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1	Introduction
Urban	air	pollution	is	increasingly	becoming	the	major	environmental	concern	in	cities	around	the	world.	The	growth	of	population	within	major	cities	has	resulted	in	an	unprecedented	increase	in	activities	and	higher	demands

for	energy	and	transportation.	These	factors	contribute	significantly	to	urban	air	pollution	emanating	from	often	congested	major	road	networks.	Urban	air	pollution	can	be	effectively	managed	through	careful	planning	and	execution

of	Urban	Air	Quality	Management	(UAQM).	The	key	components	of	UAQM	consist	of	a	clear	definition	of	objectives	and	standards,	well-designed	air	quality	monitoring	network	and	reliable	air	quality	modelling.	These	components	help

in	the	design	of	air	quality	control	strategies	and	in	measuring	their	effectiveness.	Air	quality	modelling	is	an	important	aspect	of	the	UAQM	as	it	helps	in	taking	a	decision	on	the	main	issues	relating	to	the	budget	for	the	UAQM	and

predicting	the	likely	effects	of	potential	control	strategies.

Machine	Learning	(ML)	techniques	have	been	used	in	air	quality	modelling	in	the	last	two	decades	(Yi	and	Prybutok,	1996;	Gardner	and	Dorling,	1998).	A	search	for	more	viable	models	than	the	operational	air	quality	models

leads	to	many	studies	on	the	use	of	various	ML	methods	in	air	quality	modelling.	Operational	air	quality	models	such	as	ADMS-Roads	(Mchugh	et	al.,	1997)	and	OSPM	(Berkowicz,	2000)	require	understanding	of	 the	 interactions

between	 the	 air	 quality	 variables	 and	meteorological	 conditions.	Most	 of	 the	 operational	models	 are	 deterministic	 and	 are	 limited	 in	 so	many	 aspects.	 For	 example,	 the	 natural	 phenomenon	 involved	 are	 difficult	 to	 characterise

accurately.	Also,	 the	use	of	default	parameters	and	the	 lack	of	real	observations	with	 the	same	spatial	 resolution	with	which	to	compare	 the	model	outputs	are	among	the	 limitations	of	 the	operational	models	 (National	 Research

Council,	2007;	Chave	and	Levin,	2003).	In	addition,	most	of	the	operational	air	quality	models	are	based	on	steady-state	Gaussian	plume	models	which	are	limited	by	the	assumptions	regarding	changes	of	wind	and	source	emissions

over	time	and	do	not	include	the	detailed	chemistry	of	particle	pollutants	(Pelliccioni	and	Tirabassi,	2006;	Lagzi	et	al.,	2013).	Other	sources	of	uncertainty	in	the	operational	models	are	the	inherent	uncertainty	associated	with	data
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Abstract

This	study	presents	a	new	method	 for	evaluating	 the	effectiveness	of	 roadside	PM10	and	PM2.5	 reduction	scenarios	using	Machine	Learning	 (ML)	based	models.	The	ML	methods	 include	Artificial	Neural	Networks

(ANN),	Boosted	Regression	Trees	(BRT)	and	Support	Vector	Machines	(SVM).	Traffic,	meteorological	and	pollutant	data	collected	at	nineteen	Air	Quality	Monitoring	(AQM)	sites	in	London	for	a	period	between	2007	and	2012

was	used.	The	ML	models	performed	very	well	in	predicting	the	concentrations	of	PM10	and	PM2.5	with	around	95%	of	their	predictions	falling	within	the	factor	of	two	of	the	observed	concentrations	at	the	roadsides.	The

prediction	errors	observed	were	very	small	as	indicated	by	the	average	normalised	mean	gross	errors	of	0.2.	Also,	the	predictions	of	the	models	correlated	well	with	the	observed	concentrations	as	shown	by	the	average

values	 of	 R	 (0.8)	 and	 index	 of	 agreement	 (0.74).	 Additionally,	 when	 some	 PM10	 and	 PM2.5	 reduction	 scenarios	were	modelled,	 the	ML	models	 predicted	 various	 degree	 of	 reductions	 in	 the	 roadside	 concentrations.	 In

conclusion,	well	trained	ANN	and	BRT	models	can	be	successfully	applied	in	predictions	of	roadside	PM10	and	PM2.5	concentrations.	Moreover,	they	can	be	applied	in	measuring	the	effectiveness	of	roadside	particle	reduction

scenarios.
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required	to	run	these	models.	Emission	rates	estimated	from	emissions	models	are	an	excellent	example	of	the	data	needed	to	run	the	models,	and	in	most	cases,	they	accommodate	up	to	 uncertainties	(Debry	and	Mallet,	2014).

