficiency into consideration.  
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Appendix 
Table 7. List of abbreviations. 

Abbreviations Full name 
ABC Artificial Bee Colony 
ACO Ant colony optimisation 

ACRMR Adaptive crossover rate and mutation rate 
AIA Advanced immune 

APSO Adaptive particle swarm optimisation 
ASGA Algorithm of self-guided ants 
BAB Branch and bound algorithm 

BLPM Binary linear programming method 
BTA Binary tree algorithm 
CAD Computer-aided design 
CGA Chaotic genetic algorithm 
DA Dijkstra’s algorithm 

DABC Discrete Artificial Bee Colony 
DMM Disassembly mathematical model 
DPSO Discrete particle swarm optimisation 
DSP Disassembly sequence planning 
EM Enumerating method 
EoL End of Life 
FFO Fruit fly optimisation 
FRS Fuzzy-rough set 
FSG Feasible solution generator 
FE Feasibility 
GA Genetic algorithm 

GA-NN Genetic algorithm-Neural network 
GM Gaussian mutation 

GRASP Greedy randomized adaptive search procedure 
IA Immune algorithm 

IMMAS Improved max-min ant system 
LPM Linear programming method 
IPSO Improved particle swarm optimisation 
ISSO Improved simplified swarm optimisation 
MCS Monte Carlo simulation 

MTTR Mean time to repair 
NIHA Nature-inspired heuristic algorithm 

NN Neural network 
OIM Object inverse-directed method 
PPX Precedence preserving crossover 

PPX-SSO Precedence preserving crossover-simplified swarm 
optimisation 
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PSO Particle swarm optimisation 
QL Q-Learning 

RBM Rule-based method 
RCM Rule-based recursive method 

RUM-SSO Revised updating mechanism-Simplified swarm optimisation 
SA Simulated Annealing 

SDR Set of direction of removal 
SPC Self-adaptive parameters control 
SS Scatter search 
SSI Stochastic simulation 
SSO Simplified swarm optimisation 

SS-PPX Scatter search precedence preserving crossover 
SS-PR Scatter search path relink 
STLBA Simplified teaching-learning-based optimisation algorithm 

TS Tabu search 
TSACO Two-stage ant colony optimisation 

TPA Two phase approach 
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Appendix I 

Notation 

c  Removal cost 

Ci Disassembly interference matrix along direction i, i = X+, X-, Y+, Y-, Z+ or 

Z- 

DPN Disassembly Petri net 

Ec  Directed dotted edge 

Efc  Directed solid edge 

G  Disassembly network graph 

I  Place-transition matrix 

m  Number of the transitions 

M  Disassembly state of product 

n  Number of the places 

O  Transition-place matrix 

P  Places in the Petri net 

R  The original product 

Ra  A set of arcs 

S  A subassembly 

T  Transitions in the Petri net 

V  Minimum part of EoL products 

w  Weight functions related to the transition 
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Figure captions 

Figure 1. The three steps in DSP. 

Figure 2. Disassembly modelling process. 

Figure 3. A disassembly tree. 

Figure 4. Disassembly network graph. 

Figure 5. State-representation based disassembly graph: (a) disassembly stages; (b) 

disassembly levels. 

Figure 6. Directed flow disassembly network. 

Figure 7. Disassembly Petri net. 
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Figure 4. Disassembly network graph. 

 

 

(a)                                 (b) 

Figure 5. State-representation based disassembly graph: (a) disassembly stages; (b) 

disassembly levels. 
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Figure 6. Directed flow disassembly network. 

 

 

Figure 7. Disassembly Petri net. 
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