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Highlights  

 Ageing athletes are a unique population, who maintain excellent health in older age.  

 This is the first systematic review and meta-analyses of data from master athletes. 

 Age-associated decrements in physical function are offset in master athletes.  

 Unfavourable fat mass gain is mitigated in master athletes.  
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Abstract 

Introduction:  The extent to which chronic exercise training preserves age-related 

decrements in physical function, muscle strength, mass and morphology is unclear. Our aim 

was to conduct a systematic review of the literature to determine to what extent chronically 

trained master athletes (strength/power and endurance) preserve levels of physical function, 

muscle strength, muscle mass and morphology in older age, compared with older and 

younger controls and young trained individuals.  

Methods: The systematic data search included Medline, EMBASE, SPORTDiscus, CINAHL 

and Web of Science databases. Inclusion criteria: i) master athletes mean exercise training 

duration ≥20 years ii) master athletes mean age of cohort >59 years) iii) at least one 

measurement of muscle mass/volume/fibre-type morphology and/or strength/physical 

function.  

Results: Fifty-five eligible studies were identified. Meta-analyses were carried out on 

maximal aerobic capacity, maximal voluntary contraction and body composition. Master 

endurance athletes (42.0 ± 6.6 ml.kg-1.min-1) exhibited VO2max values comparable with 

young healthy controls (43.1 ± 6.8 ml.kg-1.min-1, P=0.84), greater than older controls (27.1 ± 

4.3 ml.kg-1.min-1, P<0.01) and master strength/power athletes (26.5 ± 2.3 ml.kg-1.min-1, 

P<0.01), and lower than young endurance trained individuals (60.0 ± 5.4 ml.kg-1.min-1, 

P<0.01). Master strength/power athletes (0.60 (0.28 to 0.93) P<0.01) and young controls 

(0.71 (0.06 to 1.36) P<0.05) were significantly stronger compared with the other groups. 

Body fat % was greater in master endurance athletes than young endurance trained (-4.44 % 

(-8.44 to -0.43) P<0.05) but lower compared with older controls (7.11 % (5.70 to 8.52) 

P<0.01).  
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Conclusion: Despite advancing age, this review suggests that chronic exercise training 

preserves physical function, muscular strength and body fat levels similar to that of young, 

healthy individuals in an exercise mode-specific manner. 

 

Keywords: Sarcopenia, Lifelong exercise, Muscle mass, Muscle strength, Endurance 

Capacity. 

 

1. Introduction 

The UK population is projected to increase by ~25% between 2013 and 2060, from 64.1 to 

80.1 million (Mitchell et al., 2012) which heralds a demographic shift towards an ageing 

society. This changing demographic presents a significant and overwhelming challenge to 

healthcare provision in the UK (Holloszy, 2000). Indeed, although individuals are living 

longer (i.e., lifespan), many endure a large portion of their later years with a number of age-

related comorbidities (Seals et al., 2015). Extending the length of time individuals remain 

healthy and disease-free (i.e. health-span) with an emphasis on compressing morbidity is 

therefore an important focus (Seals et al., 2015). Physical function (e.g., aerobic capacity and 

muscular strength) typically declines with advancing age and this is often highlighted as a 

principal risk factor for the development of a number of degenerative chronic health 

conditions (Niccoli and Partridge, 2012). However, it has been suggested that exercise 

throughout the lifespan (i.e., ‘chronic’ exercise training) can attenuate or even prevent age-

related declines in physical function. Understanding whether, and to what extent, chronic 

exercise training preserves physical function, muscle strength, mass and morphology is of 

great importance in the pursuit of appropriate countermeasures to age-related health 

deterioration. 
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Reductions of aerobic capacity (VO2max) and muscular strength are major risk factors for all-

cause mortality in older age (Lee et al., 2011; Ortega et al., 2012; Ruiz et al., 2008). VO2max 

and muscular strength are often considered robust measures of physical function and health 

as they require successful integration of the cardiovascular, respiratory and neuromuscular 

systems (Harridge and Lazarus, 2017). The gradual decline of these bodily systems with 

ageing ultimately reduces the ability of older individuals to carry out activities of daily living 

(ADL); forcing many into a state of reduced physical independence and a poorer quality of 

life (Sonn, 1996). Delineating the relative contribution of primary ageing and environmental 

influences (or secondary ageing) to the age-related decline in physical function, muscle 

strength, mass and morphology is problematic. One aspect of secondary aging that is 

considered to be particularly influential is habitual physical activity. The majority of older 

adults reduce habitual physical activity with advancing age (Blair, 2009), and this is often 

accompanied by the presence of at least one chronic disease (Hung et al., 2011). However, a 

small sub-set of the population, referred to as master athletes, are unique in that they have 

chronically undertaken and continue to maintain high levels of physical activity, including 

structured exercise training. Indeed, Zampieri and colleagues (Zampieri et al., 2015) 

demonstrated that senior sportsmen from varied training backgrounds exhibited muscular 

strength, performance, myofibre properties and function comparable with young, healthy 

individuals. These findings suggest that chronic exercise training can preserve physical 

function and skeletal muscle properties in older age. As such, the study of Master athletes 

may allow us the opportunity to distinguish the contribution of primary and secondary ageing 

to the age-related decline in health, function and performance (Harridge and Lazarus, 2017; 

Lazarus and Harridge, 2007). However, Mackey and colleagues observed no difference in 

type I or type II fibre size between young and old regardless of training status, despite 

differences in VO2max; making it challenging to draw firm conclusions regarding the impact 

ACCEPTED M
ANUSCRIP

T



Page 5 of 63 
 

ageing and/or chronic endurance exercise elicits on fibre area (Mackey et al., 2014). To 

further complicate the variable findings in these unique individuals, Piasecki and colleagues 

demonstrated that the loss of muscle size, strength and motor units in the Tibialis anterior 

was similar between master endurance athletes and age-matched untrained controls (Piasecki 

et al., 2016a). The inconsistent findings highlighted advocate the need for a quantitative 

summary of the existing literature surrounding the effect of chronic exercise training on 

indices of performance and skeletal muscle properties.  

Earlier comparisons between young and older individuals and master athletes have typically 

included master athletes younger than 60 y (Gent and Norton, 2013; Kusy and Zielinski, 

2014; Maffulli et al., 1994). Specifically, this systematic review will focus on master athletes 

60 y or older as these individuals would typically have begun to experience age-related 

decrements in physical function, muscle strength, mass and morphology (Doherty, 2003; 

Janssen et al., 2000). Additionally, most systematic review comparisons between young and 

older individuals and master athletes have focused on single outcome measures, specifically 

body composition (Ballor and Keesey, 1991), aerobic capacity (Fitzgerald et al., 1997; 

Wilson and Tanaka, 2000), muscular strength (Peterson et al., 2010) adaptations to training 

(Daskalopoulou et al., 2017) and protein supplementation (Doering et al., 2015). Therefore, 

the primary aim of this systematic review was to establish whether older individuals who 

have undertaken chronic exercise training, preserve physical function, muscular strength, 

mass and fibre properties (i.e. size and relative distribution) compared with untrained age-

matched individuals, as well as younger trained and untrained individuals. A secondary aim 

was to determine the influence of exercise modality (i.e., strength/power vs. endurance) on 

the included parameters. 

 

2. Methods  
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2.1. Information sources and literature search 

A systematic literature search of online databases was conducted in November 2017 using 

selected key words, free text terms, indexed terms, and Boolean operators. The search 

strategies were applied to Medline, EMBASE, SPORTDiscus, CINAHL and Web of Science 

databases. Recursive searching of the bibliographies of eligible studies and relevant reviews 

was performed to identify additional articles. The systematic review was conducted in 

accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) report (Moher et al., 2009).  

 

2.2. Study Selection Criteria 

2.2.1. Inclusion Criteria 

Studies were included in the review if they met the following inclusion criteria: 1) Exercise 

training for a minimum of 20 years in the master athletes group, explicitly stated within the 

study. 2) Mean age of older cohorts older than59 years. 3) Inclusion of at least one 

measurement of muscle mass/volume/fibre type morphology (fibre type, size, area) and/or a 

measurement of strength/physical function. 4) Muscle mass measurement using magnetic 

resonance imaging (MRI), computed tomography (CT), dual x-ray absorptiometry (DXA), air 

displacement plethysmography (BodPod), hydrostatic weighing, bioelectrical impedance 

analysis (BIA) or B-Mode ultrasonography.  Physical function/strength/performance 

measurements to include one, or more, of: handgrip strength, isometric/isotonic 

strength/power/torque or aerobic capacity (VO2max). 5) Freedom from any neurological, 

neuromuscular, cardiovascular and metabolic disease. 6) Studies published only in English 

with no date restrictions. 

2.2.2. Exclusion Criteria 
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Studies were excluded from the review if: 1) The authors did not explicitly state the length of 

time that master athletes had been continuously training, or if that time was less than 20 

years. 2) No inclusion of relevant measures of muscle mass/morphology or physical function. 

3) Relevant data could not be obtained directly from potentially eligible articles or via contact 

with the study authors.  

 

2.3. Participant criteria  

Sedentary older control groups were required to be of a similar age to master athlete groups 

(mean group >59 years) and have undertaken little, to no, structured exercise training. Older 

control groups did not have to be completely sedentary compared with master athlete groups. 

Young controls were required to be younger than 40 years, and have undertaken little to no 

structured exercise training. Young controls did not have to be completely sedentary 

compared with young trained individuals, who were required to be younger than 40 years and 

undertaking either structured endurance or strength/power-based exercise training.  

2.4. Study Selection  

Titles and abstracts were screened for relevance by 2 reviewers (J.M. and B.J.S). Irrelevant 

titles were removed. Full-text articles were obtained for potentially relevant studies via a 

combination of online databases, hardcopy sourcing and direct contact with the authors, and 

these were further evaluated to determine whether they met the inclusion criteria. Studies 

deemed eligible were included in the systematic review. Two reviewers (J.M and B.J.S.) 

independently assessed full-texts for eligibility; any disagreements between the two 

reviewers were settled by consensus. All records were managed using the reference software 

EndNote (Thomson Reuters, v.X7) 

2.5. Data Extraction 
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Predetermined variables were extracted from each of the included studies using a customised 

data extraction form (J.M and B.J.S). Measures of interest included participant characteristics 

(number, age, and anthropometrics), training type and duration, measurements of muscle 

mass, physical function (strength, aerobic capacity) and fibre-type characteristics along with 

various aspects of study design/assessment (measurement tool or analytical method). In 

situations where the necessary data could not be obtained, either directly from the article or 

by contacting the corresponding authors of the paper, the study (or particular outcome 

measure) was excluded from review and/or meta-analysis.  Where BMI was not reported, it 

was calculated manually from the reported mean height and weight of the study groups.  

2.6. Data Syntheses & Statistical Analyses  

Statistical analyses were dependent upon the number of studies obtained and the associated 

outcomes measures in the relevant studies. If sufficient studies incorporating an eligible 

analytical protocol were identified for a single outcome measure (e.g., VO2max), a meta-

analysis was conducted. In cases where insufficient data were available from eligible studies 

to conduct a meta-analysis for a single outcome measure (e.g., muscle mass), findings were 

presented narratively/qualitatively.   

 

Meta-analyses were performed on studies (and variables) which included direct comparisons 

(within study) between master athletes (power/endurance) and a non-exercising older 

controls (older control) or young trained/non-trained groups. Meta-analyses were carried out 

with a random effects model using RevMan software (Review Manager (RevMan) V.5.3. 

Copenhagen, The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). Data in 

meta-analyses were presented as mean differences (MD)/standardised mean differences 

(SMD) ± 95% confidence interval (CI). Standardised mean differences were presented only 

for outcomes reported using non-comparable scales (i.e. muscular strength). All data were 
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presented as mean ± SD, along with the number of studies/study groups reporting that 

particular variable and the number of participants included in that comparison.  

 

3. Results  

3.1. Study Selection 

A total of 14,572 studies were identified by the extensive literature search and a further 1 

study was identified by manual searching of reference lists. Following removal of duplicates, 

393 study titles and abstracts were screened resulting in 143 articles being excluded from the 

review; leaving 250 full texts to be independently screened (J.M and B.J.S). Figure 1 

highlights the study identification, screening process and reasons for study exclusion.  

3.2. Study Characteristics 

The 55 included studies demonstrated substantial heterogeneity regarding the outcome 

measures and methodology (Table 1). Further, the participant characteristics displayed 

substantial incongruity, specifically the mode and level of exercise training, and the number 

of years training experience (Table 2).  Twenty-one studies included young untrained control 

groups, 43 studies included 44 older control groups, 2 studies each included a young 

strength/power trained group, 11 studies included 12 endurance trained young groups and all 

studies included at least one master endurance and/or strength/power training group. 

