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Reconstruction of infinite matroids from their

3-connected minors

Nathan Bowler Johannes Carmesin Luke Postle

August 6, 2018

Abstract

We show that any infinite matroid can be reconstructed from the torsos
of a tree-decomposition over its 2-separations, together with local infor-
mation at the ends of the tree. We show that if the matroid is tame then
this local information is simply a choice of whether circuits are permitted
to use that end. The same is true if each torso is planar, with all gluing
elements on a common face.

1 Introduction

In [8], Bruhn, Diestel, Kriesell, Pendavingh and Wollan introduced axioms for
infinite matroids in terms of independent sets, bases, circuits, closure and rel-
ative rank. These axioms allow for duality of infinite matroids as known from
finite matroid theory, which settles an old problem of Rado. This breakthrough
allowed the development of the basic theory of infinite matroids (see for example
[7, 9, 6]).

In [1], Aigner-Horev, Diestel and Postle showed that any (infinite) matroid
has a canonical tree-decomposition over its 2-separations. More precisely, a tree-
decomposition of adhesion 2 of a matroid N consists of a tree T and a partition
R = (Rt)t∈V (T ) of the ground set E of N such that for any element tt′ of T the
partition of the ground set induced by that element is a 2-separation of N . At
each node t of T this gives a torso: a matroid on a set consisting of Rt together
with some new virtual elements corresponding to the edges incident with t in T .
What Aigner-Horev, Diestel and Postle showed is that any connected matroid
has a canonical tree-decomposition of adhesion 2 such that all torsos are either
3-connected or else are circuits or cocircuits.

If the matroid N is finite then it can easily be reconstructed from this de-
composition, by taking the 2-sum of all the torsos. This is no longer possible for
matroids in general. Consider for example the graph Q obtained by taking the
2-sum of a ray of copies of K4, as in Figure 1. The finite-cycle matroid MFC(Q)
of Q has as its circuits the edge sets of finite cycles in Q. The topological-cycle
matroid MTC(Q) has as its circuits the edge sets of finite cycles and double rays
in Q (see [7] for the definition of topological-cycle matroids of general graphs).
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Both of these matroids have the same tree-decomposition into torsos, consisting
of a ray along which all torsos are the cycle matroid of the graph K4, as in
Figure 1.

Figure 1: The graph Q as constructed from a ray of copies of K4: solid edges
are edges of Q, dotted edges are eliminated when we take 2-sums

Thus in order to reconstruct these two matroids we would need some addi-
tional information distinguishing them: in this case, the choice of whether to
allow circuits which go infinitely far along the ray. We shall show that if the
matroid we have decomposed is tame (that is, any intersection of a circuit with
a cocircuit is finite) then such a choice, for each end of the tree, is all the extra
information that we need.

Theorem 1.1. Let R = (Rt)t∈V (T ) be a tree-decomposition of adhesion 2 of a
tame matroid N . Let Ψ be the set of ends ω of T which are used by circuits of
N , in the sense that there is a circuit o of N for which ω lies in the closure of
{t ∈ V (T )|o∩Rt 6= ∅}. Then N is uniquely determined by the tree T , the torsos
(Nt|t ∈ T ) and the set Ψ.

Note that this theorem applies to arbitrary adhesion 2 tree-decompositions
of N , not just to the canonical one mentioned above. It applies only to tame
matroids, but this is known to be a rich and very natural class of matroids, as
explained in [5, 3].

The process by which the matroid N can be rebuilt is a generalisation of
2-sums to infinite trees of matroids developed in [3]. This construction also
provides a tool for building new matroids. In [3] we characterised, for a given
tree of matroids as above, for which sets Ψ of ends of the tree we get a matroid
by this infinitary 2-sum operation: in particular, this is true whenever Ψ is
Borel.

What if the matroid to be reconstructed is not tame? In this case, the
information given by the tree of torsos and the set of ends which are used is
woefully inadequate. Consider once more the graph Q from Figure 1. We
say that two edge sets of double rays of Q are equivalent if they have finite
symmetric difference (this means that the double rays have the same tails).
Let C be the union of any collection of equivalence classes with respect to this
relation, together with the class of all edge sets of finite cycles in Q. We will show
in Section 3 that any such C is the set of circuits of a matroid. Furthermore, all
these matroids have the same canonical tree-decomposition and the same torsos
as MFC(Q) and MTC(Q). Accordingly, we need a great deal of new information
to reconstruct the matroid.

Even worse, we may need such information to be provided for each of un-
countably many ends. In Section 6, we will construct a graph W (pictured in
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Figure 2) by sticking together many copies of Q along the rays of a binary tree.
We will do this in such a way that any topological circuit of W which uses an
end ω looks, in the vicinity of ω, like a double ray in the copy of Q running to
ω. If we choose a set of equivalence classes as above for each of these copies of
Q then we get a matroid whose circuits are the circuits of the topological cycle
matroid of W which match one of the chosen equivalence classes at each end
they use. All of these matroids have the same tree-decomposition into the same
torsos. This example is discussed in more detail in Section 6. Nevertheless, all
the extra information used here is local to the ends, in the sense that the choices
made at the end ω only affect what circuits can do close to ω.

Figure 2: The graph W .

We show that this is true in general.

Theorem 1.2. Let R = (Rt)t∈V (T ) be a tree-decomposition of adhesion 2 of a
(not necessarily tame) matroid N . Then N is uniquely determined by the tree
T , the torsos (Nt|t ∈ T ) and local information at the ends of T .

The precise form of this local information is explained in Section 5. From
this more general result we will deduce Theorem 1.1, which says that for tame
matroids the only local information we need is which ends are used.

There is another case in which the local information collapses to simply the
information about which ends are used. We say that a tree-decomposition of
a matroid is planar if each of the torsos can be represented as the finite cycle
matroid of some finite graph embedded in the plane, in such a way that all of
the virtual elements lie on the boundary of the outer face.

Corollary 1.3. Let R = (Rt)t∈V (T ) be a planar tree-decomposition of adhesion
2 of a matroid N . Then N is uniquely determined by the tree T , the torsos
(Nt|t ∈ T ) and the set of ends of T used by circuits of N .

The wild matroids constructed from the graph Q are of interest in their own
right as counterexamples. In particular, there is a natural question if the char-
acterisations of finite binary matroids are equivalent in the infinite setting. For
the wild matroids arising from Q, these equivalences break dow; these matroids
satisfy roughly half of the basic characterisations of finite binary matroids (see
[11] for many such characterisations). For example, none of these matroids has
a U2,4-minor, and all of them have the property that any symmetric difference

3



of two circuits is a disjoint union of circuits. But in one of them there is a set
of three circuits whose symmetric difference is not a disjoint union of circuits.
See Section 4 for details.

The paper is organised as follows: In Section 2 we recall some basic facts
and give a new simple proof that the torso of a canonical decomposition is a
matroid. Before proving our main result in Section 5, we first deal with the
subcase where the torsos are glued together along a ray, see Section 3. Finally,
in Section 6 we explain the example indicated in the Introduction before the
statement of Theorem 1.2.

2 Preliminaries

2.1 Infinite matroids

We begin by recalling two of the axiomatisations of infinite matroids given in
[8].

A set system I ⊆ P(E) is the set of independent sets of a matroid iff it
satisfies the following independence axioms.

(I1) ∅ ∈ I(M).

(I2) I(M) is closed under taking subsets.

(I3) Whenever I, I ′ ∈ I(M) with I ′ maximal and I not maximal, there exists
an x ∈ I ′ \ I such that I + x ∈ I(M).

(IM) Whenever I ⊆ X ⊆ E and I ∈ I(M), the set {I ′ ∈ I(M) | I ⊆ I ′ ⊆ X}
has a maximal element.

The bases of such a matroid are the maximal independent sets, and the
circuits are the minimal dependent sets.

A set system C ⊆ P(E) is the set of circuits of a matroid iff it satisfies the
following circuit axioms.

(C1) ∅ /∈ C.

(C2) No element of C is a subset of another.

(C3) (Circuit elimination) Whenever X ⊆ o ∈ C(M) and {ox | x ∈ X} ⊆ C(M)
satisfies x ∈ oy ⇔ x = y for all x, y ∈ X, then for every z ∈ o \

(⋃
x∈X ox

)
there exists a o′ ∈ C(M) such that z ∈ o′ ⊆

(
o ∪

⋃
x∈X ox

)
\X.

(CM) I satisfies (IM), where I is the set of those subsets of E not including an
element of C.

The following basic lemmas may be proved as for finite matroids, see for
example [3].
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Lemma 2.1. Let M be a matroid and s be a base. Let oe be a fundamental
circuit with respect to s and bf be a fundamental cocircuit with respect to s.
Then:

1. oe ∩ bf is empty or oe ∩ bf = {e, f} and

2. f ∈ oe if and only if e ∈ bf .

Lemma 2.2. For any circuit o with at least two elements e and f , there is a
cocircuit b such that o ∩ b = {e, f}.

Lemma 2.3. Let M be a matroid with ground set E = C∪̇X∪̇D and let o′ be
a circuit of M ′ = M/C\D. Then there is an M -circuit o with o′ ⊆ o ⊆ o′ ∪ C.

A scrawl is a union of circuits. In [2], (infinite) matroids are axiomatised in
terms of scrawls. The set S(M) denotes the set of scrawls of the matroid M .
Dually a coscrawl is a union of cocircuits. Since no circuit and cocircuit can
meet in only one element, no scrawl and coscrawl can meet in only one element.
In fact, this property gives us a simple characterisation of scrawls in terms of
coscrawls and vice versa.