Also,	computational	time	and	effort	are	part	of	the	constraints	that	lead	to	the	simplification	of	operational	models.

In	contrast,	machine	learning	methods	such	as	Artificial	Neural	Networks	(ANN),	Boosted	Regression	Trees	(BRT)	and	Support	Vector	Machines	(SVM)	can	build	air	quality	models	with	comparable	or	better	accuracy.	This

performance	can	be	achieved	at	a	lower	computational	cost	and	with	no	assumptions	on	the	atmospheric	processes	involved	(Gardner	and	Dorling,	2000).	Machine	learning	algorithms	can	handle	complex	and	nonlinear	relationships

that	exist	between	air	quality	variables	(Esplin,	1995)	and	produce	models	that	perform	well	 in	predicting	unseen	data	(Elangasinghe	et	al.,	2014b;	Balsamà	et	al.,	2014).	ANN	methods	have	been	used	in	many	air	quality	studies

(Taspinar,	2015;	Ragosta	et	al.,	2015;	Elangasinghe	et	al.,	2014a)	involving	prediction	and	forecasting	of	air	pollutants	ranging	from	the	current	hour	to	several	days	in	advance	(Russo	et	al.,	2013,	De	Gennaro	et	al.,	2013).	Many

studies	involving	ANN	often	use	cross-validation	or	evolutionary	algorithms	such	as	Genetic	algorithm	and	particle	swarm	optimisation	methods	to	derive	an	optimum	architecture	for	the	ANN	models	(Ding	et	al.,	2011a,	2011b;	He	et

al.,	2014).	Also,	 some	air	 quality	 studies	 often	 combined	ANN	with	 feature	 selection	methods	 such	 as	PCA	 (Taspinar,	2015;	Ragosta	 et	 al.,	 2015),	 stepwise	 regression	 (Russo	 et	 al.,	 2013;	 Lima	 et	 al.,	 2013),	 and	 cluster	 analysis

(Elangasinghe	et	al.,	2014b).	Suleiman	et	al.	(2016b)	combined	elastic-net	regression	with	ANN	and	produced	models	for	prediction	of	roadside	particles	with	higher	prediction	accuracy	and	fewer	predictor	variables	than	standalone

ANN	models.

This	paper	presents	a	new	method	for	evaluating	the	effectiveness	of	roadside	PM10	and	PM2.5	reduction	scenarios	using	ML	based	air	quality	models	(ANN,	BRT	and	SVM).	The	paper	applied	the	Meteorological,	Pollution	and

Traffic	data	collected	from	nineteen	monitoring	sites	in	London	to	train	the	ML	models	for	the	prediction	of	particle	concentrations	at	the	sites.	The	models	were	also	applied	to	predict	the	likely	effects	of	a	hypothetical	air	quality

management	scenario	on	the	concentrations.

2	Method
2.1	Air	quality	monitoring	(AQM)	sites

The	AQM	sites	for	this	study	were	selected	from	the	London	Air	Quality	monitoring	sites	categorised	as	strategic	by	Moorcroft	and	Marner	(2011).	The	strategic	sites	include	the	sites	that	are	being	used	as	Average	Exposure

Indicator	Reference	Sites	for	PM2.5	and	Low	Emission	Zone	(LEZ)	evaluation	sites.	They	are	also	part	of	the	UK	Automatic	Urban	and	Rural	Network	(AURN).	The	sites	are	mostly	maintained	by	the	London	boroughs,	Department	for

Environment,	Food	and	Rural	Affairs	(DEFRA),	and	Transport	for	London	(TfL).	Additional	criteria	used	in	selecting	these	sites	are	the	data	availability	and	the	type	of	the	site.	First,	roadside	and	kerb	sites	with	available	data	were

chosen	and	either	an	urban	or	suburban	site	located	upwind	of	the	roadside	or	kerbside	sites	were	used	as	their	background	sites.

Fig.	1	shows	the	distribution	of	the	AQM	sites	across	London	and	the	average	PM10	concentrations	at	the	sites.	The	selected	AQM	sites	consists	of	two	kerbside,	ten	roadside,	four	urban	background,	and	three	suburban	sites.

The	kerbside	and	roadside	sites	are	located	within	1	and	10 m	from	the	major	roads.	Some	of	the	sites	(i.e.	HK6,	IS2,	KC5,	and	MY1)	are	placed	in	street	canyons	while	GR5,	GR8,	KC2,	CR4	and	CD3	sites	are	located	near	junctions.