3.3. Participant Characteristics  

The 55 eligible studies included 2449 participants (2181 were Male and 268 Female). In 

short, included groups were master endurance athletes (67.3 ± 5.1 years, 1.73 ± 0.04 m, 71.6 

± 5.2 kg, 56 study groups, n=958) and master power athletes (71.7 ± 4.8 years, 1.73 ± 0.03 m, 

76.2 ± 8.0 kg, 15 study groups, n=218), older controls (67.9 ± 4.5 years, 1.73 ± 0.03 m, 78.2 

± 6.2 kg, 44 study groups, n=746), young endurance trained (25.4 ± 3.1 years, 1.79 ± 0.03 m, 

70.1 ± 5.0 kg, 13 study groups, n=143), young power trained (26.0 ± 1.6 years, 1.80 ± 0.02 
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m, 77.0 ± 0.4 kg, 3 study groups, n=47) and young controls (26.6 ± 3.9 years, 1.79 ± 0.03 m, 

75.9 ± 5.0 kg, 23 study groups, n=337). The participant characteristics and anthropometrics 

of the sub-groups included in the review are outlined in detail in Table 2.  

 

3.4. Training characteristics  

Experience – Master athletes had been training for 31.1 ± 9.3 (56 study groups, n=958) and 

35.6 ± 9.6 (15 study groups, n=218) years for endurance and strength/power groups, 

respectively. Young athletes had been training for 6.1 ± 2.6 (13 study groups, n =143) and 

11.2 ± 5.5 (3 study groups, n=47) years for endurance and strength/power groups, 

respectively. 

Frequency - The included groups reported similar training frequency 4.6 ± 1.4, 3.6 ± 1.1, 5.0 

± 0.8 and 4.1 ± 2.5 times per week, for master endurance (21 study groups, n=339), master 

strength/power (7 study groups, n=111), young endurance (4 study groups, n=66) and young 

strength/power trained groups (2 study groups, n=35), respectively.  

Duration – The included groups reported a similar number of training hours per week; 

master endurance 6.8 ± 3.0 h (19 study groups, n=298), master strength/power 6.3 ± 0.7 h (8 

study groups, n=164) young endurance 7.7 ± 3.6 h (6 study groups, n=45) and young 

strength/power 10.0 ± 2.1 h (2 study groups, n=42), respectively.   

Distance - Seventeen study groups of master endurance (44.5 ±10.8 km, n=302) and 3 study 

groups of young endurance trained athletes (44.7 ± 2.9 km, n=30) completed similar weekly 

cycling distances. 

3.5. Fat-Free Mass 

A total of 12 studies (Carrick-Ranson et al., 2014a; DubÉ et al., 2016; Hawkins et al., 2001; 

Hayes et al., 2015; Marcell et al., 2003; Marcell et al., 2014; Pollock et al., 2015; Proctor and 

Joyner, 1997; Sanada et al., 2009; Tarpenning et al., 2004b; Trappe et al., 2013; Yataco et al., 
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1997) reported indices of whole body fat-free mass (FFM) using DXA, hydrostatic weighing 

or bioelectrical impedance. Nineteen study groups included master endurance athletes (55.2 ± 

6.1 kg FFM, n=366), 5 study groups included older controls (54.5 ± 7.7 kg FFM, n=122), 1 

study group included young controls (53.8 ± 5.7 kg FFM, n=23) and 4 study groups included 

young endurance trained individuals (54.8 ± 7.3 kg FFM, n=56).  

 

3.6. Fat Mass 

Only three studies (DubÉ et al., 2016; Schmidt et al., 2015; Yataco et al., 1997) reported 

measures of whole-body fat mass (FM) measured using DXA or hydrostatic weighing. Three 

study groups included master endurance athletes (14.1 ± 3.6 kg FM, n=91), 2 study groups 

included older untrained individuals (20.1 ± 6.3 kg FM, n=65) and 1 study group included 

young endurance trained individuals (12.0 ± 4.2 kg FM, n=14).  

 

3.7. Body Fat Percentage 

A meta-analysis was conducted for body fat % for studies that made direct comparisons with 

master endurance athletes (Figure 2); this allowed for the greatest number of within-study 

comparisons to be incorporated into the statistical analysis. Twenty-nine studies (Aagaard et 

al., 2007; Arbab-Zadeh et al., 2004; Ari et al., 2004; Bjork et al., 2012; Buford et al., 2010; 

Buyukyazi, 2004; Carrick-Ranson et al., 2014b; Cristea et al., 2008; DubÉ et al., 2016; 

Hawkins et al., 2001; Hayes et al., 2015; Katzel et al., 1998; Korhonen et al., 2006; Korhonen 

et al., 2012; Marcell et al., 2003; Marcell et al., 2014; Matelot et al., 2016; Mortensen et al., 

2012; Nyberg et al., 2012; Ojanen et al., 2007; Pollock et al., 2015; Proctor and Joyner, 1997; 

Sallinen et al., 2008; Sanada et al., 2009; Schmidt et al., 2015; Tarpenning et al., 2004a; 

Trappe et al., 2013; Witkowski et al., 2010; Yataco et al., 1997) reported data for body fat 

percentage measured using bioelectrical impedance, DXA, hydrostatic weighing or multiple-

ACCEPTED M
ANUSCRIP

T



Page 12 of 63 
 

site skinfold. Thirty study groups included master endurance athletes (19.7 ± 3.8 %, n=594), 

11 study groups included master strength/power athletes (16.4 ± 4.4 %, n=136), 19 study 

groups older control (24.5 ± 4.6 %, n=361), 5 study groups included young endurance trained 

(15.4 ± 5.2 %, n=63), 2 study groups included young strength/power trained individuals (14.1 

± 3.5 %, n=42) and 8 study groups included young controls (17.4 ± 3.0 %, n=126). 

Master endurance athletes had a significantly lower body fat % than older control individuals 

(P<0.01), and a significantly greater body fat % than young endurance trained (P<0.05). No 

significant differences were observed in the body fat % between master endurance athletes 

when compared with young controls and master strength/power athletes. Young 

strength/power trained individuals were not included in the meta-analyses as no eligible 

studies made direct within-study comparisons with the other included groups. 

 

3.8. Maximal Oxygen Consumption (VO2max) 

A meta-analysis was conducted for VO2max for studies that made direct comparisons with 

master endurance athletes (Figure 3); this allowed for the greatest number of within-study 

comparisons to be incorporated into the statistical analysis. VO2max was measured in 43 

studies (Aagaard et al., 2007; Anselme et al., 1994; Arbab-Zadeh et al., 2004; Ari et al., 

2004; Bhella et al., 2014; Bjork et al., 2012; Buford et al., 2010; Buyukyazi, 2004; Carrick-

Ranson et al., 2014b; DubÉ et al., 2016; Franzoni et al., 2005; Galetta et al., 2005; Galetta et 

al., 2006; Hawkins et al., 2001; Hayes et al., 2015; Katzel et al., 1998; Katzel et al., 2001; 

Mackey et al., 2014; Marcell et al., 2003; Marcell et al., 2014; Matelot et al., 2016; 

Mikkelsen et al., 2013; Molmen et al., 2012; Mortensen et al., 2012; Mucci et al., 1999; 

Nyberg et al., 2012; Ojanen et al., 2007; Pollock et al., 2015; Prasad et al., 2007; Prefaut et 

al., 1994; Proctor and Joyner, 1997; Rivier et al., 1994; Sanada et al., 2009; Schmidt et al., 

2015; Shibata and Levine, 2012; Sundstrup et al., 2010; Suominen and Rahkila, 1991; 
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Tarpenning et al., 2004a; Thomas et al., 2013; Trappe et al., 2013; Witkowski et al., 2010; 

Yataco et al., 1997) using treadmill or cycle/rowing ergometer protocols. All studies reported 

the data relative to bodyweight (ml.kg-1.min-1). Forty-nine study groups included master 

endurance athletes (42.0 ± 6.6 ml.kg-1.min-1, n=889), 3 study groups included master power 

athletes (26.5 ± 2.3 ml.kg-1.min-1, n=37), 32 study groups included older controls (27.1 ± 4.3 

ml.kg-1.min-1, n=602), 13 study groups included young endurance trained individuals (60.0 ± 

5.4 ml.kg-1.min-1, n=143) and 16 study groups included young controls (43.1 ± 6.8 ml.kg-

1.min-1, n=221). VO2max was higher in master endurance athletes than older controls 

(P<0.0001) and master power athletes (P=0.0005). VO2max was higher in endurance trained 

young than all other groups (P < 0.01). VO2max was higher in young controls than older 

controls (P<0.01) and master strength/power athletes (P<0.01). No significant differences 

were observed between young controls and master endurance athletes or between older 

controls and master strength/power athletes.  Young strength/power trained individuals were 

not included in the meta-analyses as no eligible studies made direct within-study comparisons 

with the other included groups. 

 

3.9. Strength 

Maximal voluntary contraction (MVC) was measured in 16 studies (Aagaard et al., 2007; 

Couppe et al., 2014; Korhonen et al., 2006; Korhonen et al., 2012; Marcell et al., 2014; 

Mikkelsen et al., 2013; Mosole et al., 2014; Pollock et al., 2015; Power et al., 2012; Power et 

al., 2010b; Sanada et al., 2009; Sipila and Suominen, 1991; Stenroth et al., 2016; Sundstrup 

et al., 2010; Suominen and Rahkila, 1991; Tarpenning et al., 2004a; Zampieri et al., 2015); 9 

studies with 22 study groups were included in a meta-analysis. A meta-analysis was 

conducted for studies that made direct comparisons with master endurance athletes (Figure 

4); to allow for the greatest number of within-study comparisons to be incorporated into the 
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statistical analysis. Due to the diversity of measurement scales/methods of assessment (i.e. 

knee extension, plantar flexion, elbow flexion and handgrip dynamometry) data are presented 

as SMD ± 95% CI in figure 4. MVC was significantly greater in master strength/power 

athletes (0.60 (0.28, 0.93)) and young healthy controls (0.71 (0.06, 1.36)) than master 

endurance athletes P<0.01 and P<0.05, respectively. No significant differences were 

observed in MVC between master endurance athletes when compared with older controls and 

young endurance trained individuals. Young strength/power trained individuals were not 

included in the meta-analyses as no eligible studies made direct within-study comparisons 

with the other included groups. 

 

3.10. Muscle Architecture 

Three studies reported muscle architecture outcomes (Korhonen et al., 2006; Ojanen et al., 

2007; Sipila and Suominen, 1991); included in those studies were measurements of muscle 

thickness (3 studies) and fascicle length (1 study). Of the studies that measured muscle 

thickness, one study (Korhonen et al., 2006) used the midpoint of the vastus lateralis in 

young controls 18-33 y (2.61 ± 0.08 cm, n=16) and master sprinters of 60-69 (2.1 ± 0.09 cm, 

n=21) and 70-84 y (1.96 ± 0.08 cm, n=20). Another study (Ojanen et al., 2007) summed 

muscle thickness measurements of the vastus lateralis and vastus intermedius in master 

throwers of 65 (3.9 ± 0.7 cm, n=12) and 70 (3.7 ± 0.7 cm, n=9) years compared with older 

controls, 60 (3.8 ± 0.4 cm, n=10) and 75 (3.1 ± 0.2 cm, n=5), with no differences between the 

groups. The final study (Sipila and Suominen, 1991)  measured muscle thickness of the 

rectus femoris, finding no difference between master strength/power athletes (2.73 ±0.37 cm, 

n=7), master endurance athletes (2.77 ± 0.39 cm, n=14) and older controls (2.8 ± 0.56 cm, 

n=11). One study (Korhonen et al., 2006) included measurements of vastus lateralis fascicle 

length which identified no significant differences between the groups of 18-33 year olds 
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(7.91 ± 0.49 cm, n=16), 60-69 (7.99 ± 0.27 cm, n=21) and 70-84 (7.38 ± 0.27 cm, n=20) year 

old sprint athletes.  

