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Abstract: Polar body position detection is a necessary process in the automation of micromanipulation
systems specifically used in intracytoplasmic sperm injection (ICSI) applications. The polar body is
an intracellular structure, which accommodates the chromosomes, and the injection must not only
avoid this structure but be at the furthest point away from it. This paper aims to develop a vision
recognition system for the recognition of the oocyte and its polar body in order to be used to inform
the automated injection mechanism to avoid the polar body. The novelty of the paper is its capability
to determine the position and orientation of the oocyte and its polar body. The gradient-weighted
Hough transform method was employed for the detection of the location of the oocyte and its
polar body. Moreover, a new elliptical fitting method was employed for size measurement of the
polar bodies and oocytes for the allowance of morphological variance of the oocytes and their polar
bodies. The proposed algorithm has been designed to be adaptable with typical commercial inverted
microscopes with different criteria. The successful experimental results for this algorithm produce
maximum errors of 5% for detection and 10% for reporting respectively.

Keywords: micromanipulation; oocyte; polar body; detection; image processing

1. Introduction

Positioning and orienting the polar body in conventional intracytoplasmic sperm injection (ICSI)
is controlled by an embryologist. Currently, cell manipulation in conventional ICSI has been manually
operated by well-trained embryologists. The oocyte is manipulated by using a micropipette and
inducing negative pressure to hold and relief the oocyte repeatedly until the polar body is positioned in
the desired location. This type of manipulation is known as a trial-and-error course of action [1]. During
the conventional operation, a single cell is manipulated several times until it is located in the desired
position and orientation preparing it for injection. In cell manipulation, researchers have attempted to
automate this process. There are various research projects focusing on automating 3D manipulations
of biological cells [2–5]. Robotic cell manipulation with a high success rate and degree of accuracy
has been reported in some publications [4,6–8]. However, there are some deficiencies introduced in
each method, such as lack of correct detection of oocyte. Different methods of manipulations have
been reported in research, which are lab-on-a-chip using microfluidic flow advances [9–13], optical
tweezers [14], and micromechanical grippers [15–18].

Cell detection is an essential method towards 3D cell manipulation. In this paper’s proposed
application, image processing techniques are utilised foroocyte and polar body recognition. The first
attempt at a vision detection algorithm for cell manipulating purposes was designed to use
morphological factors and Bayesian assessment as a classifier of texture and shape [19]. The major
problem with this method is that it is computationally expensive. Another method, the Hough cell
detection algorithm (HCDA) utilized high pass filtering to detect the edges of the holding pipette
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and determine the oocyte size value [12]. In this method, polar body detection was not developed.
Again, the computational time for this method is high for a real time application which was 22 seconds
for detection. Different algorithms have been proposed for detecting the polar body during the
manipulation. However, an early detection algorithm recognized the polar body only when in
plane [20]. This method involves the Otsu adaptive algorithm and morphological operator for fitting
the circle to the cell. Otsu is a clustering based image threshold technique employed to convert
the gray scale image to a binary image. A linearization method was employed here for polar body
recognition [21]. The failure of this technique happens when the gray scale of the polar body and
the oocyte are in the same level of surroundings in the image. Later, an algorithm was added to this
method that estimated the polar body location out of plane using frame-by-frame motion analysis [20].

Image binarization is a method developed to detect the polar body. However, this method is
highly dependent on the gray level of the neighborhood pixels in the image. Inaccuracy occurs when
the gray levels are similar in the surrounding pixels [12]. Another method of polar body detection was
based on the polar body’s texture data. Oocyte texture deficiencies and microscope light regulation
limitation are two main disadvantages of this technique, which cause low detection accuracy [22].
Polar body and oocyte detections were proposed based on a machine learning method using image
classification. In this method, the improved histogram of oriented gradient (HOG) algorithm is used
to extract features of polar body images for the prediction of the polar body position in the image,
determination of this position, and finally, detection [23,24]. Recently, a method has been proposed
for oocyte and polar body detection that employs template matching followed by morphological
operations and thresholding [5]. The method is computationally expensive based on the sizes of the
template and may require new templates for morphological variance of oocytes.