Only	BT4	and	GR8	sites	are	situated	in	an	open	area	(see	Table	1).	The	BL0,	CR3,	CT3,	GR4,	IS6	and	KC1	sites	are	either	urban	or	rural	background	monitoring	sites	which	are	mostly	located	in	areas	where	there	is	less	influence	of

local	pollution	sources.	Among	these	sites,	PM10	data	was	collected	from	fourteenfoourteen	sites	while	PM2.5	data	was	collected	from	6	sites.

		±	50%	



Table	1	Properties	of	the	London	monitoring	sites.

alt-text:	Table	1

Site	name Site
code

Site	type Traffic	Volume
(veh/hr)

Available
PM10	(%)

Mean	PM10

(μg/m3)
Max	PM10

(μg/m3)
95	Percentile	PM10

(μg/m3)
Available
PM2.5	(%)

Mean	PM2.5

(μg/m3)
Max.	PM2.5

(μg/m3)
95	Percentile	PM2.5

(μg/m3)

Camden	-	Bloomsbury BL0 Urban
background

92.1 21.76 376.30 49.00 93.4 16.59 132.00 40.00

Brent	-	Ikea BT4 Roadside 4389 90.4 43.25 316.00 69.60 91.4 14.60 103.40 29.90

Bexley	-	Thamesmead BX3 Suburban – 99.2 9.450 300.20 20.20

Camden	-	Shaftesbury	Avenue CD3 Roadside 1700 91.4 34.00 285.90 59.30

Croydon	-	Thornton	Heath CR3 Suburban 91.0 21.13 452.60 45.90

Croydon	-	George	Street CR4 Roadside 2500 95.0 25.00 468.40 52.30

City	of	London	-	Sir	John	Cass
School

CT3 Background 91.5 27.51 827.60 54.60

Greenwich	-	Eltham GR4 Suburban 99.6 21.91 252.50 47.60 89.3 15.88 241.00 37.00

Greenwich	-	Trafalgar	Road GR5 Roadside 1500 99.6 23.37 356.45 49.70

Greenwich	-	Woolwich
Flyover

GR8 Roadside 7000 97.3 40.00 527.80 73.80 98.2 16.90 375.50 32.00

Greenwich	-	Westhorne
Avenue

GR9 Roadside 2700 – 22.80 413.10 55.30 91.1 16.74 371.40 42.90

Hackney	-	Old	Street HK6 Roadside 2500 94.1 31.83 303.50 56.60 95.5 16.62 206.20 25.10

Islington	-	Holloway	Road IS2 Roadside 2000 98.6 30.73 510.2 54.70

Islington	-	Arsenal IS6 Urban 97.5 22.40 377.80 50.80

Fig.	1	Air	quality	monitoring	sites.
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background

Kensington	and	Chelsea	-
North	Ken

KC1 Urban
background

96.7 21.11 229.60 46.60 92.4 14.68 202.00 39.00

Kensington	and	Chelsea-
Cromwell	Road

KC2 Roadside 2800 81.4 33.71 445.50 54.90 38.90

Kensington	and	Chelsea-Earls
Court	Rd

KC5 Kerbside 1600 98.9 35.83 182.50 66.60

Westminster	-	Marylebone
Road

MY1 Kerbside 3327 97.5 43.25 422.80 70.70 82.4 21.68 135.00 47.00

Tower	Hamlets	-	Blackwall TH4 Roadside 6000 96.0 18.00 416.80 42.90

2.2	Data
The	data	being	monitored	at	the	AQM	sites	 include	both	particles	and	gaseous	pollutants	(PM10,	PM2.5,	NOx,	NO2,	NO,	SO2,	CO,	and	O3),	 traffic	volume	and	speeds.	Others	are	meteorological	variables	 (wind	speeds,	wind

direction,	solar	radiation,	relative	humidity	and	ambient	temperature.	The	instruments	used	for	the	monitoring	of	PM2.5	and	PM10	at	most	of	 the	sites	 include	two	similar	Tapered	Element	Oscillating	Microbalances	(TEOM)	Model

1400AB	with	different	sampling	heads	design,	filter	dynamics	measurement	system	(FDMS)	and	β-attenuation	analysers	(Aurelie	and	Harrison,	2005).

