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Abstract

The microenvironment of lymphoid organs can aid healthy immune function through provi-

sion of both structural and molecular support. In mice, fibroblastic reticular cells (FRCs) cre-

ate an essential T-cell support structure within lymph nodes, while human FRCs are largely

unstudied. Here, we show that FRCs create a regulatory checkpoint in human peripheral T-

cell activation through 4 mechanisms simultaneously utilised. Human tonsil and lymph

node–derived FRCs constrained the proliferation of both naïve and pre-activated T cells,

skewing their differentiation away from a central memory T-cell phenotype. FRCs acted uni-

laterally without requiring T-cell feedback, imposing suppression via indoleamine-2,3-dioxy-

genase, adenosine 2A Receptor, prostaglandin E2, and transforming growth factor beta

receptor (TGFβR). Each mechanistic pathway was druggable, and a cocktail of inhibitors,

targeting all 4 mechanisms, entirely reversed the suppressive effect of FRCs. T cells were

not permanently anergised by FRCs, and studies using chimeric antigen receptor (CAR) T

cells showed that immunotherapeutic T cells retained effector functions in the presence of

FRCs. Since mice were not suitable as a proof-of-concept model, we instead developed a

novel human tissue–based in situ assay. Human T cells stimulated using standard methods

within fresh tonsil slices did not proliferate except in the presence of inhibitors described

above. Collectively, we define a 4-part molecular mechanism by which FRCs regulate the T-
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cell response to strongly activating events in secondary lymphoid organs while permitting

activated and CAR T cells to utilise effector functions. Our results define 4 feasible strate-

gies, used alone or in combinations, to boost primary T-cell responses to infection or cancer

by pharmacologically targeting FRCs.

Author summary

The lymph node microenvironment contains an abundance of immune cells that interact

with and within an intricate structural framework created by fibroblastic reticular cells. In

mice, fibroblastic reticular cells are known to regulate T-cell activation, proliferation, and

function, but in humans, they are poorly understood. We investigated interactions

between human T cells and human fibroblastic reticular cells from tonsils and lymph

nodes. When T cells were activated in the presence of human fibroblastic reticular cells,

their proliferation and differentiation were reduced, without altering effector T-cell func-

tion, shown through cytokine production. We identified 4 molecular mechanisms that

were responsible, concurrently used by all human fibroblast donors tested, and reversible

upon addition of specific inhibitors to the cocultures. To establish the relevance of this

finding outside of in vitro coculture, we showed that T-cell proliferation was increased in

live human tonsil tissue slices when the fibroblastic reticular cell inhibitors were added.

This work demonstrates that human fibroblastic reticular cells regulate T-cell activation

and provides new information on the mechanisms used, which may be useful to design

clinical strategies that improve T-cell responses.

Introduction

Stromal cells create specialised lymphoid support compartments within secondary lymphoid

organs. The signals they feed leukocytes have profound effects in many aspects of activation,

proliferation, and differentiation [1].

Fibroblastic reticular cells (FRCs) construct the internal segregated structure of secondary

lymphoid organs by acting as a scaffold for lymphocyte migration and secreting chemokine

C-C motif ligand 19 (CCL19) and chemokine C-C motif ligand 21 (CCL21) to bring T cells

and dendritic cells to the central T-cell zone and chemokine C-X-C motif ligand 13 (CXCL13)

to bring B cells to outer B cell zones. Lymphocyte survival is further supported through secre-

tion of survival factors interleukin 7 (IL-7) and B cell activating factor (BAFF) [2,3].

Several papers demonstrated that mouse lymph node–derived FRCs reduce T-cell prolifera-

tion. In mice, when T cells have been activated less than 15 h, cyclooxygenase-2 (COX2)-

driven prostaglandin E2 (PGE2) is suppressive [4], while comparative neutralisation experi-

ments showed that nitric oxide plays a larger role past 15 h, when most T-cell division occurs

[5–7]. T-cell function is impaired, shown through reduced interferon gamma (IFNγ) produc-

tion [6–7]. Effects on memory T-cell differentiation have not been assessed in mice.

Human FRCs are still almost entirely unstudied, though it has been shown that podoplanin

(PDPN+) cells analogous to mouse FRCs are found in human secondary lymphoid organs and

that they secrete extracellular matrix components as well as CCL21 [8,9]. A recent study, citing

as-yet unpublished data, said that human FRCs do not produce nitric oxide in response to

IFNγ activation [9]. We therefore questioned whether prior mouse FRC research accurately
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modelled human FRC biology. The effects of FRCs on human T cells are unknown, and their

mechanism/s of action have not been tested, though COX2 is expressed [4,9].

The role of human FRCs in T-cell regulation is likely to be highly relevant to human health.

Mouse studies show far-reaching effects of FRCs for immunity against influenza and other

pathogens [3,10,11], and it is hypothesised that suppression of effector T-cell activation within

lymph nodes reduces immune-mediated pathology against the lymph node structure [1,12].

Accordingly, virally infected FRCs are associated with T-cell persistence and chronic viral

infection [12].

Here, we show that human FRCs block proliferation and modulate differentiation of newly

activated naïve human T cells, without requiring T-cell feedback. Suppression was constitutive,

and we identified 4 molecular mechanisms operating simultaneously: indoleamine-2,3-dioxy-

genase (IDO), COX1 and 2 enzymes responsible for PGE2 production, adenosine 2A receptor

(A2AR), and transforming growth factor beta (TGFβ). Coinhibition of these factors reversed

FRC-mediated suppression in vitro and permitted us to observe T-cell activation on a living

tonsil slice.

It is important to first understand the key cells and molecules involved in regulating T-cell

activation during inflammation, infection, cancer, and autoimmunity in order to treat

immune-mediated pathologies and immune deficiencies. Here, we show that human FRCs,

via 4 pathways—which are druggable individually or in small combinations—are a likely phar-

macological target to boost the primary immune response.

Results

To test the effect of FRCs on naïve T-cell activation, we isolated and culture-expanded FRCs

from either cadaver-origin lymph nodes or live-donor tonsils using a published digestion pro-

tocol [13] or through explant culture. Cultured FRCs used in this study were identified as

CD45−, CD31−, PDPN+ cells across multiple passages, and they expressed genes and proteins

characteristic of published FRC phenotypes from freshly isolated mouse and human FRCs

[14,15] (S1 Fig), including expression of PDPN, CXCL12, α smooth muscle actin (αSMA;

ACTA2), lymphotoxin beta receptor (LTBR), platelet-derived growth factor receptor

(PDGFR) α and β, vimentin (VIM), detectable but low levels of BAFF, mucosal vascular

addressin cell adhesion molecule 1 (MADCAM1), Desmin, CD34, and receptor activator of

NF-κB ligand (RANKL). As expected, chemokines CCL21 and CCL19 were switched off by

cultured cells; transcription in mice has been shown to be regulated by lymphatic flow [16].

We identified a distinct subset of stromal cells present in freshly isolated tonsil but missing

from our cultures; these were CD45−CD31−EpCAM- CD90+ CD73− PDPN− cells (S1 Fig) with

unknown function.

We activated carboxyfluorescein succinimidyl ester (CFSE)-labelled T-cells from peripheral

blood mononuclear cells (PBMCs) in the presence of human FRCs and found that they under-

went fewer divisions after 96 h (Fig 1A and 1B). We then activated CFSE-labelled PBMCs and

allowed T-cells to divide freely for 48 h. Cells were harvested and plated with or without FRCs

and reactivated for a further 48 h. While reactivated T cells proliferated freely, the addition of

FRCs after the initial activation and prior to the second activating stimulus imposed a signifi-

cant brake on proliferation (Fig 1C). Thus, FRCs could hamper the proliferation of both naïve

and pre-activated, actively divided T cells.

Next, we examined surface marker expression changes in responding T cells. After 96 h of

activation with or without FRCs, T cells showed normal up-regulation of early activation

marker CD69, but significantly fewer T cells up-regulated the interleukin 2 receptor alpha (IL-

2Ra) chain, CD25 (Fig 1D). Together with data showing that FRCs could halt the proliferation

Human FRCs unilaterally regulate T cells
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of pre-activated T cells, these results suggested that the suppressive mechanism occurred well

downstream of T-cell receptor ligation and did not involve steric hindrance. Suppression was

responsive to dose (Fig 1E), and human FRCs did not produce nitric oxide when stimulated

(Fig 1F).