Lemma 2.4. Let M be a matroid, and let w ⊆ E. The following are equivalent:

1. w is a scrawl of M .

2. w never meets a cocircuit of M just once.

3. w never meets a coscrawl of M just once.

The dual of the statement proved in the following Lemma appears as axiom
(O3∗) in an axiomatisation discussed in [3]. We will need that this statement
holds in any matroid.

Lemma 2.5. Let M be a matroid, and let o be a circuit of M , X a subset
of the ground set E of M and e ∈ o \ X. Then there is a circuit omin of M
with e ∈ omin ⊆ X ∪ o and such that omin \ X is minimised subject to these
conditions.

Proof. o \ X never meets a cocircuit b of M/X just once: if it did, then the
circuit o of M would meet the cocircuit b of M just once. So by Lemma 2.4, o\X
is a union of circuits of M/X. Let o′ be a circuit of M/X with e ∈ o′ ⊆ o \X,
and take omin to be a circuit of M with o′ ⊆ omin ⊆ o′ ∪ X (which exists by
Lemma 2.3). Then for any other circuit õ of M with e ∈ õ \X ⊆ omin \X we
have that õ \X is a nonempty union of circuits of M/X included in the circuit
o′, so is equal to o′, so that omin \X ⊆ õ \X. This establishes the minimality
of omin \X.

Lemma 2.6. Let M be a matroid and C,D ⊆ P(E) such that every M -circuit
is a union of elements of C, every M -cocircuit is a union of elements of D and
|C ∩D| 6= 1 for every C ∈ C and every D ∈ D.

Then C(M) ⊆ C ⊆ S(M) and C(M∗) ⊆ D ⊆ S(M∗).
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Proof. We begin by showing that C(M) ⊆ C. Let o be a circuit of M and e
be an element of o. Since o is a union of elements of C there is some o′ ∈ C
with e ∈ o′ ⊆ o. Suppose for a contradiction that o′ is a proper subset of o, so
that there is some f ∈ o \ o′. By Lemma 2.2 there is a cocircuit b of M with
o′∩b = {e}. But then there is some b′ ∈ D with e ∈ b′ ⊆ b such that o′∩b′ = {e},
giving the desired contradiction. Dually we obtain that C(M∗) ⊆ D.

The fact that C ⊆ S(M) is immediate from Lemma 2.4 since C(M∗) ⊆ D,
and the proof that D ⊆ S(M∗) is similar.

We will need a lemma showing that any circuit can be obtained from any
other by a single application of (C3).

Lemma 2.7. Let o and o′ be circuits of a matroid M , and let z be in both o
and o′. Then there are a set X ⊆ o − z and a family (ox|x ∈ X) of circuits of
M with ox ∩ (X ∪ {z}) = {x} for each x ∈ X such that the only circuit o′′ with
z ∈ o′′ ⊆ o ∪ (

⋃
x∈X ox) \X is o′.

Proof. Let M ′ = M/(o′ − z), and let s be a base of o \ o′ in M ′. We take
X = (o \ o′) \ s, and for each x ∈ X we take ôx to be the fundamental circuit
of x with respect to s and ox to be an M -circuit with ôx ⊆ ox ⊆ ôx ∪ (o′ − z),
which exists by Lemma 2.3. Thus ox ∩ (X ∪ {z}) = {x} for each x ∈ X, and
z ∈ o′ ⊆ o∪ (

⋃
x∈X ox) \X. Now suppose for a contradiction that there is some

other circuit o′′ such that z ∈ o′′ ⊆ o∪ (
⋃
x∈X ox) \X, and let e ∈ o′′ \ o′. Then

also e ∈ o \ o′ \ X = s. Since s is coindependent in M ′, there must be some
cocircuit b of M ′ with b∩ s = {e}. Since M ′ is a contraction of M , the cocircuit
b is also a cocircuit of M , and so it cannot meet o′′ only in e, and hence it must
contain some point of o′. But the only point of o′ that b can contain is z, so
b ∩ o′ = {z}, which is the desired contradiction.

2.2 A hybrid axiomatisation

In [3], the following axioms were used as part of an axiomatisation of countable
matroids:

(O1) |C ∩D| 6= 1 for all C ∈ C and D ∈ D.

(O2) For all partitions E = P ∪̇Q∪̇{e} either P + e includes an element of C
through e or Q+ e includes an element of D through e.

In this paper, we will not restrict our attention to countable matroids, so we
cannot use this axiomatisation. However, these two axioms will still be useful
to us, because of the following lemma.

For a set C ⊆ P(E), let C⊥ be the set of those subsets of E that meet no
element of C just once. Note that (O1) is equivalent to D being a subset of C⊥.

Lemma 2.8 ([3]). Let C ⊆ P(E). Then C and C⊥ satisfy (O2) if and only if C
satisfies circuit elimination (C3).
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This means that if we know what the cocircuits of a matroid ought to be
then we can use (O1) and (O2) as a more symmetric substitute for the circuit
elimination axiom (C3). More precisely:

Theorem 2.9. Let C and D be sets of subsets of a set E. Then there is a
matroid whose set of circuits is C and whose set of cocircuits is D if and only if
all of the following conditions hold:

1. Each of C and D satisfies (C1) and (C2).

2. C and D satisfy (O1) and (O2).

3. C satisfies (CM)

Proof. It is clear that all of these conditions are satisfied by the sets of circuits
and cocircuits of any matroid. So it suffices to prove the reverse implications.
Suppose that all 3 conditions hold. Then C satisfies (C1), (C2) and (CM) by
assumption, and satisfies (C3) by Lemma 2.8 and the fact that D ⊆ C⊥. So
there is a matroid M whose set of circuits is C. Then by (O1) and Lemma
2.4, every element b of D is a coscrawl of M and so, being nonempty by (C1),
includes some cocircuit b′ of M . Let e ∈ b′. On the other hand, for any cocircuit
b′ of M there is no circuit of M meeting b′ exactly once, so by (O2) applied
to the partition E = (E \ b′)∪̇(b′ − e)∪̇{e} there must be some b′′ ∈ D with
e ∈ b′′ ⊆ b′. Then by (C2) we have b′′ = b and hence b = b′, thus b is a cocircuit
of D. We have now shown that every cocircuit of M includes an element of D,
and it follows that it must be that element. So D is the set of cocircuits of M ,
as required.

2.3 Trees of matroids

In this section we review the relationship between trees of matroids and tree-
decompositions of matroids.

Definition 2.10. A tree T of matroids consists of a tree T , together with a
function M assigning to each node t of T a matroid M(t) on ground set E(t),
such that for any two nodes t and t′ of T , if E(t) ∩ E(t′) is nonempty then tt′

is an edge of T .
For any edge tt′ of T we set E(tt′) = E(t)∩E(t′). We also define the ground

set of T to be E = E(T ) =
(⋃

t∈V (T )E(t)
)
\
(⋃

tt′∈E(T )E(tt′)
)

.

We shall refer to the elements which appear in some E(t) but not in E as
virtual elements of M(t); thus the set of such virtual elements is

⋃
tt′∈E(T )E(tt′).

The idea is that the virtual elements are to be used only to give information
about how the matroids are to be pasted together, but they will not be present
in the final pasted matroid, which will have ground set E(T ).

Definition 2.11. A tree T = (T,M) of matroids is of overlap 1 if, for every
edge tt′ of T , |E(tt′)| = 1. In this case, we denote the unique element of E(tt′)
by e(tt′).
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Given a tree of matroids of overlap 1 as above, a precircuit (C, o) of T
consists of a connected subtree C of T together with a function o assigning to
each vertex t of C a circuit of M(t), such that for any vertex t of C and any
vertex t′ adjacent to t in T , e(tt′) ∈ o(t) if and only if t′ ∈ C. Given a set Ψ
of ends of T , such a precircuit is called a Ψ-precircuit if all ends of C are in Ψ.
The set of Ψ-precircuits is denoted C(T ,Ψ).

Any Ψ-precircuit (C, o) has an underlying set (C, o) = E ∩
⋃
t∈V (C) o(t).

Minimal nonempty subsets of E arising in this way are called Ψ-circuits of T .
The set of Ψ-circuits of T is denoted C(T ,Ψ).

Definition 2.12. Let T = (T,M) be a tree of matroids. Then the dual T ∗
of T is given by (T,M∗), where M∗ is the function sending t to (M(t))∗. For
a subset P of the ground set, the tree of matroids T /P obtained from T by
contracting P is given by (T,M/P ), where M/P is the function sending t to
M(t)/(P ∩ E(t)). For a subset Q of the ground set, the tree of matroids T \Q
obtained from T by deleting Q is given by (T,M\Q), where M\Q is the function
sending t to M(t)\(Q ∩ E(t)).

The following lemma describes some basic properties of trees of matroids
under duality, contraction and deletion. The proof is trivial from the definitions
and hence is omitted.

Lemma 2.13. For any tree T of matroids, T = T ∗∗. For any disjoint subsets
P and Q of the ground set of T we have (T /P )∗ = T ∗\P , (T \Q)∗ = T ∗/Q
and T /P\Q = T \Q/P . If T has overlap 1 and (T ,Ψ) induces a matroid M ,
then (T /P\Q,Ψ) induces the matroid M/P\Q and (T ∗,Ψ{) induces the matroid
M∗.