For	 this	study,	Traffic,	Pollution	and	Meteorological	data	are	required	at	each	monitoring	unit	 to	develop	 the	ML	models.	However,	due	 to	unavailability	of	a	reliable	meteorological	data	at	 the	stations,	data	monitored	at

Heathrow	Airport	Weather	Station	including	wind	speeds,	wind	direction,	solar	radiation,	relative	humidity	and	ambient	temperature	was	used.	It	was	assumed	that	data	from	the	Heathrow	Airport	gives	a	reasonable	overview	of	the

general	meteorological	conditions	in	London	(Manning	et	al.,	2000).	The	hourly	pollutant	data	for	the	period	between	2007	and	2012	was	obtained	through	the	London	Air	Archives	(London	Air,	2013)	and	UK	Air	Quality	Archive	(UK-AIR,

2013).	While	the	meteorological	data	for	the	same	period	was	collected	from	BADC	data	services	(MIDAS	Land	Surface,	2013).	The	Continuous	traffic	data	in	London	for	the	same	period	available	for	this	study	was	only	for	MY1,	HK6,

BT4	and	KC2	sites,	therefore,	at	the	remaining	sites	an	estimate	of	the	traffic	was	provided	based	on	the	manual	count	data	compiled	by	the	Department	for	Transport	every	year	at	some	traffic	count	points	on	road	links	across	the	UK

(DFT,	2014).	The	data	collected	from	these	sources	was	used	for	the	development	of	the	ML	models.

As	shown	in	Table	1,	the	average	hourly	traffic	volume	at	TH4,	GR8	BT4,	MY1	sites	was	between	3327	veh/hr,	and	7000	veh/hr.	The	average	mean	PM10	concentrations	at	all	the	sites	were	between	21.11μg/m3	at	KC1	and

43.25 μg/m3	at	MY1	and	in	most	of	the	sites	the	values	fell	under	the	EU	limit	value	of	40 μg/m3	annual	mean.	The	95th	percentile	of	the	PM10	concentrations	at	the	sites	ranged	from	49.0 μg/m3	at	BL0	to	73.8 μg/m3	at	GR8.	The	sites

with	high	traffic	volume	were	observed	to	have	high	concentrations	of	the	particle	concentrations	as	shown	in	Fig.	1.	The	percentages	of	missing	data	in	all	the	sites	selected	were	less	than	10%	except	at	KC2	where	the	missing	data

was	up	to	19%.	The	average	PM2.5	concentrations	at	the	sites	were	also	below	the	EU	target	value	of	25 μg/m3	annual	mean.	It	ranged	between	14μg/m3	and	18 μg/m3	at	the	five	of	the	six	roadside	sites	while	it	was	22.4 μg/m3	at	MY1.

The	95th	percentiles	of	the	PM2.5	concentrations	range	from	25.10 μg/m3	at	HK6	to	47 μg/m3	at	MY1.	The	percentages	of	PM2.5	missing	data	at	five	sites	were	less	than	10%	while	it	was	up	to	18%	at	MY1.

The	average	wind	speed	measured	at	Heathrow	airport	between	2007	and	2012	was	2.0 m/s	and	the	95th	percentiles,	and	the	maximum	wind	speeds	were	9.6 m/s	and	4.2 m/s	respectively	(see	Fig.	2).	In	London,	the	dominant

winds	were	from	the	Southwest	and	West	directions.	These	directions	govern	the	location	of	the	air	quality	monitoring	sites.	For	the	sites	located	in	street	Canyons,	the	effect	of	cross-Canyon	vortex	are	caused	by	the	prevailing	wind

which	makes	the	flow	circulate	within	the	street	canyon	and	deliver	most	of	the	pollutants	to	the	leeward	side	of	the	street	canyon	(Tomlin	et	al.,	2009),	hence	the	location	of	the	monitoring	site.	The	temperature	fluctuated	between	−6.4

in	the	winter	and	reached	up	to	35 °C	in	summer	while	the	average	temperature	was	12 °C	as	shown	in	Fig.	2.	More	detail	analysis	of	the	data	used	in	this	study	can	be	found	in	(Suleiman	et	al.,	2016a;	Suleiman,	2016).



2.3	Machine	learning	methods	selected	for	the	study
Machine	Learning	(ML)	systems	are	sets	of	algorithms	seeking	to	perform	a	task	based	on	the	set	of	training	examples	presented	to	them	in	the	training	data	with	limited	human	interaction.	A	typical	ML	process	involved	data

representation,	evaluation,	and	optimisation	with	the	main	goal	of	achieving	generalisation	of	the	unseen	data.	The	focus	of	this	study	is	the	use	of	three	supervised	ML	methods	in	air	quality	modelling.	The	methods	used	include

Artificial	Neural	Networks	(ANN),	Boosted	Regression	Trees	(BRT)	and	Support	Vector	Machines	(SVM).	Detailed	descriptions	of	the	ANN	and	BRT	methods	implemented	in	this	study	can	be	found	in	(Suleiman	et	al.,	2016b)	and	the

SVM	method	is	described	in	(Chunming	et	al.,	2010;	Cherkassky	and	Ma,	2004;	Singh	et	al.,	2013).