We questioned whether FRCs may be inducing apoptosis or permanently anergising

responding T cells. Cell cycle analysis showed no increase in apoptosis in either CD4+ or CD8+

T cells (Fig 1G). Instead, in the presence of FRCs, fewer T cells entered the DNA-synthesis

phase (S phase), compared to T cells that were not cocultured with FRCs (Fig 1H), with no

change to G0/G1 or G2/M phase (S2 Fig). Separation of activated, suppressed T cells from

FRCs, followed by reactivation alone in culture, showed that T cells were not permanently

anergised by activation in the presence of FRCs (Fig 1I).

We probed the nature of the suppression mechanism by screening small molecular inhibi-

tors, agonists, and blocking/neutralising antibodies in a similar coculture assay, in which

CFSE-labelled T cells were activated in the presence or absence of FRCs and/or inhibitors and

analysed after 4 days.

Inhibition or blockade of TGFβ receptor, IDO, COX1/2, and A2AR signalling all restored

T-cell proliferation (Fig 2A–2D) to varying degrees, while interleukin 6 (IL-6) and pro-

grammed cell death ligand 1 (PD-L1) inhibition had no effect (Fig 2A–2D), and inhibitors did

not alone significantly alter T-cell differentiation phenotypes (S3 Fig).

All 4 mechanisms were utilised in all donors but to varying degrees, with no conserved pre-

dominance (S4 Fig). This imposed challenges in how to most appropriately assess the overall

effect of FRC suppression on T-cell biology in a meaningful manner, given human variance

and the potential for redundancy. Donor-to-donor variance was minimal when all 4 mecha-

nisms were targeted at once, and since all mechanisms were operational in all donors, we rea-

soned that this was the best means of assessing the net biological impact of FRCs on T cells.

We therefore chose to suppress all mechanisms simultaneously to investigate downstream

effects on T cells.

Fig 1. Human FRCs inhibit T-cell proliferation via secretion of soluble factors. A. CFSE-labelled PBMCs (5 × 105) were cultured with or without 2 × 104

FRCs in 96-well plates, with or without anti-CD3/CD28/CD2-coated activation beads. After 96 h, cells were harvested and analysed using flow cytometry.

Histograms depict T-cell CFSE staining on plots gated for CD3 and CD4 or CD8. Data are representative of at least 6 FRC and PBMC donors and 10

independent experiments. B. Division index of gated CFSE+ T cells, which were cultured for 96 h unstimulated or stimulated with anti-CD3/CD28/

CD2-coated beads, with or without FRCs. Data depict 2 PBMC donors and 4 FRC donors from 2 independent experiments. �� P< 0.01; 2-tailed Mann-

Whitney test; error bars depict SD. C. CFSE-labelled PBMCs (5 × 105) were cultured with or without anti-CD3/CD28/CD2-coated activation beads for 48 h or

96 h. At 48 h, some wells were harvested, washed, and replated with or without anti-CD3/CD28/CD2-coated activation beads (reactivation) and with or

without FRCs. All cells were harvested at 96 h for flow cytometric analysis. Plots gated on CD3, CD4, or CD8 and CFSE. Data are representative of 3 FRC

donors and 3 PBMC donors from 3 independent experiments. D. PBMCs (5 × 105) were stimulated using anti-CD3/CD28/CD2-coated activation beads with

or without precultured FRCs for 96 h and analysed for activation markers CD25 and CD69. Error bars represent SD. Data depict a single experiment, which is

representative of N = 8 FRC donors and N = 3 PBMC donors from 3 independent experiments. �� P< 0.01; unpaired 2-tailed t test; error bars depict SD. E.

CFSE-labelled PBMCs (5 × 105) were cultured with or without anti-CD3/CD28/CD2-coated activation beads and with or without varying concentrations of

FRCs as indicated for 96 h. All cells were harvested at 96 h for flow cytometric analysis. Data are representative of 2 FRC donors, 3 PBMC donors, and 3

independent experiments. Plots gated on CD3+ cells. F. The activation assay described in A. was performed and supernatant harvested at 72 h (mouse) or 96 h

(human). Nitrite, as a breakdown product of nitric oxide release, was measured using the Griess assay. Figure represents cumulative result of 2 independent

experiments. Error bars represent SD. G-I. CFSE-labelled PBMCs (5 × 105) were cultured with or without 2 × 104 FRCs in 96-well plates, with or without anti-

CD3/CD28/CD2-coated activation beads. G. At 96 h, cell cycle analysis of CD4 and CD8 T cells was performed using BrdU and 7AAD. The percentage of cells

expressing a phenotype sub-G1 was defined as apoptotic. Data depict 1 FRC donor and 1 PBMC donor per experiment, from 4 independent experiments.

Mean and SD are shown. H. At 96 h, cell cycle analysis of CD4 and CD8 T cells using BrdU and 7AAD to assess percentage of cells in S phase. Data depict 4

FRC donors and 1 PBMC donor from 1 experiment and are representative of 4 independent experiments. � P< 0.05; 2-tailed Mann-Whitney test. Mean and

SD are shown. I. After 48 h, some wells of activated T cells cultured in the presence of FRCs were harvested, washed, and replated with or without stimulant

(anti-CD3/CD28/CD2-coated activation beads). At 96 h, all wells were harvested and analysed using flow cytometry. Plots gated for CD3, CD4, or CD8 and

CFSE. Figure is representative of 2 FRC donors with 1 PBMC donor per experiment, from 2 independent experiments. Data used in the generation of this

figure can be found in S1 Data. 7AAD, 7-aminoactinomycin D; BrdU, bromodeoxyuridine; CFSE, carboxyfluorescein succinimidyl ester; FRC, fibroblastic

reticular cell; PBMC, peripheral blood mononuclear cell; S phase, DNA-synthesis phase.

https://doi.org/10.1371/journal.pbio.2005046.g001
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To assess whether these 4 molecular targets were together sufficient to entirely block FRC

suppression, we created an inhibitory cocktail of all 4 inhibitors and treated PBMCs that were

exposed to stimulatory signals for 96 h. In the presence of FRCs, proliferation of both CD4 and

CD8 T cells occurred at control levels (Fig 2E and 2F). The inhibitor cocktail did not alone sig-

nificantly increase T-cell proliferation in the absence of FRCs (Fig 2E and 2F).

Strikingly, the presence of FRCs influenced the fate of differentiating naive CD4+ and CD8+

T-cell populations (CD62L+CD45RO−). Their presence during T-cell activation decreased dif-

ferentiation of CD4+ and CD8+ T cells to a central memory phenotype (CD62L+CD45RO+)

while increasing the proportion of CD4+ naïve (CD62L+CD45RO−) T cells. Effector (CD62L

−CD45RO−) and effector memory phenotype T cells (CD62L− CD45RO+) and CD8+ naïve T

cells were not affected (Fig 3A and 3B). Memory phenotype cells were further profiled by

expression of CD27 and by relative proliferation; both subsets yielded expected phenotypes

(S5 Fig). Blockade of TGFβR, IDO, COX1/2, and A2AR signalling reversed the effects (Fig 3A

and 3B). Results were comparable regardless of whether anti-CD2/3/28-coated beads or

PHA-L/IL-2 was used as the activating stimulus.

Since CD25 is the alpha chain of the IL-2R, and since we observed selective inhibition of

CD25 expression by FRCs (Fig 1D), which was present as early as 24 h after stimulation and

did not occur in the presence of inhibitors (S6 Fig), this led us to question whether FRC-medi-

ated effects on IL-2 signalling were evident. Coculture with FRCs did not alter signal trans-

ducer and activator of transcription 5 (STAT5) phosphorylation (Fig 4A and 4B), leading us to

conclude that this signalling pathway was not mechanistically important; we tested other sig-

nalling molecules phosphorylated extracellular signal–regulated kinase 1/2 (pERK1/2), phos-

phorylated STAT1 (pSTAT1), phosphorylated STAT3 (pSTAT3), phosphorylated STAT6

(pSTAT6), and p38 mitogen-activated protein kinase (MAPK) and found no mechanistic

insight within T cells (S7 Fig). IL-2 production, as a downstream transcriptional target of IL-2

signalling, was also not altered (Fig 4C). Together, these results demonstrated that an inhibi-

tion of the IL-2 signalling pathway was not driving T-cell suppression. Accordingly, the pro-

portion of T regulatory cells (Tregs) was also neither increased nor decreased in stimulated

cultures (S8A and S8B Fig), and depletion of CD25+ cells did not prevent FRC-mediated sup-

pression (S8C Fig), suggesting that the effect of FRCs did not occur via cross-talk with Tregs.