Visual detection algorithms for cell injection automation have involved the Hough transform to
detect the polar body [25], roundness and elongation calculations following segmentation to detect the
oocyte and injector respectively [26], and a connected neighborhood method for oocyte detection [27].

The circular gradient weighted Hough transform was chosen for its simplicity and robustness for
circular detection. Gradient weighting was utilized to improve circular detection of the oocyte when
images suffered from blurring. The Hough transform can be computationally expensive when radius
ranges are not known. In this instance the radius range was known based on typical oocyte sizes
and image scale making this an efficient and powerful detection method. Other methods including
template matching can be computationally expensive [19]. It may also require new templates for
variation in oocytes and connected neighborhood methods for the oocyte detection [28], which required
manual selection of the oocyte contour as a starting point. This would not be required when utilizing
the circular gradient weighted Hough transform.

A new detection technique for the oocyte and polar body has been proposed by our group which
is developed using images detection rather than continuous frame tracking using video and employs a
gradient weighted Hough transform in the application of ICSI [29].

The aim of this paper is to discuss the previously mentioned methods and the process of its
development. Image processing techniques will be discussed initially and then the proposed detection
method will be discussed as a follow up to previous work in this area [30]. Experimental results will
demonstrate the accuracy of the algorithm, which will be validated.

2. Image Processing Techniques and Filtration

The new developed algorithm is proposed with the purpose of detecting oocyte and polar bodies
using images taken by a microscope camera. The detection is based on the microscope’s global
reference to find the position and orientation of the polar body and oocyte center point. All the
images used in this paper are of oocytes in the metaphase II state and taken from different resources.
The oocyte was clearly denudated of all excess surrounding cumulus. The microscope was adjusted to
have a clear view of the oocyte and surrounding polar body. The oocyte and polar body are commonly
circular but may be presented as ovular/elliptical with eccentricity values similar to that of a circle [31].
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The detection procedure has been divided into three stages; preprocessing, segmentation and feature
extraction, which will be discussed in the following sections.

2.1. Preprocessing

The preprocessing procedure has three stages; conversion of the color, contrast enhancement and
spatial filtering.

Digital color images represent the standard color model. The most common model for this is RGB
which represents red, green and blue; these are the three principal components for each pixel of an
image. The level of each of these components identifies the color for each image. A gray scale image is
an image with an intensity ranging within black to white. Gray scale conversion from an RGB image
would be achieved by Equation (1), which makes the level of each component equal by averaging the
RGB for each pixel and computes the gray scale intensity.

After conversion of RGB image to grayscale image, the obtained images have low, medium or
high gray values. These values will indicate how dark or light our image is. This information can be
obtained from the image’s histogram.

GreyscaleIntensity =
R(x, y) + G(x, y) + B(x, y)

3
(1)

Gray scale images have different dynamic ranges based on the lowest and highest intensity level.
Images with low contrast represented by low intensity of gray scale can be improved by raising the
dynamic range to the highest potential determined by the bit depth of the images [32].

To raise the dynamic range of an 8-bit image from 0 to 255, the image intensity needs to be
multiplied by an enhancement factor, which is represented in Equation (2):

E f =
2n − 1

Graymax − Graymin
(2)

where n represents the number of bits for the gray scale image and 1 is deducted from the nominator
to maintain the dynamic range within 0 to 255. Here gray scale images are 8-bit images. The enhanced
image, h(f ), is calculated using Equation (3) where the initial image’s minimum grey level is subtracted
to zero the minimum intensity of the image and multiplied by the enhancement factor.

h( f ) = (g( f )− graymin)(E f ) (3)

Spatial filtering is a filter application in a spatial domain. A filter mask is a neighborhood
coefficient which is usually a 3 × 3 rectangle. The coefficients are varied and are selected based on the
filter type.

