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Abstract. After a railway track experiencing dynamic loading, the track settles and causes 

ballast to deform, spread and sometime damage. Without appropriate maintenance, void and 

pocket of ballast underneath railway sleepers can establish overtime and impair the ride quality 

of train services. In this study, the emphases will be placed on the application of non-

destructive vibration-based technology, to investigate and evaluate dynamic characteristics of 

voided railway concrete sleepers, which are the fundamental element to provide track support 

to railway systems. The study has developed a curvature-based damage detention method to 

identify ballast voids under railway track sleepers. This method can be easily deployed in the 

field by using fibre bragg grating strain sensors to measure strains for curvature analysis. In 

this study, the assumption is that the time-dependent material degradation negligibly affects the 

curvature ratios. The dynamic finite element model has been established and validated for 

railway sleepers in the field. A variety of losses of ballast support have been simulated using 

the validated model. The dynamic mode shape has been analysed to evaluate curvature ratios 

under different types of ballast losses. Although the method provides positive outcomes, the 

advantages, disadvantages and limitation of the method are then identified and discussed. 

1.  Introduction 

Modern railway tracks are constructed using several components grouped into two categories: 

substructure and superstructure. The substructure includes ballast, sub-ballast, and subgrade, while the 

superstructure includes sleepers (or sometimes called ‘crosstie’), rail pads, fasteners, and rails. Figure 

1 illustrates the typical ballasted railway tracks. Rolling stocks usually travel over the rails to transport 

passengers, goods, etc. The burden of vehicle and transported mass will transfer to axle, to wheel, and 

then to track structures.  The loading conditions acting on railway tracks are normally time dependent 

since the wheels interacts with rails, causing dynamic effects. The dynamic loads often excite the 

railway track components with increased magnitudes at specific frequencies associated with such 

components. It is found that the railway concrete sleepers deteriorate greatly when they are subjected 

to dynamic loads at their resonant frequencies, especially in flexural modes of vibration [1-8]. 

http://creativecommons.org/licenses/by/3.0
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Therefore, resonant characteristics of in-situ railway concrete sleepers are essential in their own 

analysis and design. Based on a number of research studies, it has been found that the resonant 

vibrations of sleepers affect not only the sleepers themselves, but also the wheel–rail interaction forces 

[9-16]. The vibrations of sleepers are also affected by the deterioration of ballast support conditions. 

 

ballast bed

sleeper

rail

rail pad & fasteners

subgrade

wheel

axle

 

Figure 1. Typical railway tracks 

 

Esveld [3] discovered that the ballast breakage increases substantially at a track resonance, so-

called in-phase vibration. This phenomenon causes the voids and pockets, or even the poor packing of 

ballast support underneath railway concrete sleepers [17-23]. A sleeper having voids and pockets 

underneath is hereafter referred to as ‘voided sleeper’. There are several investigations on free 

vibrations of in-situ railway sleeper in track system. Based on the literature survey, although the 

influence of voids and pockets on the dynamic behaviors of local railway concrete sleepers has been 

investigated, the damage detection and structural health monitoring of the ballast voids and pockets 

have not been fully established. In addition, although the sleepers are pressed down onto the ballast 

when a train passes, no one can guarantee whether under any circumstances the voids (at least most of 

them) are closed and the ballast fully supports the sleepers at the train passages. The fundamental 

reason of derailment and track overturning can be of numerous theories. One possible way is the high 

risk of overturning instability of railway tracks whereas the resonances due to void effects could 

enhance the overturning instability of global tracks [1-3]. 

This study is the world-first to investigate the potential of normalized curvatures and dynamic 

mode shapes of railway sleepers to detect ballast voids and pockets. Based on a study by Kliewer and 

Glisic [24], the normalized curvature ratio can be used to detect damages in concrete beams and 

girders over bridge. The potential of the method has inspired this study with the aim to provide an 

alternative method to detect ballast voids and pockets in the field. In this study, the nonlinear finite 

element model of ballast voids and pockets has been established and calibrated with experimental 

data. The simulation results are used to explore the possibility of the normalized curvature ratio 

method and to develop a novel curvature-based approach capable of detecting ballast voids and 

pockets using free vibration characteristics of the sleepers. The lowest mode of flexural vibration has 

been considered in this study since free vibration occurs primarily in the first or lowest mode in most 

cases in real structures [24-26]. The insight into this novel approach will pave itself as a supplement 

technique that helps rail track engineers evaluate the ballast support conditions, which cannot be 

visually inspected in practice [26-31].  
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2.  Normalised curvature ratio 

This study develops and explores a novel curvature-based method capable to detect ballast voids and 

pockets under railway sleepers using free vibration characteristics that can be predicted by simulations 

or measured in the field using either experimental modal testing or operational modal analysis. This 

novel technique has been inspired by a recent work [24] that depicts a potential to use this method for 

bridge girders. In general, the modeshapes and curvature modes under free vibration are not expected 

to change unless the structure experiences irregular behavior. This forms a basis for the key 

assumption of this curvature-based method. In real life, sleepers are embedded in the ballast and the 

support condition of the sleepers cannot be inspected or monitored. There is currently no sensor that 

could directly detect the ballast damage and voids underneath the sleepers. This study aims to develop 

an alternative non-destructive testing technique that can be used as a supplemental method in the field 

to detect ballast voids and pockets underneath the rail track sleepers.  