Production of IFNγ and tumour necrosis factor alpha (TNFα) were also unaffected by

coculture with FRCs (Fig 4C), suggesting that while FRCs inhibit activation and differentiation

of T cells, once T cells are active, their effector functions are not impaired. This finding was

confirmed using antigen-activated chimeric antigen receptor (CAR) T cells (Fig 4D) and is a

Fig 2. FRCs mediate their effects through COX1/2, IDO, TGFβR, and A2AR. A., B. CFSE-labelled PBMCs (5 × 105) were

stimulated with PHA-L/IL-2 with or without precultured FRCs and in the presence of inhibitors for IL-6, TGFβR, or A2AR (A) or

PD-L1, IDO, or PGE2 (B). Some wells were left unstimulated. After 96 h, cells were harvested and analysed by flow cytometry. Plots

gated as CD3+. Figure depicts 4 FRC donors and 2 PBMC donors from 2 independent experiments and is also reflective of results

obtained using anti-CD3/CD28/CD2-coated activation beads. C, D. Data from A, B were analysed for normalised division index of

CD4+ (C) or CD8+ (D) T cells; 100% = maximal division of stimulated T cells in the absence of FRCs; 0% = minimal division, from

unstimulated T cells. All groups shown were stimulated in the presence of FRCs, without inhibitor (no inhibitor) or with inhibitors for

IL-6, PD-L1, TGFβR, A2AR, IDO, or PGE2. Data depict 4 FRC donors and 2 PBMC donors from 2 independent experiments. Error

bars represent SD. ���� P> 0.0001, ��� P> 0.001. Statistics derived from 1-way ANOVA with Dunnett’s multiple comparison test. E,

F. CFSE-labelled PBMCs were stimulated with anti-CD3/CD28/CD2-coated activation beads, with or without precultured FRCs, and

in the presence or absence of inhibitor cocktail (A2AR agonist, TGF-βR inhibitor, IDO inhibitor, COX1/2 inhibitor). Division index

of CD4 (E) and CD8 (F) T cells is shown. Figure depicts 3 independent experiments each with 2–4 FRC donors and 1 PBMC donor

per experiment. Mean and SD are shown. ��� P< 0.001, �� P< 0.01, � P< 0.05. Statistics derived from a 2-tailed unpaired t test. Data

used in the generation of this figure can be found in S1 Data. A2AR, adenosine 2A receptor; COX1/2, cyclooxygenase-1/2; FRC,

fibroblastic reticular cell; IDO, indoleamine-2,3-dioxygenase; IL-6, interleukin 6; PBMC, peripheral blood mononuclear cell; PD-L1,

programmed cell death ligand 1; PGE2, prostaglandin E2; PHA-L/IL-2, phytohaemagglutinin-L/interleukin 2; TGFβRI, transforming

growth factor beta receptor type 1.

https://doi.org/10.1371/journal.pbio.2005046.g002
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finding not reproduced in mouse models, in which IFNγ production is reduced following FRC

coculture [6].

Given the broad differences here observed between mice and humans, we decided to test

whether T-cell cross-talk with human FRCs was required for or important to suppression. In

mice, having T cells and FRCs in close proximity is important, since separation by transwell

blocks the majority of the suppressive effect of FRCs [5,6]. Residual suppression in the pres-

ence of the transwell is likely to be due to secretion of PGE2 [4]. Unlike mouse FRCs, suppres-

sion was retained when FRCs were separated from T cells by a cell-impermeable transwell

barrier (Fig 4E). Moreover, FRC-conditioned media diluted 1:2 in complete media suppressed

T-cell activation indistinguishably from FRCs (Fig 4F), showing that FRCs secrete suppressive

factors constitutively and that, unlike mouse FRCs [5,6] or human mesenchymal stromal cells

[7], they do not require cross-talk from activated T cells. Accordingly, steady-state cultured

FRCs expressed high levels of PGE2 synthesis enzymes COX1 (PTSG1) and COX2 (PTSG2)

(Fig 4G). COX1 is usually a constitutive source of PGE2, while COX2 is more commonly

inflammation inducible yet was expressed in otherwise unstimulated FRC cultures (Fig 4G)

[4]. COX2, A2AR, and transforming growth factor beta receptor type 2 (TGFβR2) protein

staining was detectable on ERTR7+ T-zone FRCs (TRCs) present in frozen tonsil tissue sec-

tions (S9 Fig) from patients who were not suffering from infection at the time of surgery. We

were unable to detect IDO staining, suggesting that this protein alone may be inducible under

acute inflammatory conditions.

As a method of cross-confirmation to show that FRCs preproduce suppressive factors prior

to seeing T cells, we preincubated FRCs with inhibitors, prior to a wash step, and then added T

cells and an activation stimulus. T cells stimulated with pre-inhibited FRCs had high CD25

expression after 24 h, similar to FRCs with inhibitors and higher than uninhibited FRCs (S6

Fig), as also shown in Fig 1D. CD25 expression was used as a biomarker for FRC suppression

of T cells, as T-cell division was not measurable until 48 h, and the pre-incubation step was,

because of receptor turnover, not effective beyond 24 h.

Next, we looked for a means to validate these in vitro results. Activation of T cells in situ on

secondary lymphoid organ tissue slices has not previously been shown, to our knowledge. We

decided to test whether this could be due to a suppressive effect of stromal cells, by stimulating

T cells in situ within slices of freshly donated tonsil, in the presence or absence of the inhibitory

cocktail. Tonsils were obtained within 2–4 h of surgery from healthy donors, immediately sec-

tioned, and then incubated in media containing phytohaemagglutinin-L (PHA-L) and recombi-

nant human interleukin 2 (rhIL-2), with or without the inhibitor cocktail added. After 96 h, T

cells were imaged or isolated by mechanical disruption and analysed by flow cytometry.

A significantly higher proportion of CD4+ and CD8+ T cells were observed in active cell

cycle (Ki67+) in the presence of the inhibitory cocktail, shown through flow cytometry (Fig 5A

and 5B) and immunofluorescence (Fig 5C). Controls showed baseline expression (Fig 5A–5C).

Immunofluorescent imaging showed increased Ki67 staining in the T-cell zone when

Fig 3. FRCs constrain differentiation of T cells with a central memory phenotype. A. CFSE-labelled PBMCs (5 × 105)

were stimulated with anti-CD3/CD28/CD2-coated beads, with or without precultured FRCs, and in the presence or absence

of the inhibitor cocktail. Some wells were left unstimulated. After 96 h, cells were harvested and analysed by flow cytometry.

Plots gated for CD3, CD4, or CD8; CD62L; and CD45RO. Figure is representative of 3 FRC donors and 3 PBMC donors

from a total of 3 independent experiments. B. Fold-change analysis of FRC effect on T-cell differentiation from experiments

conducted as described in A. A star (�) defines significance compared to untreated; a hash (#) defines significance compared

to activated+FRCs+inhibitors. Two symbols refers to P< 0.01; 3 symbols to P< 0.001; 4 symbols to P< 0.0001, using a

1-way ANOVA with Sidak’s multiple comparisons test. Data depict 3 independent experiments, each with 2–4 FRC donors

and 1 PBMC donor. Data used in the generation of this figure can be found in S1 Data. FRC, fibroblastic reticular cell;

PBMC, peripheral blood mononuclear cell.

https://doi.org/10.1371/journal.pbio.2005046.g003
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Fig 4. FRCs act unilaterally to suppress T cells. A, B. PBMCs (5 × 105) were stimulated with anti-CD3/CD28/CD2-coated beads with or without precultured

FRCs and in the presence or absence of the inhibitor cocktail for 48 h. Cells were then washed to remove stimulant and allowed to rest for 24 h before anti-CD3/

CD28/CD2-coated bead reactivation for 15 min. Cells were then harvested and stained for pSTAT5 using the PhosFlow kit according to the manufacturer’s

instructions. A depicts histograms gated on CD3+ T cells. B depicts aggregate data from 1 experiment of N = 1 PBMC donor and N = 2 FRC donors; error bars

Human FRCs unilaterally regulate T cells

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005046 September 4, 2018 10 / 24

https://doi.org/10.1371/journal.pbio.2005046


inhibitors and the activating stimulus were both present (Fig 5C). Ki67 staining robustly repro-

duced in vitro results and demonstrated that it is possible to inhibit stromal-induced T-cell

suppression in situ.