The weighted average filter utilises the highest weight coefficient at the center of the filter mask
and the rest of the coefficients are weighted inversely as a distance function [32]. The weighted average
filter is a low-pass filter that suppresses low frequencies and eliminates noise, while minimizing
blurring that results in edge preservation improvement [32]. The weighted average filter utilised
is shown in Equation (4), which is obtained by dividing the mask into its summation. The process
of applying the weighted average filter is obtained by Equation (5), which is the two-dimensional
correlation filtering (m × n) of the initial image; this indicates the summation of the coefficient
multiplied by the local pixel value to calculate the filtered value in the filter location center for each
image pixel.

w(x, y ) =
1
16

 1 2 1
2 4 2
1 2 1

 (4)
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R = w(1, 1 ) f (x + 1, y + 1) + w(1, 0) f (x + 1, y) + . . . + w(0, 0) f (x, y) + . . .
+w(−1,−1) f (x− 1, y− 1)

(5a)

g(x, y ) =

m
2

∑
−m

2

n
2

∑
− n

2

w(u, v) f (x + u, y + v) = w(x, y)× f (x, y) (5b)

Figure 1 illustrates the mechanics of spatial filtering. The procedure contains simple movement
of the filter mask from one point to another in an image. The response of each point is calculated by
a predefined relationship. Weighted smoothing filters are more effective compared with the linear
smoothing spatial filters.
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2.2. Segmentation

The gradient thresholding of a single image involves the intensity vector derivatives regarding
x and y. The edges within an image are the locations where there are sudden intensity changes [33].
Consequently, the gradient magnitude is employed to distinguish the edges by defining the threshold
to find a location where the magnitude of the gradient is above the value of the threshold.

∇ f =

[
Gx

Gy

]
=

[
∂ f
∂x
∂ f
∂y

]
‖∇ f ‖ =

√
Gx2 + Gy2 (6)

θ = tan−1
(

Gx

Gy

)
sin θ =

Gy

‖∇ f ‖ cos θ =
Gx

‖∇ f ‖ (7)

where (∇ f ) is the gradient magnitude which specifies the greatest changes in intensity at the pixel.
The pixel position and orientation were computed from Equations (6) and (7).

2.3. Feature Extraction

The final stage for image processing is feature extraction. In this section, the Hough transform
method is employed, which is a reliable method for identifying parametric shapes within images.
This method was initially proposed by Paul Hough for line detection [34]. In the current paper,



Micromachines 2018, 9, 429 5 of 16

a circular Hough transform method was used for feature extraction of the oocyte and polar body in
the image as the shape of these is usually circular. A parametric circle equation is used and rearranged
to calculate the center point voted by the edge points, that are planned to parametric space named as
an accumulator, as shown in Figure 2.
Micromachines 2018, 9, x FOR PEER REVIEW  5 of 16 

 

 

Figure 2. Circle illustration in an image and applying Hough transformation to a parameter space 

which is defined as an accumulator. 

As it is shown in Figure 2, the edge points direct a circular object to be recognized. Equation (7) 

shows the relationship between the orientation and gradient, which is employed to obtain the sinθ 

and cosθ for the vote received for each center point. The obtained vote for the position in the 

accumulator and the votes’ summation completes the mapping to the accumulator. As a result, in the 

presence of any circle in the image, circle detection and center point location would be obtained based 

on the center point votes which cluster in a small accumulator region and create a maximum region. 

The center point votes are obtained in the accumulator by employing a center point detection 

algorithm based on equation 8. 

𝑥0 = 𝑥 − 𝑟cos𝜃       𝑦0 = 𝑦 − 𝑟sin𝜃 (8) 

The Weighted Hough Transform is a development of the Hough transform method which has a 

different convention for planning to the accumulator. This technique employs weighting coefficients 

for each vote. The gradient based system considers the magnitude of the gradient as the coefficient 

to plan the accumulator. Consequently, the votes for center point from the sharper edge would have 

higher weighting coefficients in comparison to the other votes received from blurred edges. 