We will sometimes use the expression Ψ{-cocircuits of T for the Ψ{-circuits
of T ∗. If there is a matroid whose circuits are the Ψ-circuits of T and whose
cocircuits are the Ψ{-cocircuits of T then we will call that matroid the Ψ-matroid
for T , and denote it MΨ(T ).

Note that if T is finite then we always get a matroid in this way, which is
simply the 2-sum of the matroids M(t) in the sense of [11].

Lemma 2.14 (Lemma 5.5, [3]). Let T = (T,M) be a tree of matroids, Ψ a set
of ends of T , and let (C, o) and (D, b) be respectively a Ψ-precircuit of T and a
Ψ{-precircuit of T ∗. Then |(C, o) ∩ (D, b)| 6= 1.

Definition 2.15. If T is a tree, and tu is a (directed) edge of T , we take Tt→u
to be the connected component of T − t that contains u. If T = (T,M) is a tree
of matroids, we take Tt→u to be the tree of matroids (Tt→u,M�Tt→u

).

So far we have discussed how to construct matroids by gluing together trees
of ‘smaller’ matroids. Now we turn to a notion, taken from [1], of a decomposi-
tion of a matroid into a tree of such smaller parts.

Definition 2.16. A tree-decomposition of adhesion 2 of a matroid N consists
of a tree T and a partition R = (R(v))v∈V (T ) of the ground set E of N such
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that for any edge tt′ of T the partition (
⋃
v∈V (Tt→t′ )

R(v),
⋃
v∈V (Tt′→t)

R(v)) is
a 2-separation of N .

Given such a tree-decomposition, and a vertex v of T , we define a matroid
M(v), called the torso of T at v, as follows: the ground set of M(v) consists of
R(v) together with a new element e(vv′) for each edge vv′ of T incident with v.
For any circuit o of N not included in any set

⋃
t∈V (Tv→v′ )R(v), we have a circuit

ô(v) of M(v) given by (o ∩ R(v)) ∪ {e(vv′) ∈ E(v)|o ∩
⋃
t∈V (Tv→v′ )R(v) 6= ∅}.

These are all the circuits of M(v).
In this way we get a tree of matroids T (N,T,R) = (T, v 7→M(v)) of overlap

1 from any tree-decomposition of adhesion 2. For any circuit o of N we get a
corresponding precircuit (So, ô), where So is just the subtree of T consisting of
those vertices v for which ô(v) is defined. We shall refer to this precircuit as the
canonical precircuit of o.

Note that (So, ô) = o. It is shown in [1, §4, §8] that each M(v) really is a
matroid, and we will show in Corollary 2.22 that it is isomorphic to a minor
of N , and that T (N∗, T,R) = (T (N,T,R))∗. [1] also contains the following
theorem.

Theorem 2.17 (Aigner-Horev, Diestel, Postle). For any matroid N there is a
tree-decomposition D(N) of adhesion 2 of N such that all torsos have size at
least 3 and are either circuits, cocircuits or 3-connected, and in which no two
circuits and no two cocircuits are adjacent in the tree. This decomposition is
unique in the sense that any other tree-decomposition with these properties must
be isomorphic to it.

The above theorem is a generalisation to infinite matroids of a standard
result about finite matroids [10, 12]. If N is a finite matroid, it is possible
to reconstruct N from the decomposition D(N). However, as noted in the
introduction, it is not in general possible to reconstruct N from D(N) if N is
infinite.

2.4 Tree-decompositions and 2-separations in infinite ma-
troids

Our aim in this subsection is to show that if N is a matroid with a tree-
decomposition of adhesion 2 over some tree T and S is a subtree of T then
the torso of N when we cut off the parts of N not corresponding to S is a minor
of N . In particular, all the torsos mentioned in Theorem 2.17 are minors of
N , a statement which is claimed but not yet proved there. We begin by recall-
ing that the familiar fact that 2-separations can be encoded by 2-sums extends
straightforwardly to infinite matroids.

Lemma 2.18 ([1], Lemma 3.6). Let (A,B) be a 2-separation in a matroid N .
Then there are two matroids N(A) and N(B) with ground sets A+ e(A,B) and
B + e(A,B) where e(A,B) is not in E(N), so that N = N(A)⊕2 N(B).
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Definition 2.19. Let (T,R) be a tree-decomposition of a matroid N of ad-
hesion 2, and let S be a subtree of T . The star-decomposition (TS , RS) of N
corresponding to S is given by taking TS to be the star with central node S
and with a leaf l(tt′) for each edge tt′ of T with t ∈ S but t′ 6∈ S, and taking
RS(S) =

⋃
v∈S R(v) and RS(l(tt′)) =

⋃
v∈Tt→t′

R(v). The star-decomposition
also has adhesion 2.

We define NS to be the torso of TS at S. For notational convenience, we will
identify the virtual element e(Sl(tt′)) of this torso with the virtual element e(tt′)
arising in the construction of T (N,T,R). There is a natural tree-decomposition
(S,R�S) of NS , where we take R�S(t) to consist of R(t) together with all the
virtual elements e(tt′) with t′ a neighbour of t in T such that t′ 6∈ S.

By [1], Lemma 4.9, the tree-decomposition (S,R�S) has adhesion 2. It is
clear that T (NS , S,R�S) is just the restriction of T (N,T,R) to S, and that the
NS-circuits are precisely the nonempty underlying sets of canonical precircuits
of N -circuits restricted to S. (The dual statement is true for the N ′-cocircuits.)

We say that two matroids are realistically isomorphic if there is an isomor-
phism between them that is the identity when restricted to the intersection of
their ground sets.

We are finally in a position to prove the main result of this subsection.

Theorem 2.20. Let N be a matroid with a tree-decomposition (T,R) of adhe-
sion 2. Let S be a subtree of T . Then NS is realistically isomorphic to a minor
of N .

Proof. Without loss of generality, we may assume that N is connected. In
particular all the separations associated to edges of T are exact 2-separations.
Let ∂S be the set of those nodes x of T that have a neighbour t(x) in S but are
not in S.

First we define a minor N ′ of N from which we shall define a realistic iso-
morphism to NS .

For each x ∈ ∂S, let s(x) be a base of N contracted onto RS(l(t(x)x)). Since
the separation associated to the edge t(x)x is an exact 2-separation, we can add
a single element e(x) to s(x) to make it a base of N restricted onto RS(l(t(x)x)).

Let K be the set of all those e(x). We obtain N ′ from N by contracting
all the sets s(x) and then restricting onto RS(S) ∪K. Let the matroid N ′′ be
obtained from N ′ by replacing the element e(x) by the virtual element e(t(x)x).
This defines a realistic isomorphism α : N ′′ → N ′. We will now show that
NS = N ′′. This will be done using Lemma 2.6 applied to N ′′, with C the set
of NS-circuits and D the set of NS-cocircuits. So we first have to check that
the assumptions of this Lemma are satisfied. The first assumption is proved as
follows:

Claim 2.21. Every N ′′-circuit is an element of C.

Proof. Let o′′ be an N ′′-circuit. Let o′ = α(o′′). Then o′ extends to an N -circuit
o using additionally only elements of sets s(x) by Lemma 2.3.
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It remains to show for each e(x) /∈ o that o does not use any element of
s(x), since then the underlying set of the canonical precircuit of o restricted to
S will be o′′. Now o∩RS(l(t(x)x)) must be a union of circuits of the contraction
N.RS(l(t(x)x)) of N onto RS(l(t(x)x)). For e(x) /∈ o the set o ∩ RS(l(t(x)x))
must be empty as o∩RS(l(t(x)x)) ⊆ s(x) which is independent in that contrac-
tion. Thus every N ′′-circuit is the underlying set of the canonical precircuit of
some N -circuit restricted to S.

The dual argument shows that every N ′′-cocircuit is the underlying set of
the canonical precircuit of some N -cocircuit restricted to S.

The last assumption of Lemma 2.6, that no o′ ∈ C meets some b′ ∈ D in
a single element e, is true since NS is a matroid. Applying Lemma 2.6 now
gives that the N ′′-circuits are the minimal nonempty elements of C, which is
the same as saying that they are the elements of C since C is the set of circuits of
the matroid NS , and no circuit of a matroid is included in any other. Similarly,
the N ′′-cocircuits are the elements of D. This completes the proof.

Corollary 2.22. Let N be a matroid with a tree-decomposition of adhesion 2.
Then every torso M(v) of this tree-decomposition is isomorphic to a minor of
N .

Proof. Apply Theorem 2.20 in the case that S consists only of the node v.

3 Characterising the matroids arising from a nice
ray of matroids

For this section, we fix a ray R = (Mi|i ∈ N) of matroids of overlap 1. We call
the end of this ray ω. We refer to the element shared by M(i) and M(i + 1)
as e(i). We say that a matroid is an R-matroid if all of its circuits are circuits
of M{ω}(R) (in which the circuits are permitted to use the end) and all of its
cocircuits are cocircuits of M∅(R) (in which the circuits are not permitted to
use the end). Our aim will be to give an explicit description of the collection of
R-matroids. However, before we can do this we will impose a mild condition to
exclude examples like the one below.

Example 3.1. Here the tree T is a ray and each M(t) = M(C4), arranged as
in Figure 3. Then M∅(T ) is the free matroid but MΩ(T )(T ) consists of a single
infinite circuit. So any pair of elements forms an MΩ(T )(T )-cocircuit which is
not an M∅(T )-cocircuit.