The equation of motion of a railway sleeper under transverse free vibration with a small amplitude 

can be described by: 

 
∂

∂x
(𝑘𝐴𝐺𝑟 [𝜙(𝑥, 𝑡) −

∂𝑤(𝑥,𝑡)

∂x
]) + 𝑚𝑟

∂2𝑤(𝑥,𝑡)

∂t2  = p̄(𝑥, 𝑡)          (1) 

 

𝐸𝐼𝑟
∂2𝜙(𝑥,𝑡)

∂x2 −  𝑘𝐴𝐺𝑟 [𝜙(𝑥, 𝑡) −
∂𝑤(𝑥,𝑡)

∂x
] − 𝑚𝑟𝑟𝑟

2 ∂2𝜙(𝑥,𝑡)

∂t2 + 𝑃𝑎𝜙(𝑥, 𝑡) = 0         (2) 

 

where: 𝑤(𝑥, 𝑡) is the vertical deflection of rail; 𝜙(𝑥, 𝑡) is the rotation angle of rail neutral axis; 𝐸𝐼𝑟 is 

the rail flexural rigidity; 𝑘𝐴𝐺𝑟 is rail shear distortion rigidity; 𝑚𝑟 is the rail mass per unit length; 𝑟𝑟 

is the radius of gyration of rail cross-section; 𝑃𝑎 is the rail axial force; and p̄(𝑥, 𝑡) is the generalized 

distribute force on the rail. Note that these equations are based on Timoshenko beam theory [32-33]. 

The curvature () of a sleeper at a point along the sleeper can be written as: 

 

 = 𝐸𝐼
∂2𝑤(𝑥,𝑡)

∂x2                 (3) 

 

Based on equation (3), for any sleeper under free vibration in a single mode, the ratio of the curvature 

of the sleeper at one location and the curvature of the sleeper at another location should remain a 

constant value. This is true regardless of the boundary conditions of the system and is independent of 

the amplitude of motion [24]. This ratio between curvatures as normalized curvature ratio (NCR) can 

be defined by: 

 

NCRi,j = i/j                (4) 

 

where i is the curvature of the sleeper at a location i and j is  the curvature of the sleeper at a 

location j. The curvature of the sleeper is based on the lowest bending mode of vibration of the 

sleepers since free vibration occurs primarily in the first or lowest mode in most cases in a real 

structure. In this study, a more sensitive curvature square is also considered. The ratio between 

normalized curvature square (NCSR) can be defined by: 

 

NCSRi,j = 𝑖
2

/ 𝑗
2             (5) 

 

For this curvature-based method, either analytical or numerical model can be used for the NCR and 

NCSR evaluations. If there is a preexisting sensor network installed on the sleepers, the real-time data 

can be used to detect the ballast voids and pockets. Note that a benefit of the NCR and NCSR methods 

is that they do not require any correction of data related to temperature change [24].  
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3.  Nonlinear Simulation of In-situ sleeper 

A nonlinear finite element simulation of the in-situ railway concrete sleeper, which was developed 

earlier in two dimensions and successfully validated [1-2], has been adopted for this study. The 

railway concrete sleeper is modelled using fifty Timoshenko beam elements with a trapezoidal cross-

section while rail pads and ballast systems were modelled as a spring-dashpot element and the elastic 

beam support features in STRAND7 [34]. The elastic support feature allows the changes in any 

element along the beam, making it possible to investigate any type of potential void configurations. 

The standard input data and engineering properties of those components have been adopted from 

previous investigations [1-2]. The in-situ boundary condition is simplified using spring elements as 

rail pads connected to rails. Verifications of the model have been done earlier in both free-free and in-

situ conditions. The results of either eigenvalues or eigenmodes are in very good agreement with the 

previous findings in [1, 2]. The results have clearly proven that the finite element model and the 

simplified approach are capable of predicting the dynamic characteristics of in-situ railway concrete 

sleepers in a track system [35-36]. Figure 2 shows an example of simulation results. 