An elliptical fitting method is utilised to recognise an elliptical object to allow for cell 

morphological variance, not being a perfect circle. In this method, the center point has been calculated 

and radius ranges have been defined. The gradients of the image shown as Gx and Gy are calculated 

for the area, encapsulated in a square area. This is twice the maximum value for the radius 

surrounding the center point of an elliptical item existing in the image. The radius values which are 

indicated as a and b for an elliptical item, are determined based on the location of the maximum value 

in the accumulator. The values in addition to the value of the center point are employed to fit to the 

item using elliptical Equations (9): 

𝑟 = √(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2      𝑤ℎ𝑒𝑟𝑒    𝑥 = 𝑥0 + 𝑎cos𝜃     𝑦 = 𝑦0 + 𝑏sin𝜃 (9) 

3. Detecting of Polar Body and Oocyte 

The design of the algorithm is based on the combination of the methods presented earlier in the 

previous section. The images used for the algorithm test were 8-bit JPEG-compressed RGB images 

received from different types of inverted microscope cameras. Then, all the images were converted 

to gray scale to save computational time for the subsequent steps. Linear contrast enhancement was 

employed for the purpose of raising the dynamic range of the images to achieve better and easier 

edge detection [35]. Figure 3 indicates the step by step detection procedure in the proposed algorithm.  

y 

 

  

y0 

x0 x 

Figure 2. Circle illustration in an image and applying Hough transformation to a parameter space
which is defined as an accumulator.

As it is shown in Figure 2, the edge points direct a circular object to be recognized. Equation (7)
shows the relationship between the orientation and gradient, which is employed to obtain the sinθ and
cosθ for the vote received for each center point. The obtained vote for the position in the accumulator
and the votes’ summation completes the mapping to the accumulator. As a result, in the presence of
any circle in the image, circle detection and center point location would be obtained based on the center
point votes which cluster in a small accumulator region and create a maximum region. The center
point votes are obtained in the accumulator by employing a center point detection algorithm based on
Equation (8).

x0 = x− r cos θ y0 = y− r sin θ (8)

The Weighted Hough Transform is a development of the Hough transform method which has a
different convention for planning to the accumulator. This technique employs weighting coefficients
for each vote. The gradient based system considers the magnitude of the gradient as the coefficient
to plan the accumulator. Consequently, the votes for center point from the sharper edge would have
higher weighting coefficients in comparison to the other votes received from blurred edges.

An elliptical fitting method is utilised to recognise an elliptical object to allow for cell
morphological variance, not being a perfect circle. In this method, the center point has been calculated
and radius ranges have been defined. The gradients of the image shown as Gx and Gy are calculated for
the area, encapsulated in a square area. This is twice the maximum value for the radius surrounding
the center point of an elliptical item existing in the image. The radius values which are indicated
as a and b for an elliptical item, are determined based on the location of the maximum value in the
accumulator. The values in addition to the value of the center point are employed to fit to the item
using elliptical Equations (9):

r =
√
(x− x0 )

2 + (y− y0)
2 where x = x0 + a cos θ y = y0 + b sin θ (9)

3. Detecting of Polar Body and Oocyte

The design of the algorithm is based on the combination of the methods presented earlier in the
previous section. The images used for the algorithm test were 8-bit JPEG-compressed RGB images
received from different types of inverted microscope cameras. Then, all the images were converted
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to gray scale to save computational time for the subsequent steps. Linear contrast enhancement was
employed for the purpose of raising the dynamic range of the images to achieve better and easier edge
detection [35]. Figure 3 indicates the step by step detection procedure in the proposed algorithm.Micromachines 2018, 9, x FOR PEER REVIEW  6 of 16 
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Figure 3. Detection algorithm process.