Definition 3.2. A precircuit (S, o) for a tree T = (T,M) of matroids of overlap
1 is called a phantom precircuit if there is an edge tt′ of S such that o(v)∩E(T ) =
∅ for v ∈ V (St→t′).
T = (T,M) is nice if neither T nor T ∗ has any phantom precircuits.

11



Figure 3: A badly behaved tree of matroids

Informally, a phantom precircuit is one which invisibly uses the nodes beyond
some edge tt′, in that its supporting tree goes beyond that edge, but in such a
way that this is not visible from its underlying set.

Note that T = (T,M) is nice iff there is no tt′ ∈ E(T ) such that in Tt→t′ =
(Tt→t′ ,M�V (Tt→t′ )

) the element e(tt′) is either a loop in MΩ(Tt→t′ )
(Tt→t′) or a

coloop M∅(Tt→t′).

Lemma 3.3. Let N be a matroid with a tree-decomposition (T,R) of adhesion
2.

1. For every N -circuit o its corresponding precircuit (So, ô) is not phantom.

2. If T is a ray, and there are a circuit o and a cocircuit b of N that both
have elements in infinitely many of the R(v), then T (N,T,R) is nice.

Proof. (1) follows from the definition of So.
For (2), let T = t1, t2, . . . be a ray. Now suppose for a contradiction that there

is a phantom precircuit (Sc, c). Then for all sufficiently large n, the circuit c(tn)
consists of e(tn−1tn) and e(tntn+1). In other words, e(tn−1tn) and e(tntn+1) are
in parallel.

So c(tn) ⊆ ô(tn), hence c(tn) = ô(tn). This contradicts (1). The case that
there is a phantom precocircuit (Sc, c) is dual. Hence T (N,T,R) is nice.

Lemma 3.4. Let T = (T,M) be a nice tree of matroids, then every ∅-circuit is
an Ω(T )-circuit. Dually, every ∅-cocircuit is an Ω(T )-cocircuit.

Lemma 3.5. Let T = (T,M) be a nice tree of matroids, and N be a matroid
such that C(N) ⊆ C(MΩ(T )(T )) and C(N∗) ⊆ C(M∗∅ (T )).

Then C(M∅(T )) ⊆ C(N) and C(M∗Ω(T )(T )) ⊆ C(N∗).

Proof. By duality, it suffices to prove only that C(M∅(T )) ⊆ C(N). So let
o ∈ C(M∅(T )). Since o never meets an element of C(M∗∅ (T )) just once, it never
meets an element of C(N∗) just once. Hence o includes an N -circuit o′ by
Lemma 2.4. Thus o′ ∈ C(MΩ(T )(T )). By Lemma 3.4, we must have o′ = o. So
o ∈ C(N), as desired.

From now on, we shall assume that R is a nice ray of matroids, and that
N is an R-matroid. We shall refer to the nodes of the supporting ray of R as
t1, t2, . . .. For brevity, we shall denote Mti by Mi and e(ti) by e(i) for any i ∈ N.

12



We say that a subset of E(R) is prolonged if it meets infinitely many of the
sets E(Mi) with i ∈ N.

We begin by defining a fundamental equivalence relation on the potential
prolonged circuits and cocircuits of N . Let C∞ be the set of prolonged elements
of C(M{ω}(R)) and D∞ be the set of prolonged elements of C(M∗∅ (R)). We
define a relation ∼ from C∞ to D∞ by o ∼ b if and only if o ∩ b meets only
finitely many of the sets E(Mi). We can think of ∼ as a relation on the set
C∞ t D∞, and we define ' to be the equivalence relation generated by this
relation. The relation ' restricts to equivalence relations on each of C∞ and
D∞; we denote the equivalence class of o in C∞/ ' by [o] and the equivalence
class of b in D∞/ ' by [b].

The first important fact about this relation is that the set of prolonged cir-
cuits of N must be closed under ' (within C∞). This follows from the following
lemmas.

Lemma 3.6. Let o be a prolonged circuit of N , and let o′ ∈ C∞ such that their
symmetric difference o4o′ meets only finitely many of the sets E(Mi). Then o′

is also a circuit of N .

Proof. Let the circuits o and o′ be represented by the precircuits (I, ô) and
(I ′, ô′).

We consider first of all the case where o4o′ is a subset of E(M1). We apply
Lemma 2.7 to ô(1) and ô′(1), obtaining a set X ⊆ ô(1) − e(1) and a family
(ox|x ∈ X) of circuits of M1 with ox ∩ (X ∪ {e(1)}) = {x} for each x ∈ X such
that the only circuit ō with e(1) ∈ ō ⊆ ô(1) ∪ (

⋃
x∈X ox) \X is ô′(1). Each of

the ox is a circuit of M∅(R), and so of N . Now we apply the circuit elimination
axiom (C3) in N to the circuit o and the circuits ox, eliminating the set X
and keeping some e ∈ o ∩ E(Mn) with n > 1. We obtain an N -circuit o′′ with
e ∈ o′′ ⊆ o ∪ (

⋃
x∈X o

′
x) \X.

Let o′′ be represented by the precircuit (I ′′, ô′′). For any i > 1 with i ∈ I ′′,
we have {e(i−1), e(i)} ⊆ ô(i) and so ô′′(i) ⊆ ô(i), which implies that ô′′(i) = ô(i)
and in particular {e(i−1), e(i)} ⊆ ô′′(i)} so that both i−1 and i+1 must be in
I ′′. So since I ′′ contains n, it must contain all natural numbers. Furthermore,
since e(k) ∈ ô′′(k) ⊆ ô(k) ∪ (

⋃
x∈X ox) \X we must have ô′′(k) = ô′(k). Thus

o′′4o′ ⊆
⋃
i<k E(Mi). This completes the proof of the special case.

We can now reduce the more general statement of the lemma to the special
case above as follows: for any k, we can obtain a new ray of matroids whose first
element is the 2-sum of the first k matroids along R and where the ith matroid
with i > 1 is Mi−k+1. Since C∞ is preserved under this operation, we can apply
it to produce a new ray of matroids where the ground set of the first element
includes o4o′. Arguing as above in this ray of matroids, we are done.

Lemma 3.7. Let o be a prolonged circuit of N , and let b ∈ D∞ and o′ ∈ C∞
such that o ∼ b and o′ ∼ b. Then o′ is also a circuit of N .

Proof. Let the circuits o and o′ be represented by the precircuits (I, ô) and

(I ′, ô′), and let the cocircuit b be represented by the precocircuit (J, b̂). Choose
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some e ∈ o ∩ E(Mn) for some n, and choose some k > n such that for i ≥ k

we have ô(i) ∩ b̂(i) = ô′(i) ∩ b̂(i) = {e(i − 1), e(i)}. For each i ≥ k, we may by
Lemma 2.7 find a set Xi ⊆ ô(i)− e(i− 1) and a family (ox|x ∈ Xi) of circuits of
Mi with ox ∩ (Xi ∪ {e(i− 1)}) = {x} for each x ∈ Xi such that the only circuit
o with e(i − 1) ∈ o ⊆ ô(i) ∪ (

⋃
x∈Xi

ox) \Xi is ô′(i). Note that for x ∈ Xi we

have ox ∩ b̂(i) ⊆ {e(i)}, so that ox ∩ b̂(i) = ∅ and in particular e(i) 6∈ ox. So ox
is a circuit of M∅(R), and so of N . Now we apply the circuit elimination axiom
(C3) in N to the circuit o and the circuits ox with x ∈

⋃
i≥kXi, eliminating

the set
⋃
i≥kXi and keeping the element e. We obtain an N -circuit o′′ with

e ∈ o′′ ⊆ o ∪ (
⋃
i≥k
⋃
x∈Xi

ox) \
⋃
i≥kXi.

Let o′′ be represented by the precircuit (I ′′, ô′′). Then for any i < k in I ′′

we have ô′′(i) ⊆ ô(i), and so ô′′(i) = ô(i), so that all neighbours of i in I are in
I ′′. Thus since n ∈ I ′′ we get I ′′ ∩ {1, .., k} = I ∩ {1, .., k}. Now we show by
induction on i that if i ≥ k then i ∈ I and ô′′(i) = ô′(i). We begin by noting
that i ∈ I and e(i− 1) ∈ ô′′(i). For the base case this follows from the fact that
ô′′(k− 1) = ô(k− 1) and otherwise it follows from the induction hypothesis. So
we have e(i−1) ∈ ô′′(i) ⊆ ô(i)∪(

⋃
x∈Xi

ox)\Xi, which implies that ô′′(i) = ô′(i)
as required. Thus o′′4o′ ⊆

⋃
i<k E(Mi) and so applying Lemma 3.6 we get that

o′ is a circuit of N .

Thus the set of circuits of N must consist of C(M∅(R)) together with a union
of some '-equivalence classes1 in C∞. In fact, we can show that this is the only
restriction.

Theorem 3.8. Let Φ be any subset of C∞/ '. Then there is an R-matroid
MΦ(R) whose set of circuits is C(M∅(R)) ∪

⋃
Φ. The set of cocircuits of this

matroid is C(M∗{ω}(R)) ∪
⋃

Φ∗, where Φ∗ ⊆ D∞/ ' is the set of equivalence

classes [b] such that there is no [o] ∈ Φ with o ' b. Conversely, the set of circuits
of any R-matroid has the form C(M∅(R)) ∪

⋃
Φ with Φ a subset of C∞/ '.