2.4	Machine	learning	modelling
The	ML	modelling	process	adopted	for	this	study	involves	five	stages:	data	preparation,	feature	selection,	model	training,	model	testing	and	model	evaluation.	Each	of	these	stages	have	been	applied	for	the	development	of

ANN,	BRT	and	SVM	based	PM10	and	PM2.5	prediction	models	using	R	statistical	software	(R	Developent	Core	Team,	2015).

2.4.1	Data	preparation
The	predictor	variables	selected	for	the	ML	modelling	comprises	background	PM10	and	PM2.5,	background	and	roadside	NOx,	NO2,	SO2	and	CO.	PM10	and	PM2.5	emission	rates	of	the	traffic	composition	(i.e.	petrol	cars,	diesel	cars,	taxi,	LGV,	Rigid

HGV,	articulated	HGV,	Bus	and	Coach	and	motorcycle)	constitutes	the	traffic	variables	in	the	input	space.	The	remaining	variables	are	meteorological	variables	including	Rainfall,	Relative	humidity,	solar	radiation,	Temperature,	Barometric	Pressure,	Wind

Speed	and	Wind	directions.	Roadside	PM10	and	PM2.5	are	the	target	variables.	Prior	to	the	model	training	missing	data	were	imputed	using	Multiple	Imputations	by	Chained	Equation	(MICE)	(Van	Buuren,	2007,	Buuren	and	Groothuis-Oudshoorn,	2011).

The	effect	of	the	imputation	on	the	data	and	the	accuracy	of	the	models	was	investigated.	Details	of	the	data	imputation	validation	can	be	found	in	(Suleiman,	2016).

2.4.2	Feature	selection
Principal	Component	Analysis	(PCA)	was	used	to	pre-process	the	predictor	variables	data	for	the	ANN	models.	PCA	derives	uncorrelated	variables	(i.e.	PCs)	that	reduce	the	dimensionality	of	the	input	space	which	will	enhance	the	performance	of

Fig.	2	Summary	of	the	meteorological	data.	Note:	in	Fig.	2,	the	blue	and	red	colours	on	the	rectangular	bar	at	the	bottom	of	the	plots	indicate	the	availability	and	non-availability	of	the	data	respectively.	The	percentage	of	the	data	captured	for	every	year	is	written	in	green	on	the

upper	part	of	each	year	data	plot.	The	minimum,	maximum,	number	and	percent	of	missing	data,	mean,	median	and	the	95th	percentile	for	each	variable	plotted	are	shown	in	black.	The	panel	to	the	right	of	the	time	series	plots	is	the	density	plots	indicating	the	distribution	of	the

data	over	the	selected	periods.	(For	interpretation	of	the	references	to	colour	in	this	figure	legend,	the	reader	is	referred	to	the	Web	version	of	this	article.)

alt-text:	Fig.	2



the	ANN	models	to	be	developed.	The	first	PCs	that	explained	99%	of	the	variance	in	the	data	were	selected	as	the	model's	inputs.	For	the	BRT	and	SVM	all	the	variables	were	used.	The	BRT	algorithms	have	inbuilt	mechanisms	for	feature	selection	while

SVM	algorithms	are	uses	regularisation	(e.g.	ridge	regression)	to	enhance	the	performance	of	the	models	which	is	independent	of	the	dimensionality	of	the	input	space.

2.4.3	ML	model	training	and	testing
Prior	to	the	training	of	the	ML	models,	the	data	prepared	for	the	modelling	was	divided	into	eighty	percent	for	training	and	twenty	percent	for	testing.	Subsequently,	the	train	function	in	caret	package	of	R	software	was	used	to	determine	the

optimum	model	parameters	of	all	the	ML	models	considered.	The	function	uses	a	user	defined	resampling	method	(e.g.	repeated	k	–	fold	cross	–	validation),	modelling	method	(e.g.	ANN,	BRT	or	SVM)	and	its	corresponding	parameters	(e.g.	number	of

hidden	neurons	and	decay	values	for	ANN)	to	fit	several	models	over	the	specified	range	of	the	model	parameters.	The	range	of	the	parameters	to	be	used	is	normally	determined	using	trial	and	error.	The	resampling	method	specified	(e.g.	repeated	k	–	fold

cross	–	validation)	is	used	to	hold	back	a	sample	and	fit	the	model	on	the	remainder	of	the	samples.	The	held-out	samples	would	then	be	used	to	evaluate	the	performance	of	the	trained	models.	This	procedure	is	repeated	until	all	the	samples	have	been

used	for	fitting	the	model	and	as	holdout	samples.	The	optimal	model	parameters	would	then	be	determined	based	on	the	performance	of	the	models	built.	The	final	models	would	then	be	fitted	to	all	the	training	data	set	using	the	optimal	parameters