A 5× 5 weighted filter was applied to the images to minimize the presented noise in the image and
also restrain the granularity presence in the polar body and oocyte. This filterization helps to reduce
any possible false detection. The center point position of the polar body and oocyte were detected by
employing the weighted circular Hough transform method. The obtained gradient magnitudes were
used as the weighting coefficients. To minimize the calculation time, a gradient magnitude threshold
is defined to limit the total number of the edge points based on the center point calculation.

As this algorithm is designed to be compatible for different types of oocyte, the radius range
for both the oocyte and polar body is to be supplied by the user. This range was obtained from the
literature for each iteration. The center point for both the oocyte and the polar body were extracted
based on the developed algorithm. The microscope’s lens’ center point was taken as the main reference
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point of the image. The circular Hough transform (CHT) was utilized for the oocyte and polar body
detection in any position and orientation in the image, which did not need to be in a close neighborhood
area in the center of the image [36]. The elliptical Hough transform (EHT) is employed to detect an
elliptical shape, which could be employed when the oocyte and/or polar body are this shape. It should
be noted that the circular Weighted Hough Transform is also sufficient for detecting the center point,
although EHT increases the accuracy of the detection in possible elliptical shapes.

The sizes of the polar body and oocyte were detected after obtaining the location of the center
points. This center point locations were utilized within the elliptical fitting method, which was
presented in the last section and recently developed for this specific application. The radius for the
elliptical fitting for the polar body and oocyte detection was determined by considering the specified
radius ranges by the user. This method does not need the edge of the polar body and oocyte to be
identified and has a better fitting in comparison to a circular fitting for the elliptical and ovoid shapes;
and consequently provides more accurate sizing.

The algorithm is designed, via a graphical user interface (GUI), to get initial information from
the operator and show the results based on the calculation. This GUI requires two parameter ranges
which enable this algorithm to be compatible with different microscopes and different types of oocytes.
Then, after pushing the ‘RUN’ button, the specification of the oocyte and polar body is as indicated in
Figure 4.
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Figure 4. Graphical user interface (GUI) for the detection algorithm.

The output information received from the algorithm fed the proposed system about the initial
location and positioning of the polar body and oocyte in global coordination. This information indicates
the position and the diameter of the oocyte and polar body centers as well as the angle where polar
body’s center positioned with respect to positive direction of the x-axis. The image center is the center
of the microscope’s vision field. Figure 5 illustrates two random examples of the oocyte and polar
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body detections. The red lines indicates the image coordinate axis while the green line shows the angle
between the polar body and oocyte centre points connection line with horizontal axis.Micromachines 2018, 9, x FOR PEER REVIEW  8 of 16 
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Figure 5. Processed images and detected oocyte and polar body as well as positional reports.

4. Experimental Results and Discussion

The experiments were conducted for various images sourced from numerous microscopes.
The images were considered as input to the algorithm and the algorithm first detected the polar
body and oocyte. If the polar body was not in the focal zone of the microscope, then the algorithm
gave a message about not locating a polar body. After the confirmation of the correct recognition of the
polar body and oocyte, the sizes of the oocyte and polar body were computed. The sizes of both the
polar body and oocyte were measured manually using ImageJ algorithm (Version 1.52e, US National
Institutes of Health, Bethesda, Maryland, MD, USA). ImageJ is a public domain image processing
program developed for image analysis in biomedical applications.

The algorithm has been tested with different factors that may have an impact on the results. Eighty
images have been tested for each major factor set. Table 1 compares 240 different images taken from
different resources. The first row indicates the images taken from different microscopes with a different
background color. It shows 100% correct detection on these types of sampling test. The second row
images of different orientations of a polar body taken from the same microscope. The polar bodies are
located in random locations in the perivitelline space. This test indicates the ability of the algorithm
to detect orientation and position of the polar body in a space. A 100% successful detection has been
reported for this set as well. The third row shows different microscope zooms. This test has been done
to check the ability of the algorithm to detect the polar body and oocyte under different magnifications.
This test also had a 100% success rate. The last row points out the failure of the algorithm in this type
of image; this is because the images are blurred and the clarity of the image is poor.