The remainder of this section will be devoted to proving this theorem. The
last sentence is just a restatement of Lemma 3.7, and it is clear that if this
construction defines a matroid then that matroid is an R-matroid. So we just
have to show that this construction gives a matroid. We will do this using
Theorem 2.9. We must now show that the conditions of that theorem hold.
(C0) and (C1) for C(M∅(R)) ∪

⋃
Φ follow from the same axioms applied to

C(M{ω}(R)), and we get (C0) and (C1) for C(M∗{ω}(R)) ∪
⋃

Φ∗ from the same

axioms applied to C(M∗∅ (R)). Checking the remaining conditions is the purpose
of the following lemmas.

Lemma 3.9 (O1). There do not exist o ∈ C(M∅(R))∪
⋃

Φ and b ∈ C(M∗{ω}(R))∪⋃
Φ∗ with |o ∩ b| = 1.

Proof. Using (O1) in M∅(R) and M{ω}(R), we see that the only way this could
be possible is if o ∈

⋃
Φ and b ∈

⋃
Φ∗. But then o ∼ b, contradicting the

definition of Φ∗.
1As usual, we denote the union of the elements of a set S of equivalence classes by

⋃
S.
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Lemma 3.10 (O2). Let E = P ∪̇Q∪̇{e} be a partition of E, with e ∈ E(Mn).
Then either P +e includes an element of C(M∅(R))∪

⋃
Φ containing e or Q+e

includes an element of C(M∗{ω}(R)) ∪
⋃

Φ∗ containing e.

Proof. Suppose for a contradiction that neither of these options holds. Applying
(O2) in the matroid M∅(R) we obtain either o ∈ C(M∅(R)) with e ∈ o ⊆ P+e or
b ∈ C(M∗∅ (R)) with e ∈ b ⊆ Q+e. The first of these is impossible by assumption,
so there is such a b. Similarly, applying (O2) in the matroid M{ω}(R) we get a
circuit o of that matroid with e ∈ o ⊆ Q+ e. Furthermore, by our assumptions
o ∈ C∞ and b ∈ D∞. Since o ∩ b = {e}, we have o ∼ b, and so either [o] ∈ Φ or
else [b] ∈ Φ∗, as required.

Lemma 3.11. C(M∅(R)) ∪
⋃

Φ satisfies (CM).

Proof. Let I be a set not including any element of C(M∅(R)) ∪
⋃

Φ, and X
a set with I ⊆ X ⊆ E. Since I is M∅(R)-independent, we may apply (CM)
in that matroid to extend it to a maximal M∅(R)-independent subset J of X.
If J fails to include any element of

⋃
Φ then we are done, so suppose that it

does include such an element o. Let e be any element of o not contained in I,
and let J ′ = J − e. We will show that J ′ is maximal amongst those subsets
of X including I but not including any element of C(M∅(R)) ∪

⋃
Φ, which will

complete the proof of (CM). It is clear that I ⊆ J ′ ⊆ J .
First we show that J ′ includes no element of C(M∅(R))∪

⋃
Φ. Suppose for a

contradiction that it does include such an element o′. Since J ′ is a subset of the
M∅(R)-independent set J we must have o′ ∈

⋃
Φ. Now suppose that e ∈ E(Mi),

let o = (So, ô) and let o′ = (So′ , ô
′). Choose j > i with j ∈ So ∩ So′ , and such

that e(j + 1), e(j + 2) is not a cocircuit of Mj+1 (this is possible because R is
nice). Let o be a circuit of Mj+1 with e(j+1) ∈ o but e(j+2) 6∈ o. Then we can
build an ∅-precircuit (So ∩ {k|k ≤ j + 1}, ĉ) with ĉ(j + 1) = o and ĉ(k) = ô(k)
for k ≤ j. We take c = (So ∩ {k|k ≤ j + 1}, ĉ). We define an ∅-circuit c′ in a

similar way from o′. Applying circuit elimination in M∅ to c and c′, keeping e
and eliminating some element of o, we obtain an ∅-circuit o′′ with e ∈ o′′ ⊆ J∪o.
But since o′′ ∩ o is a proper subset of o− e(j+ 1), we must have o′′ ∩ o = ∅, and
so o′′ ⊆ J , which contradicts the M∅-independence of J .

Next we show that J ′ is maximal. Suppose for a contradiction that there is
some e′ ∈ X \ J ′ such that J ′ + e′ includes no element of C(M∅(R)) ∪

⋃
Φ. By

maximality of J , there must be some M∅-circuit o′ with e′ ∈ o′ ⊆ J + e′. Since
o′ 6⊆ J ′, we have e ∈ o′. By Lemmas 2.8 and 3.10 we know that C(M∅(R))∪

⋃
Φ

satisfies circuit elimination. We apply this to o′ and o, keeping e′ and eliminating
e. This gives an element o′′ of C(M∅(R))∪

⋃
Φ included in J ′+ e′, which is the

desired contradiction.

4 Representability properties of MΦ(Q)
Recall from the introduction the ray Q = (K4|i ∈ N) of matroids, in which
the edge set of the ith copy of K4 is {ai, b0i , b1i , c0i , c1i , ai+1}, as shown in figure
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a1 a2 a3 a4

b01 b02 b03

b11 b12 b13

c01 c02 c03

c11 c12 c13

Figure 4: The ray Q of matroids

Figure 4. The results of the last section give us a simple characterisation of
the set of Q-matroids. In this section, we shall investigate the extent to which
these Q-matroids are binary. To make this more precise, we begin by recalling
a theorem from [2] excluded minors method:

Theorem 4.1. Let M be a tame matroid. Then the following are equivalent:

1. M is a binary thin sums matroid.

2. For any circuit o and cocircuit b of M , |o ∩ b| is even.

3. For any circuit o and cocircuit b of M , |o ∩ b| 6= 3

4. M has no minor isomorphic to U2,4.

5. If o1, o2 are circuits then o14o2 is empty or includes a circuit.

6. If o1, o2 are circuits then o14o2 is a disjoint union of circuits.

7. If (oi|i ∈ I) is a finite family of circuits then 4i∈Ioi is empty or includes
a circuit.

8. If (oi|i ∈ I) is a finite family of circuits then 4i∈Ioi is a disjoint union of
circuits.

9. For any base s of M , and any circuit o of M , o = 4e∈o\soe, where oe is
the fundamental circuit of e with respect to s.

However, if M is not tame, these conditions are not equivalent. We shall
illustrate this by considering which of the conditions hold for each Q-matroid
(most of which are not tame).

First we give a simple description of the set of Q-matroids.
Let ω be the end of Q. For any sequence (v(i) ∈ {0, 1}|i ∈ N) there is an

infinite circuit o(0, v) of M{ω}(Q) consisting of a1 and the b
v(i)
i and c

v(i)
i with

i ∈ N. Also, for any n ∈ N, and any sequence (v(i)|i ≥ n) there is such an

infinite circuit o(n, v) consisting of b
v(n)
n , c

1−v(n)
n and the b

v(i)
i and c

v(i)
i with

i > n. A typical such circuit with n = 2 is shown in Figure 5. It is not hard
to show that every infinite circuit arises in this way. Using the fact that K4

is self-dual, we may also check that the sets o(n, v) are precisely the infinite
cocircuits of M∅(Q). It is clear that o(n, v) ∼ o(n′, v′) if and only if for all
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a1 a2 a3 a4

b01 b02 b03

b11 b12 b13

c01 c02 c03

c11 c12 c13

v : 0 1 01

Figure 5: A Q-circuit

sufficiently large i we have v(i) 6= v′(i), so that the equivalence relation ' on
C∞ is given by o(n, v) ' o(n′, v′) if and only if for all sufficiently large i we have
v(i) = v′(i).

Applying Theorem 1.2, we obtain that for any set Φ of '-equivalence classes,
there is a matroid MΦ(Q) with circuit set C(M∅(Q)) ∪

⋃
Φ and cocircuit set

C(M∗{ω}(Q)) ∪
⋃

Φ∗, where Φ∗ ⊆ D∞/ ' is the set of equivalence classes [b]

such that there is no [o] ∈ Φ with o ' b. Furthermore, every Q-matroid arises
in this way.

We now proceed to analyse which of the conditions of Theorem 4.1 hold for
theseQ-matroids. If Φ = ∅ then MΦ(Q) is finitary, and so is tame. Furthermore,
in this case condition (3) is easy to check, and applying the theorem, we obtain
that all the conditions hold. Similar arguments apply to MC∞/'(Q), which is
cofinitary. In the following list, we shall consider what happens for a typical
Φ with ∅ ( Φ ( C∞/ '. Let E be the common ground set of the matroids
MΦ(Q).

It will turn out that in these nontrivial cases, we always have (3-6) and never
have (1-2) or (9), but sometimes have (7) and (8).

1. We shall show that MΦ(Q) is not a binary thin sums matroid. Suppose for
a contradiction that it is: then there is a set A and a family of functions
(φe : A → F2|e ∈ E) such that the circuits of MΦ(Q) are the minimal
nonempty supports of functions c : E → F2 such that for any a ∈ A the
sum

∑
e∈E c(e)φe(a) is well defined and equal (when evaluated in F2) to

0. Equivalently, there is a set D of subsets of E (given by {{e ∈ E|φe(a) =
1}|a ∈ A}) such that the circuits of MΦ(Q) are the minimal nonempty
subsets of E whose intersection with any element of D is finite and of even
size.