 

3.11. Muscle Cross-Sectional Area 

Four studies (Couppe et al., 2014; Mikkelsen et al., 2013; Rantalainen et al., 2014; Sipila and 

Suominen, 1991)  reported muscle CSA; two of which used MRI at the mid-thigh level, 

another used mid-thigh CSA with B-mode ultrasonography and another study used p-QCT to 

measure mid-tibia muscle CSA. Mid-thigh muscle CSA was reported in two studies, which 

highlighted muscle size being greater in younger individuals compared with older individuals 

and also greater in trained individuals compared with untrained controls; young endurance 

trained (7859 ± 636 mm2, n=10), young controls (6792 ± 696 mm2, n=12), master endurance 

trained (6481 ±775 mm2, n=15) and older controls (5504 ± 727 mm2, n=12) (Couppe et al., 

2014; Mikkelsen et al., 2013). Muscle CSA measured using ultrasonography in another study 

did not identify any differences between master power athletes (5250 ± 1080 mm2, n=7), 

master endurance athletes (5270 ± 880 mm2, n=14) or older controls (4840 ±1110 mm2, 

n=11) (Sipila and Suominen, 1991).  CSA of the mid-tibia region indicated that exercising 

individuals have a larger muscle CSA than non-exercising individuals and young individuals 

have a larger mid-tibia muscle CSA than older controls with no age-group interaction 

observed (Rantalainen et al., 2014); young power athletes (7140 ± 820 mm2, n=26), young 

control (7040 ± 1310 mm2, n=41), master power athletes (6270 ± 910 mm2, n=35), older 

controls (5890 ± 890 mm2, n=24).  

 

3.12. Muscle Fibre Area 

In total 9 studies (Aagaard et al., 2007; Cristea et al., 2008; Korhonen et al., 2006; Larsson et 

al., 1997; Mackey et al., 2014; Mosole et al., 2014; Sundstrup et al., 2010; Tarpenning et al., 
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2004a; Zampieri et al., 2015) measured muscle fibre morphology (type/distribution), 

including measures of type I, type II, type IIa, type IIx, type IIax and denervated fibres; using 

a variety of analytical techniques (Table 1). Type 1 fibre area was reported in 5 groups of 

master endurance athletes (5367 ± 588 µm2, n=74), 4 groups of master power athletes (4750 

± 1273 µm2, n=34), 3 groups of older controls (5488 ± 459 µm2, n=28), 2 groups of young 

controls (4282 ± 26 µm2, n=28) and 1 group of young endurance athletes (5550 ± 1337 µm2, 

n=10).  

Type 2 fibre area was reported in 3 groups of master endurance athletes (4478 ± 347 µm2, 

n=55), 1 group of older controls (4149 ± 903 µm2, n=12) 1 group of young controls (4783 ± 

872 µm2, n=12) and 1 group of young endurance trained (5498 ± 1559 µm2, n=10).  

Type 2a fibre area was reported in 2 groups of master endurance athletes (5043 ± 41 µm2, 

n=19), 4 groups of master strength/power athletes (4755 ± 1404 µm2, n=34), 2 groups of 

older controls (5411 ± 484 µm2, n=16) and 1 young control group (4700 ± 560 µm2, n=16).  

Type 2x fibre area was reported in 2 groups of master endurance athletes (3955 ± 88 µm2, 

n=19), 4 groups of master strength/power athletes (4019 ± 990 µm2, n=34), 2 groups of older 

controls (3794 ± 0 µm2, n=16) and 1 young control group (3200 ± 2720 µm2, n=16).  

Type 2ax fibre area was reported in 1 young control group (3700 ± 760 µm2, n=16) and 3 

groups of master strength/power athletes (4120 ± 495 µm2, n=27). 

 

3.13. Muscle Fibre Distribution 

Type 1 fibre distribution was reported in 7 groups of master endurance athletes (60.8 ± 10.7 

%, n=96), 5 groups of master strength/power athletes (48.0 ± 8.0 %, n=59), 6 groups of older 

controls (49.8 ± 4.2 %, n=45), 4 young control groups (43.5 ± 4.5 %, n=37), and 2 young 

endurance trained groups (51.5 ± 13.4 %, n=15). 
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Type 2 fibre distribution was reported in 5 groups of master endurance athletes (38.4 ± 11.3 

%, n=77), 3 groups of older controls (50.3 ± 4.0 %, n=27), 2 young control groups (53.5 ± 

5.0 %, n=17) and 2 young endurance trained groups (48.6 ± 13.5 %, n=15).  

Type 2a fibre distribution was reported in 2 groups of master endurance athletes (32.6 ± 10.7 

%, n=19), 5 groups of master strength/power athletes (31.8 ± 3.8 %, n=59), 2 groups of older 

controls (23.5 ± 0 %, n=16) and 1 young control group (35 ± 12 %, n=16).  

Type 2x fibre distribution was reported in 3 groups of master endurance athletes (10.3 ± 2.7 

%, n=21), 5 groups of master strength/power athletes trained individuals (10.7 ± 4.1 %, 

n=59) 3 groups of older controls (22.2 ± 13.1 %, n=18) and 2 young control groups (7.5 ± 6.4 

%, n=20). 

 

Type 2ax fibre distribution was reported in 2 groups of master endurance athletes (6.3 ± 8.1 

%, n=9), 4 groups of master strength/power athletes (11.6 ± 2.6 %, n=52), 2 groups of older 

controls (5.9 ± 5.8 %, n=8), 2 young control groups (12.0 ± 00 %, n=20) and 1 groups of 

young endurance trained individuals (0.5 ± 0.6 %, n=5). 

The percentage of denervated fibres, defined as fibre size smaller than 30µm, was reported in 

2 groups of master endurance athletes (1.9 ± 0.1 %, n=22), 2 groups of older controls (5.3 ± 

1.8 %, n=15) 1 young control group (0.3 ± 0.0 %, n=5) nand1 young endurance trained group 

(0.4 ± 0.5 %, n=5). 
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4. Discussion 

To our knowledge, this is the first systematic review and meta-analyses to focus on the effect 

of long-term exercise (i.e., endurance or strength/power) on physical function, muscular 

strength, muscle mass and morphology, to understand whether chronic exercise training 

preserves these parameters compared with age-matched untrained individuals, as well as 

younger trained and untrained individuals. There has been considerable debate about the 

relative contribution of primary and secondary ageing to the deterioration in performance and 

skeletal muscle parameters and whether or not this deterioration is inevitable in ageing. Our 

principal findings demonstrate that master endurance athletes are able to completely prevent 

the decline in VO2max found in age-matched untrained individuals; to values similar to those 

observed in young untrained individuals. In addition, we demonstrate that master 

strength/power athletes possess greater strength compared with age-matched master 

endurance athletes and untrained individuals; comparable with young untrained individuals. 

Further, all master athletes maintained a similar body fat percentage to untrained young 

controls, whereas untrained older individuals had a higher body fat percentage than 

endurance trained young. In the absence of structured exercise training, many older 

individuals displaying impairments in exercise performance and functional capacity (Tanaka 

and Seals, 2008), increased fat and reduced lean mass (Evans and Campbell, 1993) and 

changes to muscle fibre morphology (i.e. fibre atrophy and shifts in fibre sub-type) (Zampieri 

et al., 2015). Nevertheless, our findings, as well as those of others, demonstrate that older 

individuals maintain the capacity to adapt to exercise stimuli (Malbut et al., 2002; Newton et 

al., 2002). The results from this review highlight that regardless of the exercise modality (i.e., 

endurance or strength/power), chronic exercise training delays the canonical age-related 

deterioration in physical function and body composition. The maintenance/continuation of 

ACCEPTED M
ANUSCRIP

T



Page 19 of 63 
 

structured exercise training into older age may therefore be seen as the cornerstone to optimal 

ageing and extension of the health-span in our ageing population.   

 

4.1. VO2max  

The reductions in function of multiple bodily systems observed with ageing leads to a decline 

of VO2max at a rate of equivalent to ~10-12% per decade (or ~1% per annum)  (Rogers et al., 

1990). Cardiorespiratory fitness is independently associated with all-cause mortality 

regardless of age, smoking status, body composition, and other risk factors (Lee et al., 2010; 

Lee et al., 2011) and thus a high VO2max may be protective against premature mortality. 

Meta-analysis comparisons revealed a 57% (15.4 ml.kg-1.min-1) greater VO2max in master 

endurance athletes compared with age-matched untrained individuals. Furthermore, master 

endurance athletes exhibited a greater VO2max (7.8 ml.kg-1.min-1) than master strength/power 

athletes. Collectively, these findings highlight that age-related declines in VO2max can be 

prevented by chronic exercise in an exercise mode-specific manner. 

 

The reductions in VO2max reported in master athletes appear to begin at the same age and 

decline at a similar (Faulkner et al., 2008; Wilson and Tanaka, 2000), if not greater ((Eskurza 

et al., 2002; Fitzgerald et al., 1997; Tanaka et al., 1997)), rate compared with age-matched 

untrained individuals; providing evidence that despite continuous endurance exercise training 

there is an unavoidable decline of aerobic capacity. It is proposed that as age progresses, 

master athletes undergo a greater alteration to their activity status (e.g. training intensity and 

volume) (Eskurza et al., 2002; Fitzgerald et al., 1997), which may underpin the accelerated 

rate of decline in VO2max observed (Eskurza et al., 2002; Tanaka et al., 1997). However, the 

studies included in the current review highlighted no observable difference in training 

frequency (Aagaard et al., 2007; Bhella et al., 2014; Buyukyazi, 2004; Carrick-Ranson et al., 
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2014b; Couppe et al., 2014; DubÉ et al., 2016; Franzoni et al., 2005; Galetta et al., 2005; 

Galetta et al., 2006; Korhonen et al., 2006; Korhonen et al., 2012; Larsson et al., 1997; 

Marcell et al., 2003; Marcell et al., 2014; Molmen et al., 2012; Ojanen et al., 2007; Power et 

al., 2010b; Sallinen et al., 2008; Sanada et al., 2009; Sipila and Suominen, 1991; Sundstrup et 

al., 2010; Witkowski et al., 2010; Yataco et al., 1997; Zampieri et al., 2015), distance (Arbab-

Zadeh et al., 2004; Couppe et al., 2014; Hawkins et al., 2001; Mackey et al., 2014; Marcell et 

al., 2003; Marcell et al., 2014; Mikkelsen et al., 2013; Power et al., 2010b; Shibata and 

Levine, 2012; Stenroth et al., 2016; Suominen and Rahkila, 1991; Tarpenning et al., 2004a; 

Thomas et al., 2013; Witkowski et al., 2010) and session duration (Ari et al., 2004; Bjork et 

al., 2012; Buford et al., 2010; Buyukyazi, 2004; Carrick-Ranson et al., 2014b; Couppe et al., 

2014; Korhonen et al., 2006; Korhonen et al., 2012; Matelot et al., 2016; Mortensen et al., 

2012; Mosole et al., 2014; Mucci et al., 1999; Nyberg et al., 2012; Proctor and Joyner, 1997; 

Rantalainen et al., 2014; Rivier et al., 1994; Sanada et al., 2009; Schmidt et al., 2015; 

Stenroth et al., 2016; Suominen and Rahkila, 1991; Trappe et al., 2013; Zampieri et al., 2015) 

between younger and older endurance athletes; although alterations to training intensity 

cannot be excluded as none were reported. VO2max values included in this meta-analysis were 

~32% lower in master endurance athletes (42  6.6 ml.kg-1.min-1) than young endurance 

trained individuals (62.0  5.4 ml.kg-1.min-1), which is supported by recent research 

demonstrating an inescapable reduction in VO2max in master endurance athletes, despite 

continuous levels of endurance exercise training (Everman et al., 2018). It is beyond the 

scope of this review to identify the relative rate of decline in VO2max as no longitudinal 

studies were incorporated. Regardless of the rate at which VO2max declines with age, the 

maintenance of endurance-type exercise and thus cardiorespiratory fitness are paramount to 

offset age-associated health decrements. The greater VO2peak in these highly trained master 
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athletes may therefore allow larger reductions to occur before reduced physical capacity and 

functional independence is compromised, compared with age-matched untrained individuals.  