Table 1. Comparison table for all tested images.

Description Total Tested
Images

Correct Oocyte
Detection

Correct Polar
Body Detection

Correct Oocyte
Location Detection

Correct Polar Body
Location Detection

Different background
color

80
80 80 80 80

100% 100% 100% 100%

Different position and
orientation

80
80 80 80 80

100% 100% 100% 100%

Different magnification
of the images 80

80 80 80 80
100% 100% 100% 100%

Existing disturbance 20
20 12 20 12

100% 60% 100% 60%

The algorithm is capable of being adopted by different versions of the inverted microscopes.
Existing extra cumulus cells are known as disturbance for the outcome of this algorithm and may
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cause some errors in the detection of the polar body due to its smaller size. However, the existence of
these cells have not had any effect on oocyte detection.

The quality of an image is indicated by the behavior of the associated histogram. The good
quality of an image is defined when the image is bright enough and has a good contrast. As a result,
the histogram data is a measure of the brightness and contrast as well as an indication of the associated
dynamic range.

Each of the analyzed categories of the images is indicated separately in the following sections.
The results are demonstrated using two main methods. The first method illustrates the results of the
detection and is shown as a naked image, its identity which is exhibited by the histogram, and the final
detected result from the developed algorithm. The second method uses the box and whisker chart
demonstration, which indicates the differences in the measurements made manually using ImageJ and
the algorithm-based measurement.

4.1. Different Background Color

Different microscopes operate with different vision background colors based on the type and
purpose of the operation. This should be taken into consideration in designing a vision detection
algorithm. The proposed algorithm is capable of detecting the polar body and the oocyte present in
different background colors as demonstrated by the obtained results. Three different background
colors are shown in Figure 6. The histogram of these images concentrate on high gray value but are
not well-spread, which is due to poor contrast. As a result, during preprocessing of an image, contrast
was increased. Consequently, this figure illustrates the correct detection of the oocyte and polar body
in each image.
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Figure 7 illustrates the highest difference in manual and algorithm measurement belongs to
oocyte diameter measurement. As the average oocyte diameter and polar body are 140 µm and 20 µm
respectively, the corresponding maximum error for oocyte diameter measurements are approximately
5% ± 2% and 10%.

Micromachines 2018, 9, x FOR PEER REVIEW  10 of 16 

 

µm respectively, the corresponding maximum error for oocyte diameter measurements are 

approximately 5% ± 2% and 10%. 

 

Figure 7. Whisker chart demonstrating differences in measurements in different background color. 

4.2. Different Polar Body Position and Orientation 

The oocyte is positioned on the petri dish at random, which results in the random positioning of 

its polar body. The proposed algorithm is capable of detecting the center point of the oocyte and that 

of its polar body, together with the line that connects these two points. The results confirm 100% 

successful detection of all of the 80 test images. Examples of the results are illustrated in Figure 8, 

where the detected images are circled by blue lines. 

Naked Image Histogram of naked Image Processed Image 

 
 

 

 
 

 

 
 

 

Figure 8. Different polar body positions examined images. 

Figure 7. Whisker chart demonstrating differences in measurements in different background color.

4.2. Different Polar Body Position and Orientation

The oocyte is positioned on the petri dish at random, which results in the random positioning
of its polar body. The proposed algorithm is capable of detecting the center point of the oocyte and
that of its polar body, together with the line that connects these two points. The results confirm 100%
successful detection of all of the 80 test images. Examples of the results are illustrated in Figure 8,
where the detected images are circled by blue lines.
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Validation with ImageJ algorithm confirms accuracy of the oocyte and polar body diameter
and center point measurements, as shown in Figure 9. The figure illustrates that the majority of
the differences for the oocyte diameter and positioning are less than 10 µm, and for polar body are
approximately 2 µm. These are very satisfactory results for 100% correct detection containing less than
5% error in reporting the measurement.
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4.3. Different Zoom and Intensity of the Images