Since no intersection of any element of D with any circuit of MΦ(Q) has
size 1, each element of D is a union of cocircuits of MΦ(Q). By our
assumption that Φ 6= C∞/ ', there must be some element s of D which is
not a union of cocircuits of M{ω}(Q), and so which includes some element
b of

⋃
Φ∗. Let o be any element of

⋃
Φ. Then o 6∼ b, and so o ∩ b is

infinite, and so o ∩ s is infinite, which is the desired contradiction.

2. Let o ∈
⋃

Φ and b ∈
⋃

Φ∗. Then |o ∩ b| is not even: it is infinite.
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3. The only ways an intersection of a circuit o with a cocircuit b of MΦ(Q)
can be finite are if o ∈ C(M∅(Q)) or b ∈ C(M∗{ω}(Q)), and in either case

|o ∩ b| is even. In particular, we never have |o ∩ b| = 3.

4. If MΦ(Q) had a minor isomorphic to U2,4, then in that minor there would
be a circuit and a cocircuit with intersection of size 3. But then by
Lemma 2.3 we could extend these to a circuit and a cocircuit of MΦ(Q)
with intersection of size 3, and we have just shown that this is impossible.
So there is no such minor.

5. Let o1 and o2 be circuits of MΦ(Q). Using the fact that (5) holds in
M{ω}(Q), we obtain that o14o2 includes some element o3 of C∞. If both
o1 and o2 are finite, so is o3, so o3 is a circuit of MΦ(Q). If o1 is finite
but o2 is not, we have o2 ' o3, so that o3 is again a circuit of MΦ(Q).
The case where o2 is finite but o1 is not is similar. If both are infinite,
and o3 is also infinite, then for any i bigger than all of n1, n2 and n3 we
get that o3 meets {b0i , b1i , c0i , c1i }, so (o14o2) also meets this set and so (by
construction) must include it. But then we get a finite circuit o′3 ⊆ o14o2

given by (o3 ∩ {a1} ∪
⋃
j<i{b0j , b1j , c0j , c1j}) ∪ {b0i , b1i } for any such i, and o′3

is a circuit of MΦ(Q) because it is finite.

6. This is also true for any matroid MΦ(Q), by a similar argument to that
for (5).

7. If I contains an even number of infinite circuits we may proceed as for (5).
But if I contains an odd number of infinite circuits, this will fail for some
choices of Φ. For example, for i ∈ {1, 2, 3}, let wi : N→ {0, 1} be defined
by wi(n) = 1 if n is congruent to i modulo 3 and w(n) = 0 otherwise.
Let oi = o(0, wi). Let Φ = {[o1], [o2], [o3]}, so that each oi is a circuit
of MΦ(Q). It is clear that o14o24o3 = o(0, n 7→ 1) includes no infinite
circuit of MΦ(Q).

In order for this condition to be true of MΦ, it is necessary and sufficient
for Φ to be closed under the ternary operation

f : [o(1, v1)], [o(1, v2)], [o(1, v3)] 7→ [o(1, χ{n∈N|{i|vi(n)=1} has 1 or 3 elements})]

8. Like (7), this condition holds of MΦ(Q) precisely when Φ is closed under
the ternary operation f .

9. Let o = o(0, v) be some infinite circuit in
⋃

Φ, and s = o(0, w) some
infinite circuit which is not in

⋃
Φ. Then it is easy to check that s is a

base of MΦ(Q), and that whenever v(i) 6= w(i) the fundamental circuit

of b
v(i)
i with respect to s contains a1. Since this happens infinitely often,

the expression 4e∈o\soe is not well defined (it is not a thin symmetric
difference), so that this condition always fails for at least one base.

However, there is also always at least one base s for which we do have o =
4e∈o\soe for any circuit o of MΦ(Q), namely {a1}∪{b0i |i ∈ N}∪{c1i |i ∈ N}.
This choice of base works because it is already a base in M{ω}(Q).
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Note that the matroids constructed in Theorem 3.8 are almost never tame.
In fact, any intersection of a circuit in Φ with a cocircuit in Φ∗ must be prolonged
and so infinite. Thus the only cases in which MΦ(R) might be tame are those
with Φ empty or equal to the whole set of prolonged circuits.

5 Proof of the main result

We noted above that, if we have a matroid N with a tree-decomposition (T,R) of
adhesion 2 then we often cannot reconstruct N from the induced tree of matroids
T (N,T,R). In this section we will explain what additional information is needed
to reconstruct N .

In Section 3, we showed that if T is a ray then the extra information we need
is the set Φ of '-equivalence classes containing canonical precircuits of circuits
of N . For more general tree-decompositions (T,R), we will need to make such
a specification for each end of T .

For each ray Q ⊆ T , by Theorem 2.20, there is a minor NQ of N with
tree-decomposition (Q,RQ), with RQ chosen so that T (NQ, Q,RQ) is obtained
by restricting T (N,T,R) to Q. Since NQ is a matroid, we get a set Φ(Q) of
'-equivalence classes containing canonical precircuits of circuits of NQ. Note
that the sets Φ(Q) for the rays Q in some end ω are easily determined in terms
of each other.

This suggests that the extra information we use should consist of a choice,
for each end ω, of a set Φ(Qω) of '-equivalence classes for some chosen ray
Qω belonging to ω. This then determines a choice of Φ(Q) for each other ray
Q of T . The construction we have just outlined gives a choice of such a Φ for
each tree-decomposition (T,R) of a matroid N . We will denote this choice by
Φ(N,T,R).

Given a tree T = (T,M) of matroids and a specification of Φ(Qω) for each
end ω of T as above, we say that a T -precircuit (So, ô) is a Φ-precircuit if and
only if for each ray Q of So we have (Q, ô�Q) ∈

⋃
(Φ(Q)). A Φ-circuit is a

minimal nonempty underlying set of a Φ-precircuit. Dually, a T -precocircuit
(Sb, b̂) is a Φ∗-precocircuit if and only if for each ray Q of Sb we have (Q, b̂�Q) ∈⋃

((Φ(Q))∗), and we define Φ∗-cocircuits dually to Φ-circuits. If there is a
matroid whose circuits are the Φ-circuits of T and whose cocircuits are the Φ∗-
cocircuits of T then we will call that matroid the Φ-matroid for T , and denote
it MΦ(T ).

The purpose of this section is to prove the following.

Theorem 5.1. Let (T,R) be a tree-decomposition of a matroid N of adhesion
2. Then N is a Φ-matroid for T (N,T,R).

Note that this is stronger than the claim that each circuit of N arises from
a Φ-precircuit: we will show that the circuits of N are precisely the Φ-circuits.

We will now begin the proof of Theorem 5.1. More precisely, we will now
show that N = MΦ(T (N,T,R)), where Φ = Φ(N,T,R). By definition, every
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N -circuit is the underlying set of some Φ-precircuit For N -cocircuits, we get the
analogous fact.

Lemma 5.2. Every N -cocircuit is an underlying set of a Φ∗-precocircuit.

Proof. Suppose not for a contradiction. That is, there are an N -cocircuit b and
an N -circuit o such that the underlying set Sb of the canonical precocircuit
(Sb, b̂) for b and the underlying set So for ô have a common end ω such that
they are '-equivalent at ω. Thus there is a ray Q = q1q2 . . . converging to ω in
the intersection of Sb and So.

If the decomposition tree is a ray, we obtain a contradiction to Theorem 3.8.
The other case can be reduced to this case as follows: We define RQ to be the
following coarsening of the torsos R. We define RQqi to be the union of all the
Rv such that in T the vertices v and qi can be joined by a path that does not
contain any other qj . Then (Q,RQ) is a tree-decomposition of N of adhesion 2.
But the precircuit and precocircuit defined by o and b are also '-equivalent at
ω for the tree-decomposition (Q,RQ), contradicting Theorem 3.8.

The key lemma is the following:

Lemma 5.3. The underlying set o of any Φ-precircuit (So, ô) is an N -scrawl.

Dually, the underlying set b of any Φ-precocircuit (Sb, b̂) is an N -coscrawl.

In fact the theorem follows easily from this Lemma.

Proof that Lemma 5.3 implies Theorem 5.1. By Lemma 5.3, every Φ-circuit o′

is an N -scrawl and so includes an N -circuit o. By minimality, o′ must be o
since o is the underlying set of the canonical precocircuit of o. Conversely,
every N -circuit o is an underlying set of its canonical precircuit. Suppose for
a contradiction that there is a Φ-precircuit whose underlying set is properly
included in o. Then this underlying set is an N -scrawl, so o properly includes
an N -circuit, which is impossible. So o is a Φ-circuit. Summing up, the Φ-
circuits are precisely the N -circuits.

The dual argument shows that theN -cocircuits are precisely the Φ-cocircuits.
This completes the proof.

In order to prove the first statement of Lemma 5.3, it suffices by Lemma 2.4
to prove that |o ∩ b| 6= 1 for any underlying set o of a Φ-precircuit (So, ô)

and any N -cocircuit b with canonical precocircuit (Sb, b̂). Now suppose for a

contradiction that there are such o, (So, ô), b and (Sb, b̂) with a single element
e in o ∩ b.

Let N ′ be the matroid obtained from N by applying Theorem 2.20 to the
subtree So of T . Then Φ(N ′, So, R�So

) is just Φ restricted to the set of ends
of So by the characterization of the N ′-circuits in Theorem 2.20. Clearly,
(So, ô) is a Φ(N ′, So, R�So

)-precircuit. By Theorem 2.20, the underlying set of

(Sb ∩ So, b̂�So
) is an N ′-cocircuit. This construction shows that we may assume

without loss of generality that So = T .
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Lemma 5.4. The tree Sb includes a subdivision of the binary tree T2.