 

Although not established in the current review, it is generally acknowledged that reduced 

physical activity is a key contributor towards the development of disease, disability and 

physical dysfunction (Booth et al., 2012). Continuation of exercise training may protect 

against the deterioration of health status and age-associated co-morbidities, by commencing 

the decline in bodily function from an elevated VO2peak the ageing process reflects inherent 

ageing uncompromised by inactivity (Harridge and Lazarus, 2017). From a mechanistic 

perspective, the parameters that determine VO2max (cardiac output and arterio-venous 

difference) are known to decrease with advancing age; inclusive of master athletes (Tanaka 

and Seals, 2008). The relative contribution of each parameter is unclear, though the reduction 

of VO2max observed in master endurance athletes may be due to maintenance of stroke 

volume and O2 extraction, as they do not appear to decrease by the same magnitude as heart 

rate with age (Pollock et al., 1987). Consistent with this, maximal heart rate has been shown 

to decrease at approximately 0.7 beat.min-1.year-1, and this is similar regardless of sex or 

physical activity status (Rodeheffer et al., 1984). In addition, peripheral factors influencing 

the arterio-venous difference proposed to contribute to the differences in VO2max between 

older, young, trained and control groups, include the amount of fat-free and fat mass (Tanaka 

and Seals, 2008), which have been shown to decrease and increase, respectively, with 

advancing age (Janssen et al., 2000; Kuk et al., 2009). However, the results from the present 

review demonstrated no discernible differences between groups in the amount of fat-free 

mass for master endurance athletes, age-matched untrained individuals, young untrained 

individuals and young endurance trained individuals. Wroblewski and colleagues (2011) 

demonstrated that chronic endurance exercise is able to preserve thigh muscle CSA in master 
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athletes (Wroblewski et al., 2011). From our data, it is perhaps surprising that the older 

untrained individuals did not display a marked reduction in fat-free mass with advancing age. 

However, it has previously been shown that VO2max remains lower in older trained 

individuals compared with young trained individuals, despite corrections for muscle mass 

(Proctor and Joyner, 1997). Therefore, it is more likely that reductions in capillary density, 

mitochondrial function and enzyme activity (Coggan et al., 1990) are responsible for the 

lower VO2max values observed in master endurance athlete and older controls.  

4.2. Strength 

Muscle strength and power are ~40 and ~80 % lower in older vs. younger individuals (Thom 

et al., 2007). At the top level of competition, this is reflected by decreases in sprint times, 

jumping and throwing distances (Gava et al., 2015). In terms of the general population, the 

functional significance of this decline impacts individuals’ ability to maintain ADL such as 

stair climbing, rising from a chair or opening a jar (Hairi et al., 2010). Moreover, low levels 

of muscular strength are strongly associated with an elevated risk of functional impairment 

(Cruz-Jentoft et al., 2010) and all-cause mortality (Ortega et al., 2012; Ruiz et al., 2008). The 

current meta-analyses (Figure 3) revealed that chronic endurance exercise does not prevent 

age-related declines in muscular strength. However, strength was preserved in master 

strength/power athletes to a level comparable with young untrained individuals, again 

suggesting that preservation of physical function into older age is specific to the mode of 

exercise performed.  

 

It should be noted that assessment of strength within the studies included in the meta-

analyses was achieved through a variety of methods; knee extension MVC, unilateral 

(Aagaard et al., 2007; Couppe et al., 2014; Korhonen et al., 2012; Marcell et al., 2014; 

Mikkelsen et al., 2013; Mosole et al., 2014; Pollock et al., 2015; Sipila and Suominen, 1991; 
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Sundstrup et al., 2010; Zampieri et al., 2015) and bilateral (Korhonen et al., 2006), plantar 

flexion MVC (Stenroth et al., 2016), dorsiflexion MVC (Power et al., 2010b), elbow flexion 

MVC (Power et al., 2012) and handgrip strength (Sanada et al., 2009; Suominen and Rahkila, 

1991)). In addition, the present review lacked a young strength/power trained group for 

comparison, as no studies incorporating this population met the inclusion criteria for the 

review. Therefore, we cannot draw firm conclusions on whether master strength/power 

athletes were able to maintain strength similar to that of young strength/power trained 

athletes. However, it is generally accepted that, similar to VO2max, there is an inevitable 

decline in muscle strength/power with ageing (Goodpaster et al., 2006; Rittweger et al., 

2009), evidenced longitudinally in the performance decrements of master power vs. young 

power trained athletes (Gava et al., 2015).  This suggests that the relative rate of decline in 

muscle strength is similar between trained individuals and age-matched controls. However, 

the higher absolute levels of strength provide strength-trained individuals with a much greater 

strength reserve, thus delaying the onset of impaired function and loss of independence.  

 

4.3. Muscle Mass and Morphology 

One mechanism responsible for age-related strength loss is the decline in muscle mass 

(sarcopenia) (Narici and Maffulli, 2010). In young healthy individuals, muscle mass is 

generally maintained until the 5th decade of life, after which loss of mass progresses at a rate 

of ~0.5-1% per year (Mitchell et al., 2012); and is exacerbated by protracted disuse events 

(Alkner and Tesch, 2004). Thus, by the age of 80 years an individual may have lost ~30-40% 

of peak muscle mass (Janssen et al., 2000). Due to the central role of skeletal muscle in 

physical function, basal metabolism and nutrient deposition, muscle loss can have significant 

health implications. The results from the current review suggest no age or training-related 

differences in muscle mass between groups (master endurance, older untrained, young 
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untrained and young endurance trained individuals). This may be due to a paucity of studies 

that incorporated muscle mass assessment, or that most of the included studies used 

techniques (BIA, DXA, hydrostatic weighing) with lower precision and sensitivity in cross-

sectional comparisons (MacDonald et al., 2011). The absence of any difference in muscle 

mass between groups is perhaps surprising given that the older individuals included in the 

current review were over 60 years and, therefore, beyond the age-range where sarcopenia or 

pre-sarcopenia (loss of muscle mass prior to any functional decline (Pereira et al., 2015)) may 

begin to manifest. The lack of consistency between studies highlights that further 

investigation into age and training-related differences in muscle mass is warranted.  

 

It has been shown muscle mass/volume is associated with muscular strength in young and 

older men and women (Strasser et al., 2013; Young et al., 1984), however there is a clear 

dissociation in the rate at which each declines, with strength loss progressing at a greater rate 

than muscle loss (Delmonico et al., 2009; Frontera et al., 2000).  

Concomitant with the changes in muscle mass, alterations to the neuromuscular system may 

also influence muscle force generating capacity, including reductions in the number of motor 

units, increased size and stimulation thresholds of existing motor units as a result of cyclical 

denervation and re-innervation, and increased instability of transmission at the neuromuscular 

junction (Piasecki et al., 2016b; Piasecki et al., 2015). Two studies (Mosole et al., 2014; 

Zampieri et al., 2015) identified the presence of greater numbers of denervated fibres in the 

muscles of the older controls, when compared with young and older untrained individuals. 

This lends credence to the notion that chronic exercise training, both endurance and 

resistance, is able to preserve the neural component of muscular contraction. There is 

evidence to suggest that the muscle quality (i.e., the force per unit of muscle) is more 

important than muscle mass per se and more closely associated with mortality (Newman et 
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al., 2006). Muscle quality diminishes with age due to changes in architecture (Strasser et al., 

2013), fibre type morphology (Lexell, 1995) fat and non-contractile tissue infiltration (Kent-

Braun et al., 2000), satellite cells and myonuclei (Kadi et al., 2004). Although it was not 

possible to draw firm conclusions on the impact of chronic exercise training on muscle mass 

and quality, it is clear that chronic strength/power exercise can prevent age-associated 

strength decrements. 

 

Ageing is accompanied by a reduction in the total number of muscle fibres, but more 

critically the cross-sectional area and proportion of Type II fibres (Lexell, 1995). However, 

due to the paucity of studies reporting muscle cross sectional area (Couppe et al., 2014; 

Mikkelsen et al., 2013; Rantalainen et al., 2014; Sipila and Suominen, 1991), muscle 

architecture (Korhonen et al., 2006; Ojanen et al., 2007; Sipila and Suominen, 1991) and 

fibre morphology (Aagaard et al., 2007; Cristea et al., 2008; Korhonen et al., 2006; Larsson 

et al., 1997; Mackey et al., 2014; Mosole et al., 2014; Sundstrup et al., 2010; Tarpenning et 

al., 2004a; Zampieri et al., 2015), it is challenging to elucidate their relative contribution to 

the observed loss or preservation of muscle mass and strength between master athletes and 

age-matched untrained individuals. Nevertheless, previous studies have highlighted an 

association between muscle architecture and performance (Kumagai et al., 2000), and that 

muscle architecture may differ across sporting disciplines (Abe et al., 2000). Upon further 

investigation, differences in muscle CSA, thickness and morphology may be an artefact of 

differing analytical methods (i.e. MRI, CT, ultrasound) at divergent anatomical sites (i.e. 

thigh vs. mid-tibia). Though not statistically analysed in the current review, individual studies 

have shown that master strength/power athletes maintain greater fibre cross-sectional area 

compared with untrained older individuals (Aagaard et al., 2007; Korhonen et al., 2006). In 

addition to fibre atrophy, ageing increases the intramuscular infiltration of fat and connective 
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tissue (Taaffe et al., 2009), impairing contractile properties (Lexell, 1995). Studies have 

revealed conflicting findings with respect to muscle fibre distribution between young and 

older endurance trained individuals (Mackey et al., 2014; Mosole et al., 2014; Sundstrup et 

al., 2010; Zampieri et al., 2015), which are likely underpinned by differences in the specific 

mode of exercise training and analytical methods used (Summary data for studies that 

measured these outcomes demonstrate large heterogeneity; presented in Table 3).  

 

4.4. Body Fat Mass 

Age-related alterations in body composition, specifically the increase in adiposity, likely 

contributes to impairments in muscle strength and physical function, increases dependence on 

support services and the likelihood of institutionalised care (Guralnik et al., 1996) and 

ultimately presents a significant risk factor for mortality (Kuk et al., 2006). The current meta-

analyses (Figure 2) illustrated that master endurance athletes had a significantly lower body 

fat percentage compared with age-matched controls. Body fat percentage was similar 

between master endurance, master strength/power and untrained young individuals, whereas 

young endurance trained individuals had a significantly lower body fat percentage than 

master endurance trained individuals. These data indicate that chronic exercise, endurance or 

strength/power oriented, can attenuate the increase in body fat with ageing. It has been shown 

that higher levels of physical activity are preventative for body fat mass gain (Ekelund et al., 

2011). Further, the reduction in physical activity that occurs during ageing (from retirement, 

family commitments, and a lack of other preoccupations) is a critical driver of increasing 

body fat mass (Booth et al., 2012). Unfortunately, few studies included in this review 

provided data for absolute values of fat and fat-free mass, making it difficult to draw 

conclusions about effect that chronic exercise training has on these parameters. Interestingly, 

it has previously been shown that obese individuals possess higher levels of fat-free mass 
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compared with healthy older individuals (Murton et al., 2015), suggesting a minor protective 

role of obesity against sarcopenia.  Nevertheless, we posit that muscle quality, and not 

quantity per se, plays a more important role in the maintenance of whole-body metabolic 

health (Smeuninx et al., 2017).  

 

4.5. Conclusions and Practical applications  

The aim of this systematic review and meta-analyses was to determine whether, and to what 

extent, chronic exercise preserves some of the functional and biological decrements attributed 

to ageing. This review demonstrates that chronic exercise may delay age-associated 

decrements in physical function in an exercise-mode specific manner and also protects 

against unfavourable changes in body composition.  