Visualization of an oocyte can be improved by changing the magnification after random deposition
of an oocyte under the focal zoom of an inverted microscope. Consequently, the proposed algorithm
has the option of detecting the oocyte position under different Magnifications. Examples are given in
Figure 10.
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The effect of different magnifications used by the microscope was another important factor that
needed to be considered. In smaller magnifications the histograms show less contrast and less clarity of
the oocyte, although the developed algorithm successfully fully detected the polar body and oocyte and
the majority of the measurements are even less than 5% for oocyte and almost 10% for the polar body.
The error for the polar body may be caused by smaller size in lower magnifications and also caused
by human error in manual measurements. Figure 11 demonstrates the measurement obtained from
the algorithm operation by changing the magnifications. The results indicate an average difference of
8.7 µm and 1.8 µm in oocyte and polar body measurements respectively.
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4.4. Image Disturbance

The oocyte should be positioned in the focal zone of the microscope without the presence of any
cumulus. Oocyte denudation is the initial step after oocyte retrieval from the patient. If this denudation
is not applied properly, the existing cumulus adversely affect the quality of the image and also that
of the detection. This creates disturbance within the following image. In the proposed algorithm
the detection success rate for the images that include cumulus is approximately 60%. Figure 12
demonstrates examples of such disturbance causing false detection.
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Figure 12. Different examined images including disturbance.

Computational time was an important factor when developing this algorithm. The computational
time is highly dependent on the quality and size of the image based on the pixels. After 80 experiments,
the following graph was obtained showing the computational time. Figure 13 shows the graph of
computational time with respect to the average size of the images. As it is indicated in the graph,
the computational time for the images with the average amount of 900 pixels is 1 ± 0.2 s.

For the majority of the acceptable quality images, the computational time is 0.8 s, although if the
number of pixels increases to more than 1000, the computational time suddenly significantly increases.
This is a very acceptable computational time in comparison to similar image development algorithms
which take 12 s.
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Figure 13. Computational time of the images based on the size of images.

The data obtained from the algorithm has been compared with the manual measurements using
ImageJ. In ImageJ, the pixel size is calibrated with a reference in the image for measurements to be
taken. The differences between the manual measurement and the algorithm measurement are indicated
in Figure 14 for both oocyte and polar body diameter and position measurements. In this algorithm,
the maximum reported error on measuring the oocyte and polar body diameters in the detection
section is around 8 µm (~5% error) and 2 µm (~8% error) respectively. This indicates the considerable
accuracy in dimension detection. On the other hand, this figure describes a high precision in center
point detection which assists in positioning the samples after detection. Additionally, the reported
errors in three considered factors are virtually similar, which indicates the independency of the
algorithm from factors mentioned in Table 1.
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5. Conclusions

In conclusion, this paper is mainly focused on the vision detection algorithm development
for detecting the polar body and oocyte position and orientation, as well as measuring their sizes.
This algorithm is designed to be integrated with a micromanipulation system designed for automated
manipulation of metaphase II oocytes.

The developed algorithm is well-matched with various inverted microscopes with a range of
imaging variables. This is the first report of utilizing the gradient-weighted Hough transform in the
application of ICSI that also included elliptical fitting. This algorithm is able to detect the polar body
and oocyte under different magnifications as well as with different background colors. The obtained
results show a rate of 100% in detecting the oocyte and polar body. For the polar body, it drops to 60%
in existing disturbances, which is caused by disruption in the area of the image and also morphological
problems of the polar bodies. In terms of measurement, there was a 6% and a 9% error in the oocyte
and polar body diameter measurements. In addition, there was less than 10-µm and a 2-µm error in the
oocyte and polar body position measurements. The computational time is a considerable improvement,
compared with similar algorithms, to 1 ± 0.2 s, which enables the robotic systems to operate in a
shorter time domain and be closer to a real time application.
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