(Kuhn,	2008).	A	repeated	version	of	the	k-fold	cross-validation	was	adopted	in	this	study	where	k = 10	was	used	and	repeated	five	times.	The	trained	models	were	then	tested	for	the	prediction	of	roadside	PM10	and	PM2.5	concentrations	using	the	test	data

set.	The	selection	of	the	predictor	variables	and	the	model	parameters	were	carried	out	for	one	representative	site	(MY1)	which	is	in	central	London.	Thereafter,	the	same	combination	of	input	variables	at	each	site	and	parameters	selected	for	each	method,

were	used	to	train	and	test	one	model	for	each	monitoring	site.

2.4.4	ML	model	evaluation
The	performance	of	the	models	was	evaluated	using	various	functions	including	fraction	of	prediction	within	the	factor	of	two	of	the	observed	concentrations	(FAC2),	Normalised	Mean	Bias	(NMB),	and	Normalised	Mean	Gross	Error	(NMGE).

Others	 include	 Root	Mean	 Squared	 Error	 (RMSE),	 coefficient	 of	 correlation	 (R),	 Coefficient	 of	 Efficiency	 (COE)	 and	 Index	 of	 Agreement	 (IOA).	 The	models	were	 also	 evaluated	 based	 on	 their	 accurate	 prediction	 of	 annual	 statistics	 of	 the	 particle

concentrations.

2.5	EUROIV/VI	air	quality	management	scenario
The	main	contribution	of	this	paper	is	to	investigate	the	use	of	the	ML	methods	in	evaluating	the	effectiveness	of	air	quality	management	options	involving	reduction	PM10	and	PM2.5	concentrations.	To	achieve	this	goal,	a

hypothetical	air	quality	management	scenario	called	EUROIV/VI	scenario	was	conceptualised	to	verify	the	use	of	the	ML	models	in	real	life	applications.	The	EUROIV/VI	scenario	assumed	that	only	EUROIV/4	petrol	and	EUROVI/6

diesel	vehicle	standards	will	be	permitted	to	drive	on	the	roads	in	the	study	area	in	2011	and	2015.	The	emission	standard	restriction	proposed	in	the	scenario	was	implemented	through	LAQM	Emission	Factor	Toolkit	(EFT)	version

6.0.1	(DEFRA,	2015).	The	EFT	requires	vehicle	counts	(veh/hr),	average	speed	(km/hr),	link	length,	road	type,	road	name,	projection	of	vehicle	composition	and	Euro	traffic	composition	(Euro1,	Euro2,	Euro	III,	Euro6	etc.)	as	inputs.	The

fleet	composition	data	in	London	for	motorways,	central,	inner	and	outer	areas	was	used	in	the	EFT	to	estimate	the	emission	rates	from	the	total	traffic	for	PM10	and	PM2.5	including	PM10	and	PM2.5	from	tyre,	brake	wear	and	road

abrasion	emission	sources.

As	stated	in	section	2.4.1,	the	traffic	emissions	were	selected	as	part	of	the	input	variables	for	the	ML	models.	The	use	of	the	emission	rate	as	part	of	the	input	data	for	the	ML	models	is	expected	to	provide	a	channel	through

which	the	response	of	the	models	to	the	changes	in	the	emissions	can	be	investigated.	If	the	response	of	the	models	is	positive,	then	they	could	be	used	as	management	tools	for	measuring	traffic-related	air	quality	control	scenarios.

Otherwise,	they	could	only	be	used	for	prediction	of	the	actual	concentrations.	Therefore,	the	difference	between	the	emission	rates	estimated	with	and	without	the	scenario	was	obtained.	The	average	difference	between	the	two

emission	rates	was	then	subtracted	from	the	hourly	emission	rates	used	to	estimate	the	traffic	emissions	in	the	input	data	to	reflect	the	changes	due	to	the	scenario	assumptions.	It	is	important	to	note	that	the	scenario	did	not	forecast

any	changes	 in	the	number	of	vehicles	entering	the	study	area	for	simplicity.	Consequently,	 the	emission	rates	were	estimated	based	on	the	premise	that	all	 the	vehicles	have	met	the	minimum	standard	 imposed.	After	the	traffic

emissions	were	estimated	based	on	the	scenario,	the	ML	models	were	used	to	predict	the	PM10	concentrations	in	2011	and	in	2015.	For	the	PM2.5,	the	models	were	tested	for	2012	and	2015	due	to	data	availability.