 

Current physical activity guidelines for older adults suggest 150 minutes per week of 

moderate-to-vigorous physical activity per week, unless chronic conditions prevent them 

doing so (American College of Sports, 2009). Guidelines also recommend that older adults 

incorporate some form resistive based exercise at least twice a week. However, the 

prevalence of functional impairment and reduced independence in older age suggests many 

older individuals are not meeting these criteria. The master athlete cohorts included in this 

review provide evidence that canonical age-related impairments in physical function, 

cardiorespiratory fitness, muscular strength and body composition can be delayed through 

chronic training, in an exercise mode-specific manner. The continuation of endurance type 

exercise to maintain high levels of cardiorespiratory fitness and strength/power training to 

preserve muscular strength offers a viable strategy to extend the health-span of older 

individuals, compressing the area under the morbidity curve and allowing maintenance of 

functional independence and good quality of life. It is apparent that few high quality studies 
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have been conducted in unique master athlete cohorts, and that further research studies 

encompassing a comprehensive selection of sophisticated measurement tools need to be 

conducted in order to fully characterise specific benefits of strength/power training and 

endurance training. Finally, the inclusion of only 268 females in this review reflects a 

preponderance of males included in the study of master athletes. This disparity warrants 

further investigation, as it has been documented that men and women may undergo somewhat 

divergent deterioration in skeletal muscle mass and strength with advancing age, perhaps due 

to reductions in sex-specific hormones (Hansen and Kjaer, 2014; Kim et al., 2016; Smith et 

al., 2008). As such, the development of sex-specific exercise training interventions, or 

manipulation of certain training variables, may be an important consideration. 
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Author, Year 
Fat-Free 

Mass 
Fat Mass Body Fat VO2max Strength 

Muscle 

Architecture 
Muscle CSA Muscle Morphology 

(Aagaard et 

al., 2007) 

- - Skinfold Cycle Ergometer Knee Extension 

MVC  (70° 

knee angle) 

- - Muscle Fibre Area, 

distribution, 

distribution by area 

(myofibrillar ATPase 

staining (Type I, IIa, 

IIx) 

(Anselme et 

al., 1994) 

- - - Cycle Ergometer 

(30W 3mins, ↑ 

30W.min-1) 

 

- - - - 

(Arbab-

Zadeh et al., 

2004) 

- - Hydrostatic 

Weighing 

Treadmill (modified 

Astrand-Saltin) 

 

- - - - 

(Ari et al., 

2004) 

- - No Details Cycle Ergometer 

(Astrand) 

 

- - - - 

 

(Bhella et al., 

2014) 

- - - Treadmill (modified 

Astrand-Saltin) 

 

- - - - 

 

(Bjork et al., 

2012) 

- - 7-Site 

Skinfold 

Treadmill (Constant 

speed, 2% ↑ grad 

every 2mins) 

- - - - 

(Buford et al., 

2010) 

 

- - DXA Treadmill - - - - 

(Buyukyazi, 

2004) 

- - 4-Site 

Skinfold 

Cycle Ergometer 

(Astrand-Ryhming 

Sub-max) 

- - - - 

(Carrick-

Ranson et al., 

2014a) 

Hydrostatic 

Weighing 

- Hydrostatic 

Weighing 

Treadmill & 

Upright cycle 

- - - - 
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Author, Year 
Fat-Free 

Mass 
Fat Mass Body Fat VO2max Strength 

Muscle 

Architecture 
Muscle CSA Muscle Morphology 

(Couppe et 

al., 2014) 

- - - Cycle Ergometer 

(50/75W start, 25W 

↑ .min-1) 

Knee Extension 

MVC (knee & 

hip angle 90°, 

10 s ramped 

contraction) 

- Anatomical 

CSA 

measured 20 

cm proximal 

to tibia 

plateau (mid-

thigh level) 

by magnetic 

resonance 

imaging 

(MRI) 

- 

(Cristea et al., 

2008) 

- - Bioelectrical 

Impedance 

- - - - Fibre area & 

distribution 

(myofibrillar ATPase 

staining (Type I, IIa, 

IIx, IIax)) 

(DubÉ et al., 

2016) 

DXA Scan DXA Scan DXA Scan Cycle Ergometer 

(50/75/10W 2mins, 

25/50W ↑ every 2 

mins) 

 

- - - - 

(Franzoni et 

al., 2005) 

 

- - - Cycle Ergometer - - - - 

 ((Galetta et 

al., 2005) 

 

- - - Cycle Ergometer - - - - 

(Galetta et al., 

2006) 

- - - Cycle Ergometer - - - - 

(Hawkins et Hydrostatic - Hydrostatic Treadmill - - - - 
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Author, Year 
Fat-Free 

Mass 
Fat Mass Body Fat VO2max Strength 

Muscle 

Architecture 
Muscle CSA Muscle Morphology 

al., 2001) 

 

Weighing Weighing (Modified Balke) 

 

(Hayes et al., 

2015) 

 

Bioelectrical 

Impedance 

- Bioelectrical 

Impedance 

Cycle Ergometer 

(Ramp) 

- - - - 

(Katzel et al., 

1998) 

 

- - Hydrostatic 

Weighing 

Treadmill 

(Modified Balke) 

- - - - 

(Katzel et al., 

2001) 

 

- - - Treadmill 

(Modified Balke) 

-  - - 

(Korhonen et 

al., 2006) 

- - Bioelectrical 

Impedance 

- Bilateral 

Isometric MVC 

(107° knee & 

110° hip angle) 

Muscle 

thickness & 

pennation angle 

(50% Vastus 

lateralis) 

- Fibre area & 

distribution 

(myofibrillar ATPase 

staining (Type I, IIa, 

IIx, IIax)) 

(Korhonen et 

al., 2012) 

- - Bioelectrical 

Impedance 

- Unilateral 

Isometric MVC 

(90° knee & 

110° hip angle) 

- - - 

(Larsson et 

al., 1997) 

- - - - - - - Fibre distribution 

(myofibrillar ATPase 

staining (Type I, IIa, 

IIx, IIax)) 

 

(Mackey et 

al., 2014) 

- - - Cycle Ergometer - - - Fibre Area & 

distribution 

(primary/secondary 

antibodies (Type I & 

II)) 

(Marcell et Hydrostatic  Hydrostatic Treadmill - - - - 
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Author, Year 
Fat-Free 

Mass 
Fat Mass Body Fat VO2max Strength 

Muscle 

Architecture 
Muscle CSA Muscle Morphology 

al., 2003) 

 

Weighing Weighing (Modified Balke) 

(Marcell et 

al., 2014) 

Hydrostatic 

Weighing 

- Hydrostatic 

Weighing 

Treadmill 

(Modified Balke) 

Unilateral 

Isometric MVC  

(60° knee 

flexion) 

- - - 

(Matelot et 

al., 2016) 

 

- - No Details Cycle Ergometer - - - - 

(Mikkelsen et 

al., 2013) 

- -  

- 

Cycle Ergometer 

(50/75W start, ↑ 

25W.min-1) 

Knee Extension 

MVC (knee & 

hip angle 90°, 

10 s ramped 

contraction) 

- Anatomical 

CSA 

measured 20 

cm proximal 

to tibia 

plateau (mid-

thigh level) 

by magnetic 

resonance 

imaging 

(MRI) 

- 

(Molmen et 

al., 2012) 

 

- - - Treadmill (Gradient 

10% with ↑ speed 

every min) 

 

- - - - 

(Mortensen et 

al., 2012) 

 

- - No Details Cycle Ergometer  - - - 

(Mosole et al., 

2014) 

- - - - Knee Extension 

MVC 

(Relative) 

- - Fibre distribution 

(H+E & primary 

secondary antibodies 

(type I, II, co-

expressing, 

denervated)) 
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Author, Year 
Fat-Free 

Mass 
Fat Mass Body Fat VO2max Strength 

Muscle 

Architecture 
Muscle CSA Muscle Morphology 

 

(Mucci et al., 

1999) 

 

- - - Cycle Ergometer 

(30W 3mins, 

↑30W.min-1) 

- - - - 

(Nyberg et al., 

2012) 

- - No Details Cycle Ergometer - - - - 

(Ojanen et al., 

2007) 

- - 4-Site 

Skinfold / 

Bioelectrical 

Impedance 

- - Muscle 

thickness 

(Vastus 

lateralis + 

Vastus 

intermedius, 

lower 1/3 

between greater 

trochanter & 

lateral joint line 

of knee) 

- - 

(Pollock et al., 

2015) 

DXA Scan - DXA Scan Cycle Ergometer 

(50W 3mins, ↑ 1-

2W every 3-5s) 

Knee Extension 

MVC (90° 

Knee angle) 

- - - 

(Power et al., 

2012) 

- - - -  

Bicep Brachii 

MVC (110° 

Elbow flexion) 

- - - 

(Power et al., 

2010a) 

- - - -  

Tibialis 

Anterior MVC 

- - - 

(Prasad et al., 

2007) 

 

- - - No details - - - - 

(Prefaut et 

al., 1994) 

- - - Cycle Ergometer 

(30W 3mins, ↑ 

30W.min-1) 

- - - - 
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Author, Year 
Fat-Free 

Mass 
Fat Mass Body Fat VO2max Strength 

Muscle 

Architecture 
Muscle CSA Muscle Morphology 

 

 

(Proctor and 

Joyner, 1997) 

 

 

DXA Scan - DXA Scan Treadmill (2% ↑ 

grad every other 

min) 

- - - - 

(Rantalainen 

et al., 2014) 

- - - - - - Peripheral 

quantitative 

computed 

tomography 

(p-QCT) 

- 

(Rivier et al., 

1994) 

- - - Cycle Ergometer 

(30W 3mins, ↑ 

30W.min-1) 

- - - - 

 

(Sallinen et 

al., 2008) 

 

  4-Site 

Skinfold 

- - - - - 

(Sanada et al., 

2009) 

DXA Scan - DXA Scan Cycle Ergometer 

(90W, ↑ 30W.min-1) 

Rowing Ergometer 

100W start, 50W ↑ 

.min-1) 

 

Handheld 

dynamometer 

- - - 

(Schmidt et 

al., 2015) 

- DXA Scan DXA Scan Cycle Ergometer 

(40W start, ↑ 20W 

every 2 mins) 

- - - - 

 

(Shibata and 

Levine, 2012) 

 

- - - No details -   - 

(Sipila and - - - - Knee extension Muscle Ultrasound - 
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Author, Year 
Fat-Free 

Mass 
Fat Mass Body Fat VO2max Strength 

Muscle 

Architecture 
Muscle CSA Muscle Morphology 

Suominen, 

1991) 

MVC (60° 

Knee angle) 

thickness (no 

details on site 

of 

measurement) 

Scanning 

(midpoint 

between 

greater 

trochanter 

and knee 

joint line) 

(Stenroth et 

al., 2016) 

- - - - Plantar Flexion 

MVC (ankle 

90°, knee full 

extended, hip 

60° angle) 

- - - 

(Sundstrup et 

al., 2010) 

- - - No details Knee Extension 

MVC  (70° 

Knee angle) 

- - Fibre area,  

distribution, 

distribution by area 

(myofibrillar ATPase 

staining (Type I, IIa, 

IIx, IIax)) 

(Suominen 

and Rahkila, 

1991) 

- - - Cycle Ergometer 

(90W start, ↑30W 

every 2 mins) 

Handheld 

dynamometer 

- - - 

(Tarpenning 

et al., 2004b) 

Hydrostatic 

Weighing 

- Hydrostatic 

Weighing 

Treadmill (2.5mph 

start, ↑0.5mph and 

2% grade every 2 

mins) 

 

- - - Fibre area & 

distribution 

(myofibrillar ATPase 

staining (Type I & II)) 

(Thomas et 

al., 2013) 

- - -  

Treadmill (modified 

Astrand-Saltin) 

 

- - - - 

(Trappe et al., 

2013) 

DXA Scan - DXA Scan Cycle Ergometer 

(Trained: 50W start 

↑15W.min-1, 20W 

- - - - 
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Author, Year 
Fat-Free 

Mass 
Fat Mass Body Fat VO2max Strength 

Muscle 

Architecture 
Muscle CSA Muscle Morphology 

start ↑10w.min-1) 

(Witkowski et 

al., 2010) 

 

- - DXA Scan Cycle Ergometer 

(50W start 

↑15W.min-1) 

- - - - 

 

(Yataco et al., 

1997) 

 

Hydrostatic 

Weighing 

Hydrostatic 

Weighing 

Hydrostatic 

Weighing 

Treadmill 

(Modified Balke) 

- - - - 

(Zampieri et 

al., 2015) 

- - - - Knee extension 

MVC 

- - Fibre diameter & 

distribution (H + E, 

myofibrillar ATPase 

staining (Type I & II)) 

Table 1) Included studies and associated measures. DXA, Dual energy x-ray absorptiometry; H + E, Hematoxylin and eosin; MVC, maximal voluntary 

contraction; W, Watts.  
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Author, Year Participant 

Groups 

Number 

(n) 

Sex 

(M/F) 

Age 

(Years) 

Height 

(m) 

Weight 

(kg) 

BMI 

(Kg.m2) 

Training 

Experience 

(years) 

Type of Training 

(Aagaard et al., 

2007) 

Older Control 8 M 70.5 

(2.8) 

1.75 

(0.06) 

82.9 

(6.2) 

27.1 - - 

Master Endurance 

Athlete 

9 M 71.9 

(4.3) 

1.74 

(0.07) 

76.0 

(8.3) 

25.2 >50 Running/Cycling 

Master power 

athletes 

7 M 73.9 

(2.2) 

1.75 

(0.04) 

78.7 

(20.1) 

25.7 >50 Sprinting/Shotput/hig

h- and long-jump 

(Anselme et al., 

1994) 

Young Endurance 7 M 22.2 

(3.3) 

1.80 

(0.05) 

68.6 

(2.9) 

21.3 5 (3.7) Triathletes 

Master Endurance 

Athlete 

7 M 66.2 

(7.8) 

1.69 

(0.06) 

75.4 

(5.9) 

26.5 30 (13.2) Cyclists 

Young Control 7 M 23.4 

(5.2) 

1.75 

(0.06) 

67.2 

(12.0) 

22.0 - Habitually active 

Older Control 7 M 67.6 

(7.3) 

1.67 

(0.04) 

67.6 

(2.8) 

24.1 - Habitually active 

(Arbab-Zadeh et 

al., 2004) 