Before we prove Lemma 5.4, we need the following definition. Let te be the
node of T containing e. We say that a directed edge tt′ of Sb points away from
e if te is not in the subtree Tt→t′ . A node of a tree is called a branching vertex
if it has degree at least 3.

Proof. The binary tree in Sb will be built in two steps. First we show that for
every directed edge tt′ of Sb pointing away from e, the subtree St→t′ includes
a ray, then we show that it contains a branching vertex of Sb. This will then
show that Sb includes a binary tree since Sb includes at least one edge incident
with te as ô(te) and b̂(te) have to intersect in an element different from e. Thus
it remains to prove the following two sublemmas.

Sublemma 5.5. Let tt′ be a directed edge tt′ of Sb pointing away from e. Then
the subtree St→t′ includes a ray.

Proof. We construct the ray as follows. Let t1 = t and t2 = t′, and suppose
that ti is already defined. Then for ti+1 we pick a neighbour of ti in Sb such
that titi+1 points away from e. There is such a choice since ô(ti) and b̂(ti) have
to intersect in an element different from e(ti−1ti). Then (ti|i ∈ N) is the desired
ray.

Sublemma 5.6. Let tt′ be a directed edge tt′ of Sb pointing away from e. Then
the subtree St→t′ contains a branching vertex of Sb.

Proof. Suppose for a contradiction that St→t′ does not contain a branching
vertex. Then by Sublemma 5.5 it is a ray: St→t′ = q1q2 . . .. By Theorem 2.20,
there is a minor N ′ of N that has a tree-decomposition of adhesion 2 with tree
St→t′ such that the matroid associated to qi is R(qi). Then Φ(N ′, St→t′ , R�St→t′

)

is just Φ restricted to the end of St→t′ . The restrictions of (So, ô) and (Sb, b̂)
to St→t′ give a precircuit and a precocircuit for that new tree-decomposition
which are not '-equivalent at the end. This contradicts Theorem 3.8, which
completes the proof.

The strategy for the rest of this proof will be to improve b in two steps,
first to b1, then to b2, both satisfying the same conditions as b. Let (Sb1 , b̂1)

and (Sb2 , b̂2) be their canonical precocircuits. In the first step we force Sb1 to
have many vertices of degree 2. In the second step we force all but one of the
vertices of Sb2 to have degree 2 so that Sb2 does not include a binary tree. By
Lemma 5.4, we then get the desired contradiction.

Before defining b1, we construct a set B ⊆ Sb satisfying the following condi-
tions.

1. te ∈ B.

2. Every ray in Sb meets B.
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Tn
∂Tn

x

s(x)

Figure 6: The construction of Tn+1 for n even.

3. Every ray in Sb meets some connected component of Sb \B such that one
of its nodes contains a (non-virtual) element of b.

4. Every vertex of B is a branching vertex of Sb.

Lemma 5.7. There exists B ⊆ Sb satisfying 1-4.

Whilst the conditions 1 and 4 are easy to satisfy, the conditions 2 and 3 are
in competition in the sense that putting more nodes into B makes it more likely
that condition 2 is true but less likely that condition 3 is true.

Proof. We shall construct a sequence of nested rayless subtrees Tn of Sb that
will exhaust the whole of Sb. The set B will be a union of all the sets of leaves
of the Tn with n odd (we will ensure that all such leaves lie outside Tn−1).

To start with the construction, let T1 = T2 = {te}. Now suppose that Tn is
already constructed, where n is even. Let ∂Tn be the set of those nodes x of Sb
that have a neighbour t(x) in Tn but are not in Tn, see Figure 6.

By Sublemma 5.6, for each x ∈ ∂Tn the subtree (Sb)t(x)→x contains a unique

branching vertex s(x) that is nearest to x. We obtain Tn+1 from Tn by adding
for every x ∈ ∂Tn the unique s(x)− Tn-path. In particular, ∂Tn ⊆ Tn+1.

Now assume that Tn is already constructed with n ≥ 3 odd. Since (Sb, b̂) is
the canonical precocircuit for b, for each x ∈ ∂Tn the subtree (Sb)t(x)→x includes

a node r(x) such that b contains a non-virtual element of the matroid associated
to r(x), and by the choice of ∂Tn this subtree does not meet Tn. We obtain
Tn+1 from Tn by adding for every x ∈ ∂Tn the unique r(x) − Tn-path. This
completes the definition of the Tn.

As revealed above, B is the union of all the sets of leaves of the Tn with n
odd. Clearly B satisfies conditions 1 and 4.
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Sv→ε

to e

d

Figure 7: The construction of (Sa, â)

Next we show that B satisfies condition 3. For each n, the set T2n \ T2n−1

is a forest with the property that each of its components includes one vertex
r(x). Hence B satisfies condition 3, since each ray meets T2n \ T2n−1 for some
sufficiently large n.

It remains to show that B satisfies condition 2. By construction, the Tn
form a sequence of nested rayless subtrees of Sb that exhaust the whole of Sb.
Now let Q be a ray of Sb. Thus there is a large number n such that Sb has a
node in T2n. Let x be the last node of Q in T2n+1. By construction of T2n+1,
the node x cannot have degree 2, so it is branching. Since x is not in T2n, it
must be a leaf of T2n+1, and thus is in B, which completes the proof.

Now we are in a position to define b1. Let X =
[⋃

v∈B E(v)
]
\ o. Applying

(O3)∗ to b,X and e we get a cocircuit b1 with e ∈ b1 ⊆ b ∪ X with b1 \ X
minimal subject to these conditions. Let (Sb1 , b̂1) be the canonical cocircuit for
b1. In the next few lemmas we collect some properties of b1 and Sb1 .

Lemma 5.8. For any v ∈ Sb1 \B, we have b̂1(v) = b̂(v).

Proof. It suffices to show that the possible elements for b̂1(v) are all in b̂(v).

Since Sb1 ⊆ Sb, all possible virtual elements are in b̂(v). The possible non-

virtual elements are in b̂(v) since v 6∈ B.

Lemma 5.9. Each v ∈ Sb1 ∩B has degree 2 in Sb1 .

Proof. Suppose for a contradiction, that there is some v ∈ Sb1 ∩X such that its

degree is not 2. Since Sb1 contains te, and b̂1(te) cannot meet ô(te) only in e,
the tree Sb1 has at least one edge. As Sb1 is also connected, the degree of v in

Sb1 is at least 1. Thus the degree is at least 2 because otherwise b̂1(v) and ô(v)
would just intersect in a single element.
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Now suppose for a contradiction that the degree of v in Sb1 is at least 3. So

there are three neighbours u, w and ε of v such that e(vu), e(vw), e(vε) ∈ b̂1(v),
and the directed edges vu and vw point away from e, whilst vε points towards
e.

Let d be an M(v)-cocircuit that meets ô(v) in precisely e(vu) and e(vε); such
exists by Lemma 2.2. Let Sa = (Sb1)v→u ∪ (Sb1)v→ε + v. We obtain â from the

restriction of b̂1 to Sa− v by extending it to Sa via â(v) = d. This construction
is illustrated in Figure 7.

Applying Lemma 2.18 twice, once to the separation corresponding to vu and
once to the separation corresponding to vε, we get that N = N(w)⊕2 M(v)⊕2

N(ε) where the ground set of N(w) is the set of those elements that are in R(t)
with t ∈ Tv→w. Thus the precocircuit (Sa, â) is an N -cocircuit.

By Sublemma 5.5, the subtree (Sb1)v→w includes a ray Q. By condition 3,
this ray meets a component D of Sb \B that includes a non-virtual element. By
Lemma 5.8 we have D ⊆ (Sb1)v→w, so there is a non-virtual element not in X
used by b1 but not by this new N -cocircuit. Hence this new cocircuit violates
the minimality of b1, which gives the desired contradiction. Thus v has degree
precisely 2 in Sb1 .

Lemma 5.10. For any v ∈ Sb1 ∩ B, the cocircuit b̂1(v) includes at least one
non-virtual element.

Proof. By the property 4 of B, the cocircuit b̂(v) includes at least 3 virtual

elements. Hence b̂1(v) 6= b̂(v) and b̂1(v) has to contain an element not in b̂(v)
which must be real.

Having collected some properties of b1 and Sb1 , we next define b2 in a similar
way to b1. Let B′ = V (Sb1)\B, and let X ′ =

[⋃
v∈B′ E(v)

]
\o. Applying (O3)∗

to b1, X
′ and e we get a cocircuit b2 with e ∈ b2 ⊆ b1 ∪X ′ with b2 \X ′ minimal

subject to these conditions. Let (Sb2 , b̂2) be the canonical cocircuit for b2. Just

as before, for every v ∈ (Sb2 \B′)− te, we have b̂2(v) = b̂1(v).

Lemma 5.11. Each v ∈ (Sb2 ∩B′)− te has degree 2 in Sb2 .

Proof. This is proved in the same way as Lemma 5.9 with B′, X ′, b2 and Sb2
in place of B, X, b1 and Sb1 . Indeed, B′ satisfies condition 2 since B satisfies
condition 3, and it satisfies condition 3 by Lemma 5.10. Conditions 1 and 4
were not used in the proof of Lemma 5.9.