3	Results	and	discussion
3.1	Predictor	variable	importance

The	most	important	variables	for	the	ANN	models	were	determined	using	PCA.	The	results	show	that	the	first	two	PCs	contributed	about	49%	and	90%	of	the	total	variation	in	the	input	data	for	the	PM10	and	PM2.5	models

respectively	(see	Table	2).

Table	2	Principal	component	analysis.
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Principal	Components
(PCs)

Proportion	of	Variance	(PM10)
%

Important	Variables	(PM10) Proportion	of	Variance	(PM2.5)
%

Important	Variables	(PM2.5)

PC1 35.23 Vehicle	Emissions	(g/km) 77.38 Year	and	Vehicle	Emissions	(g/km)

PC2 13.69 Background	(NO2/NOx)	(μg/m3) 13.21 Background	(NO2/NOx)	(μg/m3)

PC3 9.92 Background	and	Roadside	(NO2/NOx)	(μg/m3) 7.72 Background	and	Road	(NO2/NOx)	(μg/m3)

PC4 6.18 Temperature	(0C) 0.63 Year,	Vehicle	Emissions	(Rigid/Articulated/motorcycles)
(g/km)

PC5 4.15 Month	of	the	year 0.32 Temperature	(0C)

PC6 4.10 Background	SO2	(μg/m3) 0.19 Rainfall	(mm)

PC7 3.72 Wind	Direction	(0N) 0.16 Day	of	the	month

PC8 3.51 Day	of	the	month 0.12 Wind	Direction	(0N)

PC9 3.34 Rainfall	(mm) 0.12 Background	SO2	(μg/m3)

PC10 2.87 Year 0.06 Month	of	the	year

PC11 2.38 Hour	of	the	day 0.04 Hour	of	the	day

PC12 2.04 Barometric	pressure	(mBar) 0.02 Diesel	car	emission	(g/km)

PC13 1.96 Wind	speed	(m/s) 0.02 Motorcycle	emission	(g/km)

PC14 1.76 Background	PM10	(μg/m3) 0.01 Background	PM2.5	(μg/m3)

PC15 1.37 Background	CO	(μg/m3) 0.00 Wind	speed	(m/s)

PC16 0.96 Solar	Radiation	(W/m2) 0.00 Background	CO	(μg/m3)

PC17 0.86 Relative	Humidity	(%) 0.00 Relative	Humidity	(%)

PC18 0.60 Roadside	NO2,	NOx	and	CO	(μg/m3) 0.00 Background	(NO2/SO2)	(μg/m3)

PC19 0.45 Background	NOx/NO2	and	Roadside	NOx	and	CO
(μg/m3)

0.00 Background	(NO2/NOx)	Roadside	(NOx/CO)	(μg/m3)

99.06 100

The	results	from	the	PCA	show	that	vehicle	emissions	are	the	most	influential	variables	in	PC1	and	carry	about	35	and	77%	proportion	of	variance	in	the	data	for	the	PM10	and	PM2.5	ANN	models	training	respectively.	The	next

most	important	variables	are	the	roadside	and	background	NO2	and	NOx,	followed	by	temperature,	wind	directions	and	temporal	variables	respectively.	The	contribution	of	the	variables	in	the	case	of	PM10	models	is	more	distributed

across	the	PCs	than	in	the	case	of	PM2.5	models.	The	first	PCs	captured	the	most	important	positive	relationship	between	the	traffic	variables	and	the	roadside	pollutants.	Also,	the	second	PCs	show	the	inverse	relationships	between

the	temperature	and	wind	speeds	on	one	hand,	and	roadside	and	background	pollutants	on	the	other	hand.	This	is	an	indication	of	rising	pollution	levels	during	cold	temperature	which	might	be	as	result	of	high	residential	heating	and

condensation	 of	 volatile	 compounds.	 The	 pollution	 levels	 could	 also	 decrease	 when	 urban	 ventilation	 increases.	 The	 information	 gained	 from	 the	 PCA	 suggest	 that	 accurate	 data	 on	 traffic,	 background/roadside	 pollutant	 and

meteorological	variables	could	help	in	developing	ML	models	that	can	predict	the	levels	of	roadside	particles	with	reasonable	accuracy.	Moreover,	controlling	gaseous	pollutants	such	as	NOx	might	contribute	in	reducing	the	particle

concentrations	or	it	can	serve	as	a	reasonable	proxy	for	the	particle	concentrations.

Unlike	the	ANN	method,	the	BRT,	identified	roadside	NOx,	NO2,	CO	and	background	particle	concentrations	as	the	most	contributing	predictor	variables	to	the	performance	of	the	models.	In	addition,	the	contribution	of	the

remaining	variables	was	nearly	the	same	and	very	small	compared	to	those	mentioned.