Older Control 12 M=6 

F=6 

69.8 

(3.0) 

1.68 

(0.10) 

73.3 

(10.6) 

25.9 - - 

Young Control 14 M=7 

F=7 

28.9 

(5.0) 

1.74 

(0.06) 

71.2 

(4.4) 

23.6 - - 

Master Endurance 

Athlete 

12 M=6 

F=6 

67.8 

(3.0) 

1.70 

(0.11) 

64.6 

(13.5) 

22.4 23 (8) Running/Cycling/ 

Swimming 

(Ari et al., 2004) Master Endurance 

Athlete 

10 M 68.0 

(6.0) 

1.67 

(0.08) 

71.0 

(3.0) 

25.5 41 (8) Aerobic 

Older Control 11 M 65.0 

(5.0) 

1.69 

(0.05) 

81.0 

(11.0) 

28.4 - - 

(Bhella et al., 

2014) 

Older Control 27 M=15 

F=12 

68.8 

(5.1) 

1.70 

(0.10) 

74.7 

(11.2) 

26.0 - - 

Master Endurance 

Athlete 

25 M=17 

F=8 

67.8 

(2.9) 

1.71 

(0.10) 

65.6 

(12.1) 

22.4 25 Running/Cycling/ 

Swimming 
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Author, Year Participant 

Groups 

Number 

(n) 

Sex 

(M/F) 

Age 

(Years) 

Height 

(m) 

Weight 

(kg) 

BMI 

(Kg.m2) 

Training 

Experience 

(years) 

Type of Training 

(Bjork et al., 

2012) 

Young Endurance 7 M 25.0 

(5.3) 

1.83 

(0.26) 

81.1 

(12.7) 

24.4 >3 Moderate-high 

intensity 

Young Control 8 M 25  

(2.8) 

1.81 

(0.28) 

77.9 

(19.0) 

23.6 - - 

Master Endurance 

Athlete 

12 M 62  

(6.9) 

1.76 

(0.35) 

70.7 

(10.4) 

22.9 >30 Moderate-high 

intensity 

Older Control 11 M 64  

(6.6) 

1.75 

(0.33) 

74.7 

(8.0) 

24.3 - - 

(Buford et al., 

2010) 

Young Control 14 M 21.4 

(3.8) 

1.77 

(0.06) 

79.6 

(17.1) 

25.4 - - 

Older Control 13 M 63.9 

(6.6) 

1.74 

(0.06) 

93.7 

(15.3) 

30.9 - - 

Master Endurance 

Athlete 

14 M 60.7 

(5.5) 

1.76 

(0.05) 

84.2 

(7.2) 

27.1 23.08 (12.6) Running/Jogging/Bas

ketball/ Resistance 

(Buyukyazi, 2004) Master Endurance 

Athlete 

11 M 67.1 

(6.0) 

1.67 

(0.08) 

70.9 

(3.2) 

25.5 38.8 (18.5) Middle/Long-distance 

Runners 

Older Control 11 M 64.9 

(4.6) 

1.69 

(0.06) 

81.6 

(11.4) 

28.3 - - 

(Carrick-Ranson 

et al., 2014a) 

Older Control 27 M=15 

F=12 

69  

(5.0) 

1.69 

(0.10) 

75.0 

(11.0) 

26.3 - - 

Master Endurance 

Athlete 

25 M=17 

F=8 

68  

(3.0) 

1.71 

(0.10) 

66.0 

(12.0) 

22.6 25 Running/Cycling/ 

Swimming 

(Couppe et al., 

2014) 

Young Endurance 10 M 26.0 

(4.0) 

1.79 

(0.04) 

73.0 

(6.0) 

23.0 6 (3.16) Endurance running 

Young Control 12 M 24.0 

(3.0) 

1.78 

(0.06) 

70.0 

(8.0) 

22.0 - - 

Master Endurance 

Athlete 

15 M 64.0 

(4.0) 

1.76 

(0.05) 

71.0 

(6.0) 

23.0 28 (7.75) Endurance running 
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Author, Year Participant 

Groups 

Number 

(n) 

Sex 

(M/F) 

Age 

(Years) 

Height 

(m) 

Weight 

(kg) 

BMI 

(Kg.m2) 

Training 

Experience 

(years) 

Type of Training 

Older Control 12 M 66.0 

(4.0) 

1.75 

(0.04) 

75.0 

(4.0) 

25.0 - - 

(Cristea et al., 

2008) 

Master power 

athletes 

7 M 66.0 

(7.9) 

1.73 

(0.05) 

71.3 

(6.6) 

23.8 32 (18.5) Sprint/Strength 

Master power 

athletes 

4 M 71.0 

(10.0) 

1.71 

(0.04) 

69.6 

(7.2) 

23.8 24 (8) Sprint Strength 

(DubÉ et al., 

2016) 

Young Endurance 14 M=7  

F=7 

27.8 

(4.9) 

- 65.7 

(10.8) 

22.12 5-13 Non-competitive 

recreational exercise 

Master Endurance 

Athlete 

13 M=9  

F=4 

64.8 

(4.9) 

- 68.2 

(10.0) 

23.76 35-40 Running, Cycling, 

Swimming, or 

Aerobic dancing 

(Franzoni et al., 

2005) 

Young Control 16 M 34.1 

(7.5) 

- - 23.1 - - 

Older Control 16 M 63.7 

(4.3) 

- - 24.2 - - 

Young Endurance 16 M 33.4 

(6.7) 

- - 23.4 11 (2) Endurance Running 

Master Endurance 

Athlete 

16 M 63.6 

(6.1) 

- - 23.9 37 (5) Endurance Running 

(Galetta et al., 

2005) 

Master Endurance 

Athlete 

20 M 68.5 

(4.5) 

- - 23.4 >40 Endurance Running 

Older Control 20 M 68.2 

(3.7) 

- - 24.1 - - 

(Galetta et al., 

2006) 

Older Control 28 M 65.6 

(5.6) 

5.60 - - - - 

Master Endurance 

Athlete 

30 M 64.5 

(4.5) 

4.50 - - >40 Endurance Running 

(Hawkins et al., Master Endurance 34 M 62.2 1.77 77.0 24.5 22.6 (9.3) Endurance Running 
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Author, Year Participant 

Groups 

Number 

(n) 

Sex 

(M/F) 

Age 

(Years) 

Height 

(m) 

Weight 

(kg) 

BMI 

(Kg.m2) 

Training 

Experience 

(years) 

Type of Training 

2001) Athlete (3.5) (0.02) (7.6) 

Master Endurance 

Athlete 

13 M 71.1 

(3.2) 

1.73 

(0.03) 

67.5 

(9.4) 

22.7 21.6 (11.5) Endurance Running 

Master Endurance 

Athlete 

8 M 82.8 

(4.0) 

1.73 

(0.02) 

68.9 

(5.9) 

23.0 25.9 (22.3) Endurance Running 

(Hayes et al., 

2015) 

Older Control 28 M 63.0 

(5.0) 

1.75 

(0.06) 

90.4 

(18.1) 

29.5 - - 

Master Endurance 

Athlete 

20 M 60.0 

(5.0) 

1.74 

(0.06) 

79.3 

(13.3) 

26.2 >30 Water-

polo/Triathlon/Sprint 

cycling/Road 

cycling/Distance 

running 

(Katzel et al., 

1998) 

Master Endurance 

Athlete 

70 M 63.0 

(6.0) 

- 70.0 

(8.0) 

23.0 >20 Running/Triathlon/Cy

cling/ Tennis 

Older Control 85 M 61.0 

(7.0) 

- 83.0 

(11.0) 

27.0 -  

(Katzel et al., 

2001) 

Master Endurance 

Athlete 

42 M 63.4 

(6.5) 

 69.4 

(7.8) 

23.1 >20 Running/Triathlon/Cy

cling/ Tennis 

Older Control 47 M 61.1 

(6.2) 

 91.4 

(11.7) 

29.3 - - 

(Korhonen et al., 

2006) 

Young Power 16 M 24.3 

(4.0) 

1.78 

(0.04) 

77.2 

(5.6) 

24.4 13.2 (5.2) Sprint/Strength 

Master power 

athletes 

21 M 65.8 

(2.8) 

1.73 

(0.04) 

77.2 

(4.1) 

25.9 35.1 (19.3) Sprint/Strength 

Master power 

athletes 

20 M 75.3 

(4.0) 

1.71 

(0.05) 

69.8 

(8.9) 

23.8 34.3 (21.9) Sprint/Strength 

(Korhonen et al., 

2012) 

Young Control 19 M 36.2 

(4.4) 

1.82 

(0.06) 

79.2 

(6.8) 

24.0 - Ball 

games/Jogging/Cross-

country skiing 
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Author, Year Participant 

Groups 

Number 

(n) 

Sex 

(M/F) 

Age 

(Years) 

Height 

(m) 

Weight 

(kg) 

BMI 

(Kg.m2) 

Training 

Experience 

(years) 

Type of Training 

Master power 

athletes 

24 M 65.9 

(2.6) 

1.72 

(0.04) 

71.1 

(5.6) 

24.0 35.1 (18.4) Sprint/Strength 

Master power 

athletes 

24 M 75.8 

(4.3) 

1.71 

(0.06) 

70.3 

(8.5) 

24.1 34.3 (21.4) Sprint/Strength 

(Larsson et al., 

1997) 

Young control 4 M 25-31 - - - - - 

Older Control 2 M 73-81 - - - - - 

Master Endurance 

Athlete 

2 M 73-81 - - - >50 Endurance Trained/ 

Competitive Wrestler 

(Mackey et al., 

2014) 

Young Control 12 M 24.0 

(3.0) 

1.78 

(0.06) 

70.0 

(8.0) 

22.2 - - 

Young Endurance 10 M 26.0 

(4.0) 

1.79 

(0.04) 

73.0 

(6.0) 

22.7 6.0 (2.0) Endurance Running 

Older Control 12 M 66.0 

(4.0) 

1.75 

(0.04) 

75.0 

(4.0) 

24.5 - - 

Master Endurance 

Athlete 

15 M 64.0 

(4.0) 

1.76 

(0.05) 

71.0 

(6.0) 

22.9 28.0 (9.0) Endurance Running 

(Marcell et al., 

2003) 

 

Master Endurance 

Athlete 

9 M 67.1 

(1.2) 

 70.2 

(4.8) 

23.2 23.6 (12.6) Endurance Running 

(Marcell et al., 

2014) 

 

Master Endurance 

Athlete 

21 M 71.3 1.74 71.3 23.5 24.9 Endurance Running 

(Matelot et al., 

2016) 

 

Master Endurance 

Athlete 

13 M 62.0 

(3.0) 

1.72 

(0.04) 

71.2 

(6.1) 

24.1 39.0 (4.0) Endurance 

Running/Cycling 

(Mikkelsen et al., 

2013) 

Young Control 12 M 24.0 

(3.0) 

1.78 

(0.06) 

70.0 

(8.0) 

22.0 - - 

Young Endurance 10 M 26.0 1.79 73.0 23.0 6.0 (3.16) Endurance Running 
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Author, Year Participant 

Groups 

Number 

(n) 

Sex 

(M/F) 

Age 

(Years) 

Height 

(m) 

Weight 

(kg) 

BMI 

(Kg.m2) 

Training 

Experience 

(years) 

Type of Training 

(4.0) (0.04) (6.0) 

Older Control 12 M 66.0 

(4.0) 

1.75 

(0.04) 

75.0 

(4.0) 

25.0 - - 

Master Endurance 

Athlete 

15 M 64.0 

(4.0) 

1.76 

(0.04) 

71.0 

(6.0) 

23.0 28.0 (7.75) Endurance Running 

(Molmen et al., 

2012) 

Older Control 10 M 71.7 

(1.3) 

 76.5 

(9.4) 

25.0   

Young Control 10 M 24.8 

(2.3) 

 76.0 

(16.0) 

22.7   

Master Endurance 

Athlete 

11 M 74.3 

(1.8) 

 74.5 

(8.3) 

23.0 >25 Cross Country Skiers 

(Mortensen et al., 

2012) 

Young Control 8 M 23.0 

(2.8) 

1.83 

(0.01) 

79.0 

(11.3) 

23.6 - - 

Older Control 8 M 66.0 

(5.7) 

1.75 

(0.01) 

79.0 

(5.7) 

25.8 - - 

Master Endurance 

Athlete 

8 M 62.0 

(5.7) 

1.78 

(0.01) 

76.0 

(8.5) 

24.0 >30 Endurance trained 

(Mosole et al., 

2014) 

Young Power 5 M 26.2 

(4.0) 