 

 

 

 

 

 

 

 

Figure 2. The lowest mode of flexural vibration of a 

sleeper (135 Hz) 

 Figure 3. Experimental setup [1] 

4.  Experimental Study 

Commonly, experimental modal analysis (EMA) or modal testing is a non-destructive testing strategy 

based on vibration responses of the structures. Over the past decade, the modal testing has become an 

effective means for identifying, understanding, and simulating dynamic behaviour and responses of 

structures. One of the techniques widely used in modal analysis is based on an instrumented hammer 

impact excitation. By using signal analysis, the vibration response of the structures to the impact 

excitation is measured and transformed into frequency response functions (FRFs) using Fast Fourier 

Transformation (FFT) technique. Subsequently, the series of FRFs are used to extract such modal 

parameters as natural frequency, damping, and corresponding mode shape. In a wide range of practical 

applications the modal parameters are required to avoid a resonance in structures affected by external 

periodic dynamic loads. Practical applications of modal analysis span over various fields of science, 

engineering and technology. In this study, the modal testing is sound and has been employed in the 

experiments as shown in Figure 3 [1]. 
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5.  Results and discussion 

The comparison between the nonlinear finite element simulations and the experimental results can be 

demonstrated in Figure 4. In the small range of ballast voids (a: void length; L: the total length of 

sleeper), only 1-2% difference between experimental and numerical results can be observed. Over the 

larger range of ballast voids, up to 3-4% of discrepancy can be observed. On this ground, the 

numerical model is considered in excellent agreement with the experimental studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison between numerical and experimental results of voided 

sleepers 

 

The numerical studies have been further extended to evaluate the free vibration behavior of the 

sleepers under 5 cases: full ballast support condition; minor ballast void at railseat; severe ballast void 

at railseat; severe ballast void over midspan; and total loss of ballast (or hanging sleeper). Figure 5 

shows the dynamic modeshapes of the sleeper under various cases. It can be observed that small 

variation of the shapes can be observed. 

 

 

Figure 5. Lowest modeshapes of voided sleepers 

 

The curvatures and curvature squares of the sleepers can be seen in Figure 6. It is clear that the 

voids and pockets can slightly affect the normalised curvature. However, the curvature squares show 

relatively more sensitive to the effect of ballast voids and pockets.  
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a) normalised curvature 

 

b) normalised curvature square 

Figure 6. Lowest bending curvatures of voided sleepers (Location indicators: S1 at 

railseat; S2 at midspan; and S3 at the other railseat) 

 

It can be observed that the ballast conditions do not significantly affect the curvature or the 

curvature square of the in-situ sleeper. NCR and NCSR can be evaluated as shown in Figure 7. It can 

be seen that NCR is not sensitive to the ballast voids, when compared with NCSR. Based on this 

study, it is apparent that NCR and NCSR do not present major precursor for the detection of ballast 

voids and pockets. It is because the sleepers tend to behave symmetrically under free vibrations. It is 

clear from the case of total loss of ballast contact. In the total loss case, the sleepers vibrate 

symmetrically so the NCR and NCSR become less sensitive. This indicates that a given configuration 

of sensors is not equally sensitive to the damages occurring symmetrically.  

However, for the cases of asymmetrical ballast voids (e.g. midspan and railseat loss), NCSR can be 

seen a more suitable ratio as the precursor used to detect the ballast voids and pockets. The dominate 

precursor for detecting ballast voids and pockets is S2/S3 (midspan over railseat). This NCSR ratio 

can be used for direct detection of the ballast voids at midspan and at railseat. 
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a) normalised curvature ratio (NCR) 

 

b) normalised curvature square ratio (NCSR) 

Figure 7. Lowest bending curvature ratios of voided sleepers 

 

6.  Conclusion 

This paper presents a novel and simplistic condition monitoring method based on dynamic curvature 

approach. The method uses the normalized curvature ratio (NCR) and the normalized curvature square 

ratio (NCSR) as the precursor for detection of ballast voids and pockets underneath the rail track 

sleepers. The method is initially presented through the analytical study of the railway sleeper using 

Timoshenko beam theory. The experimental and numerical studies have been performed to validate 

the nonlinear finite element model. An excellent agreement between the experimental and numerical 

results can be found. The model has been further extended to evaluate the effect of ballast support 

conditions for this curvature-based method. The aim of this study is to develop a novel alternative 

method that could be used as a supplement technique to detect ballast voids and pockets, which cannot 

be normally inspected visually in practice. 
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The study found that the curvature-based method is sensitive to asymmetrical damage of ballast 

conditions. It does not well respond to symmetrical vibrating behavior of sleepers (such as in the case 

of full support or total loss of ballast condition). In fact, it can be found that the NCSR is a more 

suitable precursor for damage detection of ballast voids and pockets underneath the rail track sleepers. 

The insight into this free vibration characteristics can be simply used to guide railway and track 

engineers to identify voided sleepers in the field using either modal testing or operational responses of 

the sleepers. 
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