Taken together, these results show that human FRCs strongly influence the activation and

differentiation of naïve T cells by constraining initial proliferation and skewing their differenti-

ation away from a central memory phenotype without altering effector cytokine production or

signalling. Mechanisms of action involved PGE2, COX1/2, TGFβ, and A2AR. Coinhibition of

these factors permitted us to observe T-cell activation on a living tonsil slice for the first time,

to our knowledge.

Discussion

Identifying the cells and molecules that regulate T-cell activation during inflammation, infec-

tion, cancer, and autoimmunity is a fundamental first step towards creating effective therapies

for immune-mediated pathologies and immune deficiencies. Human immunological studies

are commonly carried out in vitro, with validation in mice. Here, we show that the presence of

a human microenvironment influences T-cell activation both in vitro and in situ, with impor-

tant functional and mechanistic differences from previous observations in mice.

Previous studies using mouse lymph nodes have established that FRCs are important for

regulation of T-cell proliferation, largely through provision of nitric oxide [5–7] with an early

role for PGE2 [4,6]. Changes to differentiation were not observed in mice, but FRCs did com-

promise effector cytokine production and therefore T-cell function [6].

By contrast, our results showed key differences to mice. Human FRCs utilised 4 pathways

independent of nitric oxide to control T-cell proliferation and differentiation. Inhibiting

TGFβR, A2AR, IDO, and COX1/2 completely reversed the suppressive effect of FRCs and

restored differentiation of T cells with a central memory phenotype to normal levels. Similarly,

the inhibition of these targets in situ using tonsil slices allowed T cells to overcome the prohibi-

tive effect that stromal cells imposed.

Unlike mice, bidirectional T-cell signalling to FRCs was not required for T-cell suppression

or for expression of A2AR, TGFBR, and COX2 protein by TRCs. Expression of IDO was not

detected, and it is expected that IDO is induced by acute inflammation, as reported in dermal

and bone marrow fibroblasts [17]. It will be of interest in the future to explore the factors and

kinetics governing its induction.

depict SD. Data are representative of N = 4 FRC donors and N = 2 PBMC donors from 2 independent experiments. C. PBMCs (5 × 105) were stimulated by anti-

CD3/CD28/CD2-coated beads with or without precultured FRCs and in the presence or absence of the inhibitor cocktail for 96 h. Brefeldin A was added for the

last 4 h of activation. Cells were harvested; stained for IFNγ, IL-2, or TNFα; and analysed by flow cytometry. Bar graphs depict N = 3 FRC donors and N = 1

PBMC donor. Data represent 2 independent experiments. Mean and SD depicted. D. Mock-transduced or transduced CART cells were stimulated with target

CHO cells expressing antigen (hCLEC) or irrelevant protein (WT), in the presence or absence of FRCs at 2 dilutions. FRCs alone or no T-cell groups were

negative controls. Eighteen h after coculture, IFNγ concentration was tested using ELISA. Data represent N = 2 independent experiments. E. FRCs were

cultured in 24-well plates for 24 h prior to introduction of CFSE-labelled T cells in a transwell. After 48 h of activation with anti-CD3/CD28/CD2-coated beads,

T cells were harvested, and percent suppression was assessed by flow cytometry by taking the ratio of percent T cells divided in the presence of a 1 μm transwell,

divided by the percent divided in the absence of the transwell × 100. Mean and SD depicted from N = 2 FRC donors and 2 PBMC donors from 2 independent

experiments. F. CFSE-labelled PBMCs were stimulated with anti-CD3/CD28/CD2-coated beads, with or without precultured FRCs. Some wells were left

unstimulated, and some stimulated wells had a 1:2 dilution of FRC CM added. After 96 h, cells were harvested and analysed by flow cytometry. Plots gated on

CD3, CD4, or CD8 and CFSE. Data are representative of N = 4 FRC donors and N = 2 PBMC donors from 2 independent experiments. CM was derived from

N = 2 FRC donors, each used in 2 independent experiments. G. RNA-Seq data from cultured (passage 3) human tonsil–derived FRCs. N = 3 unrelated FRC

donors. Y axis represents normalised expression of genes in transcripts per million. Data used in the generation of this figure can be found in S1 Data. CAR,

chimeric antigen receptor; CHO, Chinese hamster ovary; CM, conditioned medium; FRC, fibroblastic reticular cell; hCLEC, human C-type lectin domain

family 14 member A; IFNγ, interferon gamma; IL-2, interleukin 2; PDPN, podoplanin; PECAM1, platelet and endothelial cell adhesion molecule 1; PBMC,

peripheral blood mononuclear cell; pSTAT5, phosphorylated signal transducer and activator of transcription 5; PTPRC, protein tyrosine phosphatase receptor

type C; PTSG1, prostaglandin-endoperoxide synthase 1; PTSG2, prostaglandin-endoperoxide synthase 2; RNA-seq, RNA sequencing; TNFα, tumour necrosis

factor alpha; WT, wild type.

https://doi.org/10.1371/journal.pbio.2005046.g004
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Once activated, polyclonal and CAR T cells both showed normal effector cytokine secre-

tion, which again differs from mice. It is currently unclear whether these are bona fide biologi-

cal differences between mice and humans or due to the preferential study of immunologically

naïve mice raised in a specific pathogen-free environment. It would be interesting to see

whether FRCs from mice that have undergone several rounds of a self-limiting infection

would constitute a more representative model for human FRCs.

Fig 5. Ex vivo activation of T cells. Fresh tonsil tissue slices were incubated with or without stimulant (PHA-L/IL-2) and either with or without the

presence of the inhibitor cocktail. All slices were incubated for 96 h. A. Slices were harvested and mechanically disrupted before staining for flow cytometry.

Plots were gated for CD3, CD4, or CD8 and Ki67, with HLA-DR as a counterstain. Percentage of CD3+CD4+ or CD3+CD8+ T cells that are Ki67+ is

shown. Figure depicts 1 tonsil donor, representative of N = 10 tonsil donors from at least 5 independent experiments. B. Fold-change analysis of T-cell

activation (Ki67) from tissue slices analysed via flow cytometry. Y axis represents fold change from stimulated controls. A 2-tailed Wilcoxon signed rank

test was used to obtain P-values comparing activated+inhibitor to activated; �� P< 0.01. Error bars represent SEM. Figure depicts N = 10 tonsil donors

from at least 5 independent experiments. C. Confocal microscopy of tonsil tissue slices stimulated with PHA-L + IL-2 for 90 h with or without inhibitor

cocktail. CD3 in green, Ki67 in white. Scale bar in white represents 50 μm. Representative example of 2 independent experiments. Data used in the

generation of this figure can be found in S1 Data. PHA-L/IL-2, phytohaemagglutinin-L/interleukin 2.

https://doi.org/10.1371/journal.pbio.2005046.g005

Human FRCs unilaterally regulate T cells

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005046 September 4, 2018 12 / 24

https://doi.org/10.1371/journal.pbio.2005046.g005
https://doi.org/10.1371/journal.pbio.2005046


The finding that T-cell function in the presence of FRCs is maintained is highly relevant to

cancer immunotherapy. Secondary lymphoid organs are a primary tumour site for lymphoma

and leukaemia and a prominent metastatic site for many other cancers. They are an important

site for transfused CAR T-cell activity, with one study showing CAR T cells heavily infiltrating

lymph nodes of patients with lymphoma at>30% of T cells [18] and another showing CAR T

transcripts detectable in lymph nodes up to 3 mo post-infusion and at higher levels in lymph

nodes than in blood [19]. Mouse data suggested that FRCs would limit IFNγ production by

effector T cells; these results show that human FRCs only impose effects on naïve T-cell prolif-

eration and differentiation and not effector function. Secretion of key effector cytokines IFNγ,

TNFα, and IL-2 is unchanged in the presence of FRCs after T cells are activated, which is the

case for CAR T therapy.