- - - >5.0 Weightlifting 

Older Control 6 M=4  

F=2 

71.8 

(3.5) 

- - - - - 

Master Endurance 

Athlete 

7 M 68.3 

(4.0) 

- - - >20 Endurance/Mixed 

(Mucci et al., 

1999) 

Young Athletes 7 M 26.1 

(3.4) 

1.78 

(0.10) 

67.8 

(7.7) 

21.4 4.0 (2.38) Triathlon/Endurance 

Running 

Young Control 7 M 23.0 

(4.0) 

1.83 

(0.09) 

73.3 

(10.1) 

21.9 - - 

Master Endurance 7 M 64.4 1.69 72.3 25.4 25 (5.29) Cycling 
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Author, Year Participant 

Groups 

Number 

(n) 

Sex 

(M/F) 

Age 

(Years) 

Height 

(m) 

Weight 

(kg) 

BMI 

(Kg.m2) 

Training 

Experience 

(years) 

Type of Training 

Athlete (10.9) (0.13) (11.1) 

Older Control 7 M 61.6 

(3.4) 

1.69 

(0.04) 

69.6 

(4.2) 

24.4 - - 

(Nyberg et al., 

2012) 

Young Control 8 M 23.0 

(2.8) 

1.83 

(0.06) 

79.4 

(12.2) 

23.7 - - 

Older Control 8 M 66.0 

(5.7) 

1.75 

(0.08) 

79.2 

(5.1) 

25.9 - - 

Master Endurance 

Athlete 

8 M 62.0 

(5.7) 

1.78 

(0.06) 

75.7 

(8.8) 

23.9 >30 Endurance trained 

(Ojanen et al., 

2007) 

Master power 

athletes 

12 M 60.8 

(2.1) 

1.78 

(0.08) 

94.2 

(13.4) 

29.8 27.5 (14.8) Shotput / Discus / 

Hammer 

Master power 

athletes 

9 M 75.0 

(4.9) 

1.77 

(0.05) 

87.4 

(11.0) 

27.8 27.2 (19.8) Shotput / Discus / 

Hammer 

Older Control 10 M 61.1 

(2.7) 

1.77 

(0.06) 

80.0 

(12.2) 

25.5 - - 

Older Control 5 M 69.2 

(3.7) 

1.75 

(0.06) 

75.7 

(11.1) 

24.7 - - 

(Pollock et al., 

2015) 

Master Endurance 

Athlete 

24 M 62.0 

(1.4) 

1.70 

(0.06) 

76.8 

(8.5) 

24.7 27.6 (17.5) Cycling 

Master Endurance 

Athlete 

19 M 67.0 

(1.2) 

1.77 

(0.06) 

72.6 

(7.2) 

23.2 26.5 (19.6) Cycling 

Master Endurance 

Athlete 

19 M 73.4 

(2.6) 

1.76 

(0.06) 

74.4 

(10.1) 

24.1 36.7 (19.5) Cycling 

Master Endurance 

Athlete 

15 F 61.9 

(1.6) 

1.66 

(0.06) 

60.4 

(5.5) 

22.1 24.6 (20.3) Cycling 

Master Endurance 

Athlete 

4 F 75.3 

(3.0) 

1.61 

(0.07) 

57.1 

(6.4) 

22.0 45 (19.6) Cycling 

(Power et al., Young Control 9 M 27.0 1.81 80.8 24.6 - - 
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Author, Year Participant 

Groups 

Number 

(n) 

Sex 

(M/F) 

Age 

(Years) 

Height 

(m) 

Weight 

(kg) 

BMI 

(Kg.m2) 

Training 

Experience 

(years) 

Type of Training 

2012) (5.0) (0.07) (9.6) 

Older Control 9 M 70.0 

(5.0) 

1.78 

(0.07) 

90.1 

(17.4) 

28.5 - - 

Master Endurance 

Athlete 

9 M = 8  

F = 1 

67.0 

(4.0) 

1.74 

(0.06) 

71.3 

(10.5) 

23.5 >30 Endurance Running 

(Power et al., 

2010a) 

Young Control 10 M 27.0 

(3.0) 

1.78 

(0.08) 

80.7 

(10.0) 

25.6 - - 

Older Control 10 M 66.0 

(3.0) 

1.72 

(0.07) 

78.8 

(10.4) 

26.7 - - 

Master Endurance 

Athlete 

10 M = 9  

F = 1 

64.0 

(3.0) 

1.77 

(0.07) 

72.3 

(7.7) 

23.0 38.2 (6.7) Endurance Running 

(Prasad et al., 

2007) 

Young Control 12 M = 9  

F = 3 

32.3 

(9.0) 

- - - - - 

Older Control 13 M= 7  

F = 6 

69.8 

(3.0) 

- - - - - 

Master Endurance 

Athlete 

12 M = 6  

F = 6 

67.8 

(3.0) 

- - - 23.0 (8.0) Marathons, 

Triathlons, Middle 

distance 

(Prefaut et al., 

1994) 

Master Endurance 

Athlete 

10 M 65.3 

(8.2) 

1.68 

(0.07) 

70.1 

(4.3) 

24.8 33.0 (18.0) Cycling 

Older Control 10 M 68.3 

(7.0) 

1.72 

(0.05) 

74.8 

(7.6) 

25.3 - - 

Young Endurance 10 M 23.3 

(3.5) 

1.80 

(0.03) 

68.8 

(6.0) 

21.2 - - 

(Proctor and 

Joyner, 1997) 

Young Endurance 8 M 24.0 

(4.0) 

1.80 

(0.07) 

70.9 

(7.8) 

21.9 9.0 (3.0) Running, Cycling, 

Triathlon 

Running, Cycling, 

Triathlon 
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Author, Year Participant 

Groups 

Number 

(n) 

Sex 

(M/F) 

Age 

(Years) 

Height 

(m) 

Weight 

(kg) 

BMI 

(Kg.m2) 

Training 

Experience 

(years) 

Type of Training 

Running, Cycling, 

Triathlon 

Master Endurance 

Athlete 

8 M 64.0 

(4.0) 

1.78 

(0.06) 

75.5 

(10.2) 

23.8 21.0 (5.0)  

Young Endurance 8 F 26.0 

(4.0) 

1.71 

(0.05) 

60.1 

(5.5) 

20.6 9.0 (5.0)  

(Rantalainen et 

al., 2014) 

Young Power 26 M 27.4 

(5.1) 

1.81 

(0.05) 

76.7 

(5.9) 

23.4 15.4 (6.2) Sprinting 

Young Control 41 M 28.7 

(5.8) 

1.8 

(0.06) 

78.1 

(9.6) 

24.1 - - 

Master power 

athletes 

35 M 72.4 

(5.3) 

1.71 

(0.05) 

70.7 

(7.1) 

24.2 35.4 (19.1) Sprinting 

Older Control 24 M 71.6 

(4.2) 

1.71 

(0.06) 

75.8 

(8.6) 

25.9 - - 

(Rivier et al., 

1994) 

Young Endurance 10 M 23.9 

(3.6) 

1.78 

(0.05) 

69.4 

(5.8) 

21.8 - Triathlon 

Master Endurance 

Athlete 

6 M 63.7 

(5.0) 

1.67 

(0.06) 

75.3 

(4.0) 

27.0 30.0 (5.0) Cycling 

(Sallinen et al., 

2008) 

Young Control 10 M 25.7 

(3.4) 

1.82 

(0.04) 

77.0 

(5.2) 

23.3 - - 

Master power 

athletes 

8 M 71.8 

(3.8) 

1.75 

(0.06) 

86.3 

(10.7) 

28.4 22.8 (14.9) National level 

throwers 

Older Control 10 M 70.6 

(3.3) 

1.70 

(0.06) 

71.4 

(71.4) 

24.7 - - 

(Sanada et al., 

2009) 

Young Control 23 M 25.3 

(2.7) 

- 70.8 

(11.2) 

23.5 - - 

Older Control 22 M 65.2 

(4.1) 

- 69.7 

(8.1) 

24.3 - - 
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Author, Year Participant 

Groups 

Number 

(n) 

Sex 

(M/F) 

Age 

(Years) 

Height 

(m) 

Weight 

(kg) 

BMI 

(Kg.m2) 

Training 

Experience 

(years) 

Type of Training 

Young Endurance 26 M 20.3 

(1.0) 

- 69.3 

(5.7) 

22.3 3.0 Rowing 

Master Endurance 

Athlete 

24 M 65.7 

(3.0) 

- 67.9 

(8.2) 

23.0 46.7 (2.8) Rowing 

(Schmidt et al., 

2015) 

Master Endurance 

Athlete 

17 M 68.1 

(2.1) 

1.78 

(0.03) 

78.1 

(8.2) 

24.6 52.0 (11.0) Football 

Older Control 26 M 68.2 

(3.2) 

1.76 

(0.03) 

84.1 

(11.1) 

27.2 - - 

(Shibata and 

Levine, 2012) 

Older Control 10 M = 6  

F = 4 

71.0 

(3.0) 

1.71 

(0.09) 

74.0 

(10.0) 

26 - - 

Master Endurance 

Athlete 

11 M = 5  

F = 6 

68.0 

(3.0) 

1.70 

(0.12) 

65.0 

(14.0) 

22.1 23.0 (8.0) Endurance Running 

(Sipila and 

Suominen, 1991) 

Master power 

athletes 

7 M 77.1 

(3.5) 

1.69 

(0.06) 

69.8 

(9.3) 

- 30 to 70 Track and field, 

Gymnastics 

Master Endurance 

Athlete 

14 M 74.2 

(3.0) 

1.71 

(0.07) 

68.7 

(8.6) 

- 30 to 70 Running, Cross-

country Skiing, 

Cycling, Swimming 

Older Control 11 M 73.4 

(2.4) 

1.68 

(0.04) 

74.7 

(11.6) 

- - - 

(Stenroth et al., 

2016) 

Young Control 18 M 23.7 

(2.0) 

1.81 

(0.06) 

75.4 

(9.0) 

23.1 - - 

Older Control 33 M 74.8 

(3.6) 

1.73 

(0.05) 

76.1 

(7.7) 

25.4 - - 

Master Endurance 

Athlete 

10 M 74.0 

(2.8) 

1.75 

(0.07) 

69.9 

(6.9) 

22.7 39.4 (20.9) Endurance Exercise 

Older Power 10 M 74.4 

(2.8) 

1.76 

(0.07) 

74.3  

(7.1) 

24.1 44.7 (19.7) Sprinting 

(Sundstrup et al., Master Endurance 10 M 69.6 1.77 83.7 26.8 50.0 Football 
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Author, Year Participant 

Groups 

Number 

(n) 

Sex 

(M/F) 

Age 

(Years) 

Height 

(m) 

Weight 

(kg) 

BMI 

(Kg.m2) 

Training 

Experience 

(years) 

Type of Training 

2010) Athlete (4.4) (0.05) (8.9) 

Young Control 49 M 32.4 

(6.3) 

1.82 

(0.05) 

87.7 

(12.6) 

26.5 - - 

Older Control 8 M 70.5 

(2.8) 

1.75 

(0.06) 

82.9 

(6.2) 

27.1 - - 

(Suominen and 

Rahkila, 1991) 

Master Endurance 

Athlete 

67 M 73.7 

(2.7) 

1.71 

(0.07) 

69.3 

(8.6) 

23.8 - Endurance Running, 

Orienteers, Cross-

country Skiers 

Master power 

athletes 

14 M 74.3 

(2.9) 

1.74 

(0.06) 

82.4 

(12.5) 

27.1 - Throwers, Weight 

Lifters 

Master power 

athletes 

16 M 75.5 

(3.8) 

1.70 

(0.06) 

69.4 

(12.0) 

24.1 - Sprinters, Jumpers 

Older Control 42 M 74.2 

(2.8) 

1.69 

(0.07) 

76.3 

(12.0) 

26.7 -  

(Tarpenning et al., 

2004b) 

Master Endurance 

Athlete 

29 M 64.2 

(2.3) 

1.76 

(0.07) 

71.5 

(8.1) 

23.1 20.33 (9.0) Endurance Running 

Master Endurance 

Athlete 

11 M 74.6 

(3.5) 

1.74 

(0.06) 

68.6 

(7.0) 

22.6 24 (20.6) Endurance Running 

(Thomas et al., 

2013) 

Master Endurance 

Athlete 

10 M = 7  

F = 3 

74.5 

(5.8) 

- - - 23.0 (8.0) Endurance Running, 

Swimming, Cycling 

Older Control 10 M = 8  

F = 2 

75.4 

(5.6) 

- - - - - 

Young Control 9 M = 5  

F = 4 

27.0 

(3.6) 