Hence every vertex except for te has degree 2 in Sb2 . Hence Sb2 does not
include a subdivision of the binary tree. Since b2 is a legal choice for b, we
get a contradiction to Lemma 5.4. This completes the proof of the first part
of Lemma 5.3. The proof of the second part is the dual argument. (At first
glace this might look strange since the definition of Φ is asymmetric. How-
ever Lemma 5.2 deals with this asymmetry and the last proof does not rely
on the choice we made when defining Φ.) Hence this completes the proof of
Theorem 5.1.
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If N is tame then we need very little local information at the end. In fact,
by the comments at the end of the last section, for any end ω one of Φ(Qω) or
(Φ(Qω))∗ must be empty, and Theorem 1.1 follows easily.

We need equally little information at the ends if the tree of matroids is
planar.

Proof that Corollary 1.3 follows from Theorem 5.1. It is enough to prove Corol-
lary 1.3 for a nice ray R of matroids with all local matroids being 2-connected
and planar with both virtual elements on the outer face. Let o be the element
of C∞ which at each local matroid takes the outer face. It now suffices to show
that any prolonged circuit o′ ∈ C∞ of R is '-equivalent to o.

Let b ∈ D∞ that is disjoint from o′, which exists as in each local matroid
there is a cocircuit meeting the local circuit of o′ precisely in the virtual elements.
Then o ∼ b ∼ o′, yielding that o and o′ are '-equivalent.

6 Example showing that all our information at
the ends is necessary

Let T2 be the infinite binary tree. While the vertices of T2 are the finite 0-1-
sequences, the ends of T2 are the infinite ones and ω�n consists of the first n
digits of ω.

We obtain W from T2 by replacing each vertex by two non-adjacent ver-
tices and joining two new vertices by an edge if the vertices they come from
are adjacent. Then we join the two vertices replacing the root, see Figure 8.
Formally V (G) = T2 × {1, 2}, where (v, x) and (w, y) are adjacent if v and w
are or v = w = root.

Figure 8: The graph W .

The canonical tree-decomposition of W into 3-connected minors is the fol-
lowing:

• The decomposition-tree is Ṫ2, the binary tree with each edge subdivided;

• The torsos of the subdivided edges are K4s, where the virtual elements
are non-adjacent;
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• The torsos of the other vertices consist of 3 elements in parallel, which are
all virtual elements.

The bottom virtual element of a torso of this tree-decomposition is the one
whose corresponding element of Ṫ2 is nearer to the root of Ṫ2 (the root of Ṫ2

is the vertex that is also the root of T2). Let T be the tree of matroids with
underlying tree Ṫ2, which has M(K4)s at all subdivision vertices and U1,3 at
all other vertices. Once more the virtual elements of the M(K4)s are not in a
common triad.

By Theorem 5.1, every matroid that has T as its canonical tree of matroids
is a Φ-matroid. Next, we shall derive a more explicit description of the Φ-classes
at each end. There are natural bijections between the ends of Ṫ2, T2 and W ,
and we shall suppress them in our notation.

By F we denote the set of circuits of MTC(W ): these are the edge sets of
finite cycles of W , double rays of W with both tails converging to the same end,
and pairs of vertex-disjoint double rays which both go to the same ends.

Let o ∈ F converge to the end ω. Then o induces a {+,−}-sequence of in-
finite length towards ω as follows: the n-th digit is + if both (ω�n, 1)(ω�n+1, 1)
and (ω�n, 2)(ω�n+1, 2) are elements of o, otherwise it is -. Note that it is eventu-
ally true that if the n-th digit is -, then (ω�n, 1)(ω�n+1, 2) and (ω�n, 2)(ω�n+1, 1)
are elements of o.

It is not difficult to check that two circuits are in the same Φ-class at ω if
and only if their induced {+,−}-sequences agree. Thus every Φ-matroid of T
is uniquely determined by a choice for each end of T2 of a subset of {+,−}N
that is closed under finite changes. For any such choice τ , an element o of F is
τ -legal if o induces only {+,−}-sequences in τ at all ends to which o converges.

In this section we prove that for any such choice τ we do get a matroid.

Theorem 6.1. Let τ be a choice for each end of T2 of a subset of {+,−}N that
is closed under finite changes. Then the set C of τ -legal elements of F is the set
of circuits of a matroid.

First we need some preparation. The edge set of K4 admits a unique 3-
partition E(K4) = X1∪̇X2∪̇X3 into three pairs of non-adjacent edges. We shall
need the following property of K4:

Remark 6.2. Let Y1∪̇Y2 be a partition of X1∪̇X2, and let e ∈ X3. Then Y1

spans e, or Y2 cospans e or {X1, X2} = {Y1, Y2}.
Proof of Theorem 6.1. Let D be the set of those bonds b of W that have infinite
intersection with every τ -legal element of C converging to some end to which
b converges. We shall apply Theorem 2.9 in order to show that C is the set of
circuits of a matroid. Thus it remains to show that C and D satisfy (O2) and
(CM). Indeed, (O1) is clear since if a topological cycle and a bond of a locally
finite graph intersect just in a single edge, then there is an end to which they
both converge, see for example [4, Lemma 2.6].2

2In this section all topological cycles will have that shape. However in general graphs
topological cycles may be more complicated, see [7] for a definition of the topological-cycle
matroid of a locally finite graph.
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First we check (O2) for some partition E = P ∪̇Q∪̇{e}, where e is the edge
joining the two vertices replacing the root of T2. We may assume that there
is no finite o ∈ C with e ∈ o ⊆ P + e and that there is no finite b ∈ D with
e ∈ b ⊆ Q+ e.

We say that a subdivided edge of Ṫ2 is blocking if the bottom virtual element
of its torso is cospanned by the elements of that torso that are in Q. In order
to study the torsos that are isomorphic to K4, we shall use the 3-partition of
E(K4) discussed above, where we follow the convention that X3 consists of
the virtual elements. We say that a subdivided edge u of Ṫ2 is undecided if
{P ∩ E(u), Q ∩ E(u)} = {X1, X2}.

Let U be the set of all subdivided edges of Ṫ2 that are not separated by a
blocking vertex from the root. Any t ∈ U is undecided. To see this just consider
the first subdivided edge above the root and below t that is not undecided and
apply Remark 6.2.

Let Ū be the set of those blocking vertices that only have vertices in U below
them. For each r ∈ Ū we pick a bond br witnessing that Q ∩ E(r) cospans the
bottom element of the torso at r.

Let b′ be the set of all edges of Q that are in torsos for nodes in U together
with the non-virtual elements of all the bonds br with r ∈ Ū . By construction
b = b′ + e is a bond of W containing e. We may assume that some τ -legal
element o of C has finite intersection with b and converges to some end ω to
which b converges. Relying on the particular description of F , we can change
o so that we may assume without loss of generality that o is a double ray and
has only the end ω in its closure3. We get o′ from o by changing o to E(u) ∩ P
at the finitely many torsos u at which o intersects b. Since all these torsos are
undecided, o′ is a double ray and it is τ -legal as τ is closed under finite changes.
Thus o′ witnesses (O2) in this case.

Having proved (O2) in the case where e is the edge joining the two vertices
replacing the root of T2, it remains to consider the case where is e is an edge
of some torso u. Let S and S′ be the two components of Ṫ2 −u. The above
argument yields (O2) at the virtual element of T restricted to S. This and the
corresponding fact for S′ imply (O2) in this case. We leave the details to the
reader.

Having proved (O2), it remains to prove (CM). For that let I ⊆ X ⊆ E(W )
be given. Let Z be the set of those subdivided edges z of Ṫ2 such that X
contains no non-virtual element of E(z). Let u be a subdivided edge of Ṫ2 not
in Z. Then we may assume that I contains at least one edge in E(u) since the
set of the 4 non-virtual elements of E(u) meets no element of F just once. Let
L consist of one edge of I for each such torso.

Let W ′ = W −X. Let D be a connected component of W ′. We abbreviate
I ′ = I ∩ E(D), L′ = L ∩ E(D) and X ′ = X ∩X ′, and our intermediate aim is
to construct a set witnessing (CM) for I ′ and X ′.

Let W ′′ = D′/J ′. Let K be the torso-matroid obtained from M(K3) by

3We say that an end ω of a graph G is in the closure of an edge set F if F cannot be
separated from ω by removing finitely many vertices from G.
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adding the two virtual elements in parallel to two distinct elements. Note that
W ′′ has a tree-decomposition along a subgraph of Ṫ2 such that all torsos at
subdivided edges are K, the other torsos are U0,1 at leaves and else U1,3. By
doing Whitney-flips4 at virtual elements if necessary, we may assume that each
vertex of W ′′ has finite degree. Let C′′ consist of those topological circuits o of
W ′′ such that there is a subset j of J ′ such that o ∪ j ∈ C.

Note that if two elements of C′′ have the same end in their closure, then their
rays to that end eventually agree. It is easy to check for a topological circuit o of
W ′′ that if all its ends are also in the closure of (possibly two different) elements
of C′′, then o is in C′′. Let Ψ be the set of ends in the closure of elements of C′′.
By the above argument, C′′ is the set of Ψ-circuits. By [3, Lemma 6.11], C′′ is
the set of circuits of a matroid (Actually the matroid here is a contraction-minor
of the matroid in that theorem). So let J ′ witness (CM) for I ′ \L′ and X ′ \L′.
Then J ′ ∪ L′ witnesses (CM) for I ′ and X ′. Furthermore it is easy to see that
the union of all these witnesses for the different components D of W ′ witnesses
(CM) for I and X.
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