Much like nitric oxide as a mechanism in mouse FRCs, human FRC molecular mechanisms

are extremely complex, and the precise effects on T cells are not easily elucidated, despite their

clear biological importance and decades of intense study. TGFβR signalling, the COX1

enzyme, A2AR, and IDO all have well-described suppressive effects on T-cell activation. But

apart from IDO, none are uniformly anti-inflammatory; rather, each factor is capable of shap-

ing the T-cell response in a complex manner dependent on the stimulus, costimulating factors,

and the microenvironmental cytokine milieu [20,21]. As such, inhibitors targeting the mole-

cules profiled in this study have been investigated for highly diverse applications. A2AR inhibi-

tors, for example, are used to treat rheumatoid arthritis (methotrexate [22]) while being

investigated as an immunomodulatory treatment for cancer, for which the goal is inhibition of

immunosuppression [23]. The level of TGFβ signalling to naïve T cells is an important factor

in enforcing their quiescence, and naïve T cells in patients with autoimmunity have reduced

expression of TGFβRI and increased capacity for T-cell proliferation [24], but TGFβ blockade

enhances vaccine and immunotherapy responses [25]. With similar complexity, murine FRCs

have a role in deletional and suppressive tolerance [5,6,26] while promoting healthy immune

responses [3,10].

IDO has a well-defined role in T-cell suppression. It oxidises tryptophan to kynurenine

metabolites [27], which both deprives effector T cells of tryptophan, inducing proliferative

arrest [28], and exposes them to immunosuppressive kynurenine, which can impair T-cell

growth and survival [29]. IDO is a well-described mechanism of tumour immune evasion in

mice [28] and shows direct effects in human T cells [30–32], though a phase 3 trial of combina-

tion IDO inhibitor and programmed cell death protein 1 (PD-1) inhibition recently failed to

improve progression-free survival compared to PD-1 inhibitor immunotherapy alone (clini-

caltrials.gov identifier: NCT02752074). IDO affects the earliest stages of TCR signalling

through down-regulation of Vav1 and inhibition of F-actin reorganisation [30,31], as well as

inhibition of the mammalian target of rapamycin (mTOR) pathway [29], and, as we observed,

prevents cells progressing to S phase of the cell cycle [33].

COX1 and COX2 are enzymes involved in prostaglandin synthesis. Our inhibitor is capable

of blocking both, but our data show that COX1 is a major mediator of FRC suppression, since

FRC-conditioned media strongly suppressed T cells, and cultured FRCs only expressed COX1

constitutively. COX1 can also be involved in the earliest inflammatory events, after which

COX2 becomes the predominant inflammatory isoform [34]. In humans, PGE2 is the most

abundant member of the prostanoid family, and most PGE2 is secreted by professional anti-

gen-presenting cells (APCs) and stromal cells [21]. PGE2 is capable of mediating diverse

effects depending on stimuli that are not well understood, but its role in suppression of T-cell

activation and proliferation has been reported since 1971 [35], with newer studies also describ-

ing skewed differentiation [36] and induction of a suppressive phenotype in non-Treg CD4

+ T cells, which were capable of suppressing the proliferation of other T cells undergoing
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activation [37]. Reported mechanisms include down-regulation of CD25, up-regulation of

CD46, and altered responses to costimulation [36].

Extracellular purinergic mediators, such as adenosine triphosphate (ATP) and adenosine,

are powerful immunomodulators. They signal through A2AR as an important step in the reso-

lution of inflammation, providing well-described suppressive influences on the function of T

cells, dendritic cells, macrophages, mast cells, platelets, natural killer (NK) cells, B cells, fibro-

blasts, and neutrophils to prevent excessive tissue pathology [20,38,39]. Accordingly, metho-

trexate is a clinically important A2AR antagonist used to treat rheumatoid arthritis and other

autoimmune diseases [22]. Adenosine production is increased in inflammation and in low-

oxygen-tension microenvironments, and activation of A2AR increases intracellular cAMP,

which inhibits cytokine responses. Accordingly, inhibition of A2AR awakens tumour-reactive

CD8+ T cells in mouse models [40]. The oxygen tension in human lymphoid organs is likely

to be low: murine lymphoid organs exhibit low oxygen tension in vivo at 0.5%–4.5% oxygen,

which impacts upon the speed at which effector T cells differentiate [41], and while data on

healthy lymph nodes are lacking, low partial pressures are reported for other human organs

and tissues [42].

Certain human T-cell subsets are known to express CD39, which converts ATP to AMP

[43], while human FRCs express high levels of CD73, which converts AMP to adenosine.

A2AR signals reduce secretion of proinflammatory IL-1β and IL-6 [22], both of which are pro-

duced at high levels by FRCs in response to inflammation [11], and increases production of

collagen I [44].

TGFβ is a highly evolutionarily conserved immunomodulatory molecule [45]. Our inhibi-

tor blocked signalling receptor component activin receptor-like kinase 5 (ALK5; TGFβRI),

whose signals are transduced by phosphorylation of SMAD2 and SMAD3 proteins [46].

TGFβRI−/− mice develop a lethal inflammatory disease [47], and neutralising TGFβ increases

antitumour responses of CD8+ T cells [48]. However, TGFβ can impose both pro- and anti-

inflammatory functions in responding human T cells, depending on their differentiation state

and inflammatory cytokines encountered [45]. As an anti-inflammatory agent, TGFβ inhibits

CD4+ and CD8+ T-cell clonal expansion and differentiation and inhibits the activation of

high-affinity T cells [49–51], relevant to our findings, and it also promotes the survival of

lower-affinity T cells. These effects can occur in a paracrine fashion by acting on APCs and

other cells and by reducing CD25 expression [51]. TGFβ signalling blocks the clonal expansion

of T cells in vivo and blocks differentiation of T helper 1 (Th1), T helper 2 (Th2), and cytotoxic

lymphocyte (CTL) T cells in favour of T helper 17 (Th17; in the presence of IL-6) or peripheral

Treg (pTreg; in the presence of retinoic acid and IL-2) [50].

The described pathways could potentially also link together. PGE2 can increase the expres-

sion of IDO in dendritic cells [52]. Similarly, signalling pathways downstream of PGE2 ligands

EP2–4 involve cAMP, which is derived from ATP [21], potentially linking the suppressive

actions of COX1 inhibition and A2AR inhibition. However, these potential interactions are

very poorly studied and understood and require extensive further study.

Suppression of T-cell proliferation within secondary lymphoid organs seems paradoxical,

but these and other results [5–7] show it is conserved in mice and humans, despite utilising

different mechanisms. Mouse studies clearly show that it operates in vivo, in isolated FRCs in

response to inflammation [5]. Here, we show that it operates in vitro using human cells and in

situ in human tissues and that FRCs also secrete key suppressive factors in the absence of cur-

rent inflammation. One hypothesis is that this mechanism helps prevent bystander damage to

stromal cells in a lymph node teeming with inflammatory cytokines and antigen [1,12], and

the mechanisms described all have well-charted effects in the resolution of inflammation [39].

Accordingly, viral infection of FRCs is associated with viral persistence in mice [12], and a
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loose association has been observed in humans and rhesus macaques in studies of HIV and

Ebola virus, though studies are correlative [1].

While human FRCs did not affect the secretion of effector cytokines from activated cells,

they did impose effects on the proliferation of activated cells. FRCs added to pre-activated, rap-

idly dividing cultures halted their division, and when activated, suppressed T cells are removed

from the suppressive influence of FRCs, they begin rapidly dividing within 24 h, despite being

washed thoroughly to remove the inflammatory cytokine milieu, and without being given a

new activating stimulus. Thus, the effects of FRCs are not limited to naïve T cells.

This raises the possibility of pharmacologically targeting FRCs as a means to promote a

stronger immune response. It would be valuable to study whether FRC inhibition could benefit

patient groups who do not mount a robust response to vaccination, or to boost responses to

cancer vaccines.