- - - - - 

(Trappe et al., 

2013) 

Master Endurance 

Athlete 

9 M 81.0 

(3.0) 

1.72 

(0.06) 

68.0 

(9.0) 

23.0 >50 Cross-country Skiing, 

Orienteering, Track 

and Field 

 Older Control 6 M 82.0 1.72 77.0 26.0 - - 
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Author, Year Participant 

Groups 

Number 

(n) 

Sex 

(M/F) 

Age 

(Years) 

Height 

(m) 

Weight 

(kg) 

BMI 

(Kg.m2) 

Training 

Experience 

(years) 

Type of Training 

(4.9) (0.10) (12.2) 

(Witkowski et al., 

2010) 

Older Control 11 M 64.0 

(6.6) 

1.76 

(0.07) 

73.0 

(8.0) 

23.6 - - 

Master Endurance 

Athlete 

12 M 62.0 

(6.9) 

1.78 

(0.10) 

70.1 

(10.0) 

22.0 32.0 (10.4) Endurance Training 

(Yataco et al., 

1997) 

Master Endurance 

Athlete 

61 M 63.3 

(6.1) 

- 70.1 

(7.1) 

22.9 >20 Running/Cycling/ 

Swimming 

Older Control 39 M 60.6 

(5.6) 

- 77.1 

(8.5) 

25.6   

(Zampieri et al., 

2015) 

Young Control 5 M 27.3 

(4.2) 

1.75 

(0.04) 

73.8 

(5.9) 

24.2 - - 

 Older Control 9 M 71.4 

(3.0) 

1.77 

(0.08) 

84.9 

(10.1) 

26.9 - - 

 Master Endurance 

Athlete 

15 M 70.2 

(4.0) 

1.76 

(0.05) 

81.7 

(8.8) 

26.3 >30 Endurance, Strength, 

Power and Games 

Table 2) Anthropometric characteristics and training background of study groups (mean ± SD) included in this review, (e.g. n, age, height, weight, BMI, years 

of training, and type of training undertaken).   
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Study Group Fat-Free 

Mass 

(kg) 

Fat 

Mass 

(kg) 

Body 

Fat 

(%) 

Muscle 

Thickness 

(cm) 

Fascicle 

Length 

(cm) 

Muscle Cross-

Sectional Area 

(mm2) 

Muscle Fibre 

Area 

(µm2) 

Muscle Fibre 

Distribution (%) 

Young 

Controls 

53.8 ± 5.7 

(1, n=23) 

- 17.4 ± 

3.0 

(8, 

n=126) 

- - MRI: 6792 ± 696 

(n=12) 

Type I: 4282 ± 

26 (2, n=28), 

Type 2: 4783 ± 

872 (1, n=12) 

Type IIa: 4700 ± 

560.0 (1, n=16) 

Type IIx: 3200 ± 

2720 (1, n=16) 

Type IIax: 3700 

± 760 (1, n=16) 

Type I: 43.5 ± 4.5 

(4, n=37) 

Type 2: 53.5 ± 5.0 

(2, n=17) 

Type IIa: 35 ± 12 

(1, n=16) 

Type IIx: 7.5 ± 6.4 

(2, n=20) 

Type IIax: 12.0 ± 

00 (2, n=20) 

Denervated: (0.3 ± 

0.0 (1, n=5) 

Young 

Endurance 

54.8 ± 7.3 

(4, n=56) 

12.0 ± 

4.2 

(1, 

n=14) 

14.8 ± 

4.9 

(8, 

n=89) 

- - MRI: 7859 ± 636 

(n=10) 

Type I: 5550 ± 

1337 (1, n=10) 

Type 2: 5498 ± 

1559 (1, n=10) 

 

Type I: 51.5 ± 13.4 

(2, n=15) 

Type 2: 48.6 ± 

13.5 (2, n=15) 

Type IIax: 0.5 ± 

0.6 (1, n=5) 

Denervated: 0.4 ± 

0.5 (1, n=5) 

Young Power - - - VL: 2.61 ± 0.08 

(n=16) 

VL: 7.91 ± 0.49 

(n=16) 

- - - 

Older 

Controls 

54.5 ± 7.7 

(5, n=122) 

20.1 ± 

6.3 

(2, 

n=65) 

24.5 ± 

4.6 

(20, 

n=368) 

RF: 2.8 ± 0.56 

(n=11) 

- MRI: 5504 ± 727 

(n=12) 

US: 4840 ±1110 

(n=11) 

Type I: 5488 ± 

459 (3, n=28) 

Type 2: 4149 ± 

903 (1, n=12) 

Type IIa: 5411 ± 

484 (2, n=16) 

Type IIx: 3974 ± 

0 (2, n=16) 

Type IIax: 4570 

Type I: 49.8 ± 4.2 

(6, n=45) 

Type 2: 50.3 ± 4.0 

(3, n=27) 

Type IIa: 23.5 ± 0 

(2, n=16) 

Type IIx: 22.2 ± 

13.1 (3, n=18) 

Type IIax: 5.9 ± 
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Study Group Fat-Free 

Mass 

(kg) 

Fat 

Mass 

(kg) 

Body 

Fat 

(%) 

Muscle 

Thickness 

(cm) 

Fascicle 

Length 

(cm) 

Muscle Cross-

Sectional Area 

(mm2) 

Muscle Fibre 

Area 

(µm2) 

Muscle Fibre 

Distribution (%) 

± 980 (1, n=4) 5.8 (2, n=8) 

Denervated: 5.3 ± 

1.8 (2, n=15) 

Master 

Endurance 

55.2 ± 6.1 

(19, n=366) 

14.1 ± 

3.6 

(3, 

n=91) 

19.2 ± 

4.1 

(38, 

n=595) 

RF: 2.77 ± 0.39 

(n=14) 

- MRI: 6481 ±775 

(n=15) 

US: 5270 ± 880 

(n=14) 

Type I: 5367 ± 

588 (5, n=74) 

Type 2: 4478 ± 

347 (3, n=55) 

Type IIa: 5043 ± 

41 (2, n=19) 

Type IIx: 3955 ± 

88 (2, n=19) 

Type IIax: 3590 

± 687 (1, n=7) 

Type I: 60.8 ± 10.7 

(7, n=96) 

Type 2: 38.4 ± 

11.3 (5, n=77) 

Type IIa: 32.6 ± 

10.7 (2, n=19) 

Type IIx: 10.3 ± 

2.7 (3, n=21) 

Type IIax: 6.3 ± 

8.1 (2, n=9) 

Denervated: 1.9 ± 

0.1 (2, n=22) 

Master 

Power 

- - 19.6 ± 

5.8 

(8, 

n=125) 

VL 60-69: 2.1 ± 

0.09 (n=21) 

VL 70-84: 1.96 ± 

0.08 (n=20) 

RF: 2.73 ± 0.37 

(n=7) 

VL 60-69: 7.99 

± 0.27 (n=21) 

VL 70-84: 7.38 

± 0.27 (n=20) 

US: 5250 ± 1080 

(n=7) 

Type I: 4750 ± 

1273 (4, n=34) 

Type IIa: 4755 ± 

1404 (4, n=34) 

Type IIx: 4019 ± 

990 (4, n=34) 

Type IIax: 

4120± 495 (3, 

n=27) 

Type I: 48.0 ± 8.0 

(5, n=59) 

Type IIa: 31.8 ± 

38 (3, n=59) 

Type IIx: 10.7 ± 

4.1 (5, n=59) 

Type IIax: 11.6 ± 

2.6 (2, n=52) 

Table 3) Body composition, muscle mass and morphology (mean ± SD) not included in a meta-analysis (e.g. fat-free mass, fat-mass, relative fat-mass 

(additional data ineligible to be included in meta-analysis), muscle thickness, fascicle length, muscle CSA, fibre area, fibre distribution). First number in the 

bracket indicates the number of studies that assessed that particular variable, the second number indicates the number of individuals assessed.  
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Figures  

Figure 1) PRISMA Flowchart detailing the article identification, screening and exclusion 

process.  

 

 

Figure 2) Forest plot of the results from a random-effects meta-analyses shown and mean 

difference with 95% CI on body fat % in old control, master power athletes, endurance 

trained young and young control. The vertical dotted line represents the body fat for the 

master endurance athletes. For each study the square represents the mean difference with the 

horizontal line indicating the upper and lower limits of the 95% CI. The size of the square 

indicates the relative weighted contribution of each study to the meta-analyses. The diamond 

in each section indicates the pooled mean difference for each respective group.  
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Master endurance athletes vs. old control: Heterogeneity: 7.11 (5.70, 8.52) Tau² = 5.36; Chi² 

= 71.00, df = 14 (P < 0.00001); I² = 80% Test for overall effect: Z = 9.89 (P < 0.00001) 

Master endurance athletes vs. master power athletes: -1.00 (-7.61, 5.61) Heterogeneity: Not 

applicable Test for overall effect: Z = 0.30 (P = 0.77) 

Master endurance athletes vs. young control: -0.22 (-3.72, 3.28) Heterogeneity: Tau² = 13.08; 

Chi² = 17.30, df = 5 (P = 0.004); I² = 71% Test for overall effect: Z = 0.12 (P = 0.90).  

Master endurance athletes vs. young endurance trained: -4.44 (-8.44, -0.43) Heterogeneity: 

Tau² = 15.10; Chi² = 16.76, df = 4 (P = 0.002); I² = 76% Test for overall effect: Z = 2.17 (P = 

0.03) 

 

Figure 3) Forest plot of the results from a random-effects meta-analyses shown and mean 

difference with 95% CI on VO2max (ml.kg-1.min-1) in old control, master power athletes, 

endurance trained young and young control. The vertical dotted line represents the VO2max 

for the master endurance athletes. For each study the square represents the mean difference 

with the horizontal line indicating the upper and lower limits of the 95% CI. The size of the 
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square indicates the relative weighted contribution of each study to the meta-analyses. The 

diamond in each section indicates the pooled mean difference for each respective group.  

Master endurance athletes vs. old control: -15.41 (-17.39, -13.43) Heterogeneity: Tau² = 

28.97; Chi² = 439.62, df = 31 (P < 0.00001); I² = 93% Test for overall effect: Z = 15.27 (P < 

0.00001).  

Master endurance athletes vs. master power athletes: -7.77 (-12.03, -3.50) Heterogeneity: 

Tau² = 9.37; Chi² = 6.54, df = 2 (P = 0.04); I² = 69% Test for overall effect: Z = 3.57 (P = 

0.0004).  

Master endurance athletes vs. young control: 0.55 (-4.88, 5.98) Heterogeneity: Tau² = 116.92; 

Chi² = 547.90, df = 15 (P < 0.00001); I² = 97% Test for overall effect: Z = 0.20 (P = 0.84).  

Master endurance athletes vs. young endurance trained: 16.79 (13.50, 20.09) Heterogeneity: 

Tau² = 31.81; Chi² = 128.46, df = 12 (P < 0.00001); I² = 91% Test for overall effect: Z = 9.99 

(P < 0.00001).   

 

Figure 4) Forest plot of the strength results from random-effects meta-analyses shown 

presented as standardised mean difference with 95% CI in master power athletes, old control, 

endurance trained young and young control. The vertical dotted line represents the master 

ACCEPTED M
ANUSCRIP

T



Page 63 of 63 
 

endurance athletes. For each study the square represents the standardised mean difference 

with the horizontal line indicating the upper and lower limits of the 95% CI. The size of the 

circle indicates the relative weighted contribution of each study to the meta-analyses. The 

diamond in each section indicates the pooled mean difference for each respective group.  

Master endurance athletes vs. master power athletes: 0.60 [0.28, 0.93] Heterogeneity: Tau² = 

0.00; Chi² = 3.68, df = 4 (P = 0.45); I² = 0% Test for overall effect: Z = 3.63 (P = 0.0003). 

Master endurance athletes vs. old control: -0.25 [-0.77, 0.27] Heterogeneity: Tau² = 0.48; 

Chi² = 36.17, df = 8 (P < 0.0001); I² = 78% Test for overall effect: Z = 0.93 (P = 0.35).  

Master endurance athletes vs. young control: 0.71 [0.06, 1.36] Heterogeneity: Tau² = 0.47; 

Chi² = 18.91, df = 5 (P = 0.002); I² = 74% Test for overall effect: Z = 2.13 (P = 0.03).  

Master endurance athletes vs. young endurance trained: 0.75 [-0.34, 1.85] Heterogeneity: 

Tau² = 0.78; Chi² = 12.12, df = 2 (P = 0.002); I² = 84% Test for overall effect: Z = 1.35 (P = 

0.18). 
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