The in situ activation assay revealed a clear disconnect between the study of human immu-

nology in vitro, in which T cells are frequently activated in isolation, and in situ, in the pres-

ence of the microenvironment. Our work highlights the importance of considering the

microenvironment for in vitro human immunology studies. Conditions that robustly activated

T cells in culture were entirely insufficient to activate T cells in situ. Addition of the inhibitor

cocktail significantly increased T cell activation in situ but not to in vitro levels, suggesting the

presence of additional physical or chemical inhibitory factors that warrant further study. Simi-

larly, in mice, rare FRCs were observed up-regulating the suppression-mediating nitric oxide

synthase 2 (NOS2) enzyme during an in vivo T-cell immune response [5], which was sufficient

to robustly impair T-cell activation. These processes are clearly observable yet subject to kinet-

ics and fate decisions we have yet to fully understand—suppressive yet finely tuned to permit

T-cell activation and foster immunity.

The in situ activation assay has potential to test drugs in development for their effects on T-

cell activation and proliferation. A technical challenge, requiring further study, is the ability to

isolate slices from equivalent areas of tissue. The proportion of naïve T cells within a single

donor varied hugely from slice to slice. As such, it was not yet possible to use this method to

assess differences in subtler immunophenotypic changes, such as differentiation status.

Another important caveat is our lack of transcriptomic data from freshly isolated human

FRCs. Cultured FRCs in this study lacked a PDPN-low/negative subset that was present in

freshly isolated tonsil FRCs, and the function of this subset in humans is not yet known.

Together, this work suggests that FRCs utilise druggable targets (individually or in combi-

nations) with the potential to boost the generation of new immune responses within secondary

lymphoid organs—for example, following vaccination of relevant patient groups or for the

treatment or prevention of malignancy.

Materials and methods

Ethics statement

All tissues were obtained from consenting donors from the National Disease Research Inter-

change (NDRI) resource centre or Human Biomaterials Resource Centre (HBRC), Birming-

ham (HTA licence 12358, 15/NW/0079), under project approval number REC_RG_HBRC_

12–071. All tissues were obtained and utilised in accordance with institutional guidelines and

according to the principles expressed in the Declaration of Helsinki.

Human tissues

Human tonsils were obtained from presently healthy children and adults undergoing routine

tonsillectomy for a medical history of recurrent infection or obstructive sleep apnoea. Human
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blood was obtained from healthy adult donors. Human lymph nodes were procured from

cadaveric donors, transported intact in DMEM on ice, and processed for flow cytometry or

cell culture within 24 h. All tissues were obtained and utilised in accordance with institutional

guidelines.

Single-cell primary cultures

Tonsils and lymph nodes were enzymatically digested using a published protocol [13] or

grown through explant culture and used at passage 1–3. Briefly, tissues were cut into small

pieces and grown in a low volume of complete media with antibiotics (alpha-MEM with 10%

FBS, with penicillin, streptomycin, and a mycoplasma elimination reagent) for 24 h to allow

adhesion to the tissue culture plate. Following this, tissues were covered with media containing

antibiotics and grown for 5 days to permit fibroblasts to emerge. Tissue was then discarded

and cells culture-expanded in complete media without antibiotics. Using this method, a mono-

layer of>99% pure FRCs was achieved within 2 wk. Ten-fold expansion was taken to equal 1

passage. FRCs were defined as CD45−, CD31−, PDPN+. Very rarely, cultures down-regulated

expression of PDPN after passage 3; this did not affect their transcriptome or suppressive T-

cell interactions (not shown); nonetheless, such cultures were not used experimentally to

ensure uniformity.

T-cell activation assay

FRCs (2 × 104) were plated in a 96-well flat-bottom plate in complete media (alpha-MEM, 10%

FBS) and allowed to adhere for 4 h. FRCs were always used in experiments prior to passage 3.

Mononuclear leukocytes were isolated from whole blood using a density gradient and then

counted using a haemocytometer and Trypan Blue viability dye. Where stated, T cells were

purified using the Pan T-cell isolation kit (Miltenyi Biotec) according to the manufacturer’s

instructions and at a purity >90%, or CD25 depleted (Miltenyi Biotec) according to the manu-

facturer’s instructions and at a purity >90%. Mononuclear leukocytes or T cells (5 × 105) were

added, together with a stimulant: either CD2/3/28 T-cell activation beads (2 beads/T cell) (Mil-

tenyi Biotec) or PHA-L (1 μg/ml) + rhIL-2 (100 U), as stated in figure legends. Inhibitors were

added at the following concentrations: SB431542 10 μM (TGFβ signalling pathway inhibitor

through blockade of ALK5, 7, 4, Sigma), Indomethacin 5 μM (Cox1/2 and PGE2 synthesis

inhibitor, Sigma), SCH 58261 10 μM (A2AR inhibitor, Sigma), 1-methyl-D-Tryptophan

(1-MT) 1 mM (Indoleamine-2,3-dioxygenase inhibitor, Sigma). SCH 58261 and SB431542

10 μM were stored in DMSO. PGE2 inhibitor was reconstituted in ethanol; 1-MT was reconsti-

tuted in methanol and pH adjusted to 7.0. The final volume per well was 200 μl, and all cells

and inhibitors were resuspended in complete media without antibiotics. All 4 inhibitors used

together at stated concentrations are referred to as the ‘inhibitor cocktail’.

CAR T-cell activation assay

FRCs (1–2 × 104) and Chinese hamster ovary (CHO; 5 × 104–1.25 × 105) cells were plated in a

96-well flat-bottom plate in complete media (DMEM, 10% FBS with IL-2 [25 IU/ml]) and

allowed to adhere for 4 h. CRT-3 (1 × 105) or mock-transduced T cells were added and incu-

bated for 18 h at 37˚C/5% CO2. Culture supernatants were collected at 18 h, and the levels of

IFNγ were titrated in culture supernatants using the ELISA method. Briefly, plates (Nunc)

were coated with anti-human IFNγ Ab diluted in coating buffer (0.75 μg/ml) and incubated at

4˚C overnight. After blocking the wells using buffer containing PBS plus 0.05% (v/v) Tween 20

and 0.1% (w/v) bovine serum albumin (BSA), supernatants were added to each well. Biotin-

labelled mAb in incubation buffer was added to each well, and streptavidin-HRP was used as
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enzyme. The reaction was developed using 3,30,5,50-tetramethylbenzidine (TMB) substrate

and stopped by adding 1 M hydrochloric acid. The plates were washed after each step using

PBS with 0.05% (v/v) Tween 20. Reading was performed using a microplate automatic reader

(Biorad) at a wavelength of 450 nm.

In situ T-cell activation

Tonsils<2 h from surgery were sliced into multiple 0.4–0.6 mm sections using a sterilised car-

bon-fibre microtome blade or embedded in low-melting-point agarose and sectioned using a

vibratome, collected into ice-cold PBS. Sections were randomised between groups and cul-

tured in complete media containing PHA-L (1 μg/ml) + rhIL-2 (100 U), with or without the

inhibitor cocktail described above. Multiple slices were used per treatment group. After 96 h,

each slice was pushed through a cell strainer to create a single-cell suspension and stained for

flow cytometry or embedded in OCT buffer and snap-frozen for sectioning and imaging. To

minimise differences arising from sectioning different areas of tissue, data from multiple slices

were averaged to obtain a single data point per donor.

Flow cytometry

Cells were harvested at stated time points and stained for 20 min in FACS buffer (PBS with 2%

FCS and 2 mM EDTA) using antibodies as described in S1 Table. Cells were fixed and permea-

bilised using a commercial kit (BD) and then stained for intracellular proteins using the fol-

lowing antibodies: cells were resuspended for flow cytometry, filtered through 100 μm mesh,

and acquired using flow cytometry. Analysis utilised commercial analysis software (TreeStar

or DeNovo Software). tSNE analysis was performed using 1,000 iterations, with perplexity 30

and theta 0.5, displaying a proportional number of events.

Imaging

Human tonsils were embedded in O.C.T. Compound (Sakura) and then flash frozen using dry

ice. Then, 10–12 mm transverse sections were generated on a cryostat (Bright Instrument

Company) and collected on adhesive slides (Leica). Sections were air-dried for 2 h at room

temperature (RT) and then fixed in cold acetone for 25 min. Sections were air-dried overnight

for immediate immunolabelling or stored at −80˚C until further use. Frozen tonsil sections

were air-dried for 15 min at RT and rehydrated for 5 min with 1X PBS. Sections were then per-

meabilised for 15 min with 0.3% Triton X-100 (ThermoFisher Scientific) and washed 3 times

with 1X PBS. Sections were blocked for 1 h in 1% BSA (Sigma-Aldrich) and 5% goat serum in

PBS in a humidified chamber. Sections were incubated overnight at 4˚C with primary antibod-

ies diluted in 1% BSA. After incubation, sections were washed 3 times with 1X PBS and then

incubated with secondary antibody for 1 h. Secondary antibodies included goat anti-rat Alexa

546 (ThermoFisher), goat anti-rat Alexa 546 (ThermoFisher), goat anti-rat goat Alexa 647

(ThermoFisher), donkey anti-rabbit Alexa 488 (ThermoFisher), goat anti-rabbit Alexa 647

(ThermoFisher), donkey anti-mouse DyLight 594 (ThermoFisher), and donkey anti-goat

Alexa 555 (ThermoFisher). Sections were then incubated with DAPI for 1 min, followed by 3

additional washes with 1X PBS. Negative controls utilised incubation with PBS with relevant

serum or relevant isotype, followed by secondary antibody. Finally, sections were mounted in

antifade mountant (ThermoFisher Scientific) for imaging. Immunofluorescence images were

taken with a confocal microscope Zeiss LSM 880, using ZEN Pro imaging system.
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RNA-Seq

Tonsil-derived FRCs from 3 donors (in-house) and bone marrow–derived MSCs from 3

donors (Lonza and expanded in-house) were grown in culture to P3 in the presence of hFGF

(4 μg/ml) and harvested in logarithmic growth phase. Total RNA was extracted using an RNA

extraction kit (Qiagen) and purified using a cleanup kit (Qiagen). Samples were quality tested

using an Agilent Bioanalyzer 2100 and the Agilent RNA 6000 nano kit. RIN numbers for all

samples ranged from 9.5 to 10. Samples were then sent to BGI (Hong Kong) for library prepa-

ration and sequencing. Briefly, library preparation utilised poly-A enrichment followed by

Ribozero depletion. Samples were run in a high-performance sequencing machine (Illumina)

over 2 lanes, resulting in approximately 60 million reads per sample. Data were then trimmed

for adapter sequences before analysis. Bioinformatics alignment and further analysis was done

in-house using commercial software (Partek). For a visual representation of gene expression,

TPM was used for normalisation. The heatmap was made using Morpheus (https://software.

broadinstitute.org/morpheus). Data are accessible at monash.figshare.com doi: 10.4225/03/

5a2dae0c9b455.

Statistics

Data were tested for normality using D’Agostino and Pearson normality test. Normally distrib-

uted data of 2 groups were compared using an unpaired t test, or of 3 or more groups using an

ANOVA with a multiple comparison test, as described in figure legends. When data were not

normally distributed, 2 comparisons were made using a Mann-Whitney test. When fold-

change data were compared to a normalised value of 1, a 2-tailed Wilcoxon signed rank test

was used. P< 0.05 was taken as significant.

Supporting information

S1 Data. Raw numbers used to construct primary and supplemental figures.

(XLSX)

S1 Table. Primary antibodies list. A list of primary antibodies used in flow cytometry and

imaging. Columns from left to right represent antigen antibody was raised for; conjugated

fluorescent label of the antibody, if applicable; antibody isotype; antibody clone; source of the

antibody; and application the antibody was used for.

(XLSX)

S1 Fig. Comparison between freshly isolated and cultured FRCs. A. Human tonsil–derived

FRCs, at various passages or freshly isolated, were gated as CD45− CD31− EpCAM− and

assessed by flow cytometry for expression of αSMA, CD73, CD117, CD56, CD10, PDGFRβ,

PDPN, CD90, FAP, and CD29. tSNE analysis is depicted, and the subset noted as missing

from culture is denoted with a box gate. B. CD73 staining of human FRCs; assessed culture

passage 0, 1, or 4; or freshly isolated and gated as CD45− CD31− EpCAM− PDPN+, C. Human

tonsil–derived FRCs, at various passages or freshly isolated, were gated as CD45− CD31−

EpCAM− and assessed for expression of CD90 and PDPN. D. Expression of FRC-relevant

genes from RNA-seq, represented as a heatmap. Colour gradation denotes the relative gene

expression level of selected genes normalised from 0 to 1, while the size of the circles denotes

TPM. The absence of a circle denotes no detectable transcripts, seen for CR2, CCL21, CCL19,

CXCL9, and CXCL10. Note that relatively low transcription of PDPN mRNA nonetheless

yields strong expression of the glycoprotein, as shown in C. αSMA, α smooth muscle actin;

CCL19, chemokine C-C motif ligand 19; CCL21, chemokine C-C motif ligand 21; CR2, com-

plement receptor type 2; CXCL9, chemokine C-X-C motif ligand 9; CXCL10, chemokine
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C-X-C motif ligand 10; FAP, fibroblast activation protein; FRC, fibroblastic reticular cell;

PDGFRβ, platelet-derived growth factor receptor beta; PDPN, podoplanin; RNA-seq, RNA

sequencing; TPM, transcripts per million; tSNE, t-distributed stochastic neighbour embed-

ding.

(TIF)

S2 Fig. The effect of FRCs on T cells in G0/G1 and G2/M phase of cell cycle. CFSE-labelled

PBMCs (5 × 105) were stimulated with anti-CD3/CD28/CD2-coated beads, with or without

inhibitors. After 96 h, cells were harvested and analysed by flow cytometry. Flow cytometric

cell cycle analysis of A. CD4 T cells and B. CD8 T cells was performed using BrdU and 7AAD

to assess percentage of cells in G0/G1 phase and G2/M phase. Figure is representative of N = 4

FRC donors and N = 2 PBMC donors from 2 independent experiments. Box and whisker plots

are shown. Data used in the generation of this figure can be found in S1 Data. 7AAD, 7-ami-

noactinomycin D; BrdU, bromodeoxyuridine; CFSE, carboxyfluorescein succinimidyl ester;

FRC, fibroblastic reticular cell; PBMC, peripheral blood mononuclear cell.

(TIF)

S3 Fig. The effect of inhibitors on T-cell stimulation. CFSE-labelled PBMCs (5 × 105) were

stimulated with anti-CD3/CD28/CD2-coated beads, with or without inhibitors. After 96 h,

cells were harvested and analysed by flow cytometry. Plots were gated for CD3, CD4, or

CD8; CD62L; and CD45RO. A. Fold change in the proportion of CD4+ T cells that are

naïve (CD62L+CD45RO−), effector (‘Eff’, CD62L−CD45RO−), central memory (‘CM’,

CD62L+CD45RO+), or effector memory (‘EM’, CD62L−CD45RO+), comparing stimulated

(‘Stim’) T cells + inhibitors to stimulated T cells without inhibitors. B. Fold change in the

proportion of CD8+ T cells that are naïve, effector, central memory, or effector memory,

comparing stimulated (‘Stim’) T cells + inhibitors to stimulated T cells without inhibitors.

Figure depicts 6–7 FRC donors and 6 PBMC donors from 6 independent experiments. Data

used in the generation of this figure can be found in S1 Data. CFSE, carboxyfluorescein succi-

nimidyl ester; FRC, fibroblastic reticular cell; PBMC, peripheral blood mononuclear cell.

(TIF)

S4 Fig. All 4 suppressive mechanisms are utilised in all donors. FRCs were cocultured with

PBMCs stimulated using anti-CD3/CD28/CD2-coated beads, with or without individual

inhibitors for 96 h prior to harvest and analysis. N = 4 FRC donors and N = 1 PBMC donor.

The y axis depicts the division index for gated CD8 T cells with or without FRCs and with or

without inhibitors, normalised to the value of stimulated T cells in the presence of FRCs (maxi-

mal suppression = 1). Data used in the generation of this figure can be found in S1 Data. FRC,

fibroblastic reticular cell; PBMC, peripheral blood mononuclear cell.

(TIF)

S5 Fig. Further profiling and relative proliferation of memory phenotype cells. A. CFSE-

labelled PBMCs were incubated with or without anti-CD3/CD28/CD2-coated beads for 96 h

prior to harvest and analysis. Central memory (gated as CD3+CD62L+CD45RO+) and effec-

tor memory cells (gated as CD3+CD62L-CD45RO+) were identified, and the relative prolifer-

ative capacity of central versus effector memory T cells was examined through CFSE dilution.

B. CD27 staining (blue dots) was projected onto a plot gated on CD3+ single lymphocytes,

showing specificity for central memory and naïve T cells, while effector memory and effector

T cells were CD27 negative. Data represent n = 2 PBMC donors. CFSE, carboxyfluorescein

succinimidyl ester; PBMC, peripheral blood mononuclear cell.

(TIF)
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S6 Fig. T cells activated in the presence of pre-inhibited FRCs do not show reduced CD25

expression. FRCs were pre-incubated with inhibitors for 4 h and then washed thoroughly in

PBS prior to coculture with T cells and activating anti-CD3/CD28/CD2-coated beads. Activa-

tion proceeded for 24 h before T cells were harvested for flow cytometric analysis. CD25

expression was examined as a proxy for activation. Figure is representative of N = 2 FRC

donors and 1 PBMC donor. Data used in the generation of this figure can be found in S1 Data.

FRC, fibroblastic reticular cell; PBMC, peripheral blood mononuclear cell.

(TIF)

S7 Fig. PhosFlow experimental analysis of transcription factors of T cells. PhosFlow experi-

mental analysis of transcription factors of T cells, gated using CD3 and A. CD4 or B. CD8. T

cells were activated using anti-CD3/CD28/CD2-coated beads and cocultured with FRCs and/

or inhibitor cocktail. Figure depicts results from 1 experiment using 1 PBMC donor and N = 2

FRC donors and is representative of 2 independent experiments utilising N = 4 FRC donors

and N = 2 PBMC donors. Data used in the generation of this figure can be found in S1 Data.

FRC, fibroblastic reticular cell; PBMC, peripheral blood mononuclear cell.

(TIF)

S8 Fig. Tregs are not required for FRC-mediated suppression. A. PBMCs were incubated

with or without FRCs and with or without anti-CD3/CD28/CD2-coated beads for 96 h prior

to harvest and analysis. Gating strategy for CD3+4+127lo/neg CD25+FoxP3+ Tregs is shown.

B. From the experiment described in A, aggregate data from 3 independent experiments, 3

FRC donors, and 3 PBMC donors are shown. Depicted are Tregs (CD3+CD4+CD25+-

CD127lo/neg FoxP3+ cells) measured as a percentage of live lymphocytes; Tregs measured as

a percentage of CD4 T cells; CD127lo/negCD25+ cells as a percentage of CD4+T cells; Tregs

as a percentage of CD127lo/negCD25+ cells and the overall ratio of CD4+ T cells to Tregs.

Lines connect individual experiments. Data depict 3 independent experiments, 3 FRC donors,

and 3 PBMC donors. C. PBMCs were either magnetically depleted of CD25+ cells or left unde-

pleted, prior to activation using anti-CD3/CD28/CD2-coated beads and culture with FRCs to

remove Tregs. Depletion of CD25+ cells did not prevent FRCs from suppressing T cells at 96

h. Plots gated as CD3+ and either CD4+ or CD8+ as shown. Data represent 2 FRC donors and

2 PBMC donors from 2 individual experiments. Data used in the generation of this figure can

be found in S1 Data. FoxP3, forkhead box P3; FRC, fibroblastic reticular cell; PBMC, periph-

eral blood mononuclear cell; Treg, regulatory T cell.

(TIF)

S9 Fig. COX2, A2AR, and TGFβR2 protein staining in TRCs. Tonsil sections were stained

for CD3 and for the antigen identified by antibody clone ERTR7 and A2AR, COX2, TGFBR2,

or a PBS/serum + secondary antibody control. Data represent 3–5 sections per donor from 3

donors. Scale bars represent 50 μm. Arrows denote areas of colocalisation between ERTR7 and

either A2AR, COX2, or TGFBR2. A2AR, adenosine 2A receptor; COX2, cyclooxygenase-2;

TGFβR2, transforming growth factor beta receptor type 2; TRC, T-zone fibroblastic reticular

cell.

(TIF)

Acknowledgments

We gratefully acknowledge the University of Birmingham’s HBRC, supported through a Bir-

mingham Science City–Experimental Medicine Network of Excellence project.

Human FRCs unilaterally regulate T cells

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005046 September 4, 2018 20 / 24

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2005046.s008
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2005046.s009
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2005046.s010
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2005046.s011
https://doi.org/10.1371/journal.pbio.2005046


Author Contributions

Conceptualization: Konstantin Knoblich, Biju Parekkadan, Shannon J. Turley, Anne L.

Fletcher.

Formal analysis: Konstantin Knoblich, Anne L. Fletcher.

Funding acquisition: Konstantin Knoblich, Anne L. Fletcher.

Investigation: Konstantin Knoblich, Sara Cruz Migoni, Susan M. Siew, Elizabeth Jinks, Bak-

sho Kaul, Hannah C. Jeffery, Alfie T. Baker, Muath Suliman, Steven P. Lee, Anne L.

Fletcher.

Methodology: Konstantin Knoblich, Anne L. Fletcher.

Project administration: Konstantin Knoblich, Anne L. Fletcher.

Resources: Katerina Vrzalikova, Hisham Mehenna, Paul G. Murray, Francesca Barone, Philip

N. Newsome, Gideon Hirschfield, Deirdre Kelly.

Supervision: Ye H. Oo, Philip N. Newsome, Gideon Hirschfield, Anne L. Fletcher.

Validation: Konstantin Knoblich, Sara Cruz Migoni, Elizabeth Jinks, Baksho Kaul, Hannah C.

Jeffery, Alfie T. Baker.

Visualization: Konstantin Knoblich, Sara Cruz Migoni, Baksho Kaul, Hannah C. Jeffery, Ste-

ven P. Lee, Anne L. Fletcher.

Writing – original draft: Konstantin Knoblich, Anne L. Fletcher.

Writing – review & editing: Konstantin Knoblich, Anne L. Fletcher.

References
1. Fletcher AL, Acton SE, Knoblich K. Lymph node fibroblastic reticular cells in health and disease. Nat

Rev Immunol. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights

Reserved.; 2015; 15: 350–361. https://doi.org/10.1038/nri3846 PMID: 25998961

2. Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H, Hinz B, et al. Fibroblastic reticular cells in lymph

nodes regulate the homeostasis of naive T cells. Nat Immunol. Nature Publishing Group; 2007; 8:

1255–1265. https://doi.org/10.1038/ni1513 PMID: 17893676

3. Cremasco V, Woodruff MC, Onder L, Cupovic J, Nieves-Bonilla JM, Schildberg FA, et al. B cell homeo-

stasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol. United States;

2014; 15: 973–981. https://doi.org/10.1038/ni.2965 PMID: 25151489

4. Yu M, Guo G, Zhang X, Li L, Yang W, Bollag R, et al. Fibroblastic reticular cells of the lymphoid tissues

modulate T cell activation threshold during homeostasis via hyperactive cyclooxygenase-2/prostaglan-

din E2axis. Sci Rep. Nature Publishing Group; 2017; 7: 3350. https://doi.org/10.1038/s41598-017-

03459-5 PMID: 28611431

5. Lukacs-Kornek V, Malhotra D, Fletcher AL, Acton SE, Elpek KG, Tayalia P, et al. Regulated release of

nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes.

Nat Immunol. 2011; 12: 1096–1104. https://doi.org/10.1038/ni.2112 PMID: 21926986

6. Siegert S, Huang HY, Yang CY, Scarpellino L, Carrie L, Essex S, et al. Fibroblastic reticular cells from

lymph nodes attenuate T cell expansion by producing nitric oxide. PLoS ONE. United States; 2011; 6:

e27618. https://doi.org/10.1371/journal.pone.0027618 PMID: 22110693

7. Khan O, Headley M, Gerard A, Wei W, Liu L, Krummel MF. Regulation of T cell priming by lymphoid

stroma. PLoS ONE. United States; 2011; 6: e26138. https://doi.org/10.1371/journal.pone.0026138

PMID: 22110583

8. Link A, Hardie DL, Favre S, Britschgi MR, Adams DH, Sixt M, et al. Association of T-Zone Reticular Net-

works and Conduits with Ectopic Lymphoid Tissues in Mice and Humans. Am J Pathol. 2011; 178:

1662–1675. https://doi.org/10.1016/j.ajpath.2010.12.039 PMID: 21435450
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