3.2	ANN,	BRT	and	SVM	model	parameters
The	model	parameters	for	the	ANN	method	are	the	number	of	hidden	neurons,	and	weight	decay.	Optimum	weight	decay	values	were	selected	from	0,	0.001,	0.01,	0.1,	0.2,	0.5,	0.7,	0.8,	0.9,	and	1,	and	the	optimum	number	of

hidden	neurons	was	searched	between	1	and	50.	The	performance	of	the	models	with	different	weight	decay	values	(>0)	was	observed	to	vary	only	little	while	higher	number	of	hidden	neurons	leads	to	marginally	better	models	than

those	with	small	number.	The	final	models	selected	for	the	PM10	and	PM2.5	predictions,	were	the	models	trained	with	49	hidden	neurons	and	the	weight	decay	values	of	0.8	and	1.0	respectively.	The	number	of	the	Principal	Components

(PCs)	which	explained	99%	of	the	variance	in	the	data	were	found	to	be	19	for	both	PM10	and	PM2.5	models.

The	optimum	BRT	parameters	for	each	pollutant	were	searched	between	five	different	learning	rates	(i.e.	0.001,	0.01,	0.05,	0.1,	and	0.5),	the	number	of	trees	from	1	to	10,000,	tree	complexities	from	1	to	10	and	a	fixed	bag

fraction	of	0.5.	The	learning	rate	( ),	tree	complexities	 and	number	of	trees	(1000)	gave	the	models	with	the	best	performance	for	both	PM10	and	PM2.5	predictions.

SVM	parameters	determined	during	the	training	were	the	type	of	kernel,	the	cost	and	sigma	parameters.	Therefore,	linear	and	radial	basis	kernels	were	selected	for	the	training.	The	algorithm	was	tuned	to	15	cost	values

between	0.25	and	4096	on	a	log	scale	while	the	sigma	values	were	empirically	determined	using	a	formula	in	the	R	statistical	software	package	(Meyer	et	al.,	2015).	The	SVM	models	with	the	combination	of	the	cost	and	sigma	values

that	yields	best-performing	models	were	selected	as	the	final	models.	The	optimum	values	of	cost	and	sigma	values	were	found	to	be	16	and	0.03	for	the	PM10	model	and	8	and	0.03	for	the	PM2.5	model	respectively.	The	performance	of

the	ML	methods	during	parameter	selection	is	shown	in	Table	3.	The	results	show	that	BRT	and	SVM	models	for	PM10	predictions	performed	slightly	better	than	the	ANN	models	as	indicated	by	the	smaller	RMSE	values	(7.99	and	7.72).

Table	3	Training	performance	of	the	machine	learning	models.
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Row	Labels RMSE	(μg/m3)

PM10

	ANN 9.08

	BRT 7.99

	SVM 7.72

PM2.5

	ANN 4.53

	BRT 4.24

	SVM 4.61

However,	for	the	PM2.5	prediction	models,	all	the	three	methods	performed	similarly	with	BRT	performing	slightly	better	than	the	ANN	and	SVM.

3.3	Test	performance	of	the	ML	models	in	predicting	PM10	and	PM2.5	concentrations
The	ANN	and	BRT	models	performed	similarly	during	 testing	as	 indicated	by	most	of	 the	performance	statistics	shown	 in	Table	4.	However,	 the	SVM	model	performed	slightly	worse	 than	 the	ANN	and	BRT	methods.	The

predictions	of	the	models	are	much	better	than	what	could	be	explained	by	the	mean	of	the	observed	concentrations	measured	by	the	COE	values	(>0).	The	IOA	values	ranging	between	0.71	and	0.78,	show	that	the	predictions	have

good	agreement	with	the	PM10	and	PM2.5	observations.

Table	4	Test	performance	of	the	ML	models.
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Model Performance	Statistics Lower	–	Upper	PM10 Average	for	all	sites Lower	–	Upper	PM2.5 Average	for	all	sites

Pollutant PM10 PM2.5

ANN FAC2 0.84–0.99 0.97 0.93–0.98 0.95

		lr	=	0.1	 		(d	=	5)	



BRT FAC2 0.82–1.00 0.97 0.94–0.99 0.97

SVM FAC2 0.84–0.99 0.95 0.91–0.97 0.95

ANN NMB −0.07–0.11 0.00 0.02–0.12 0.03

BRT NMB −0.03–0.15 0.02 −0.01–0.04 0.02

SVM NMB −0.26–0.04 −0.13 −0.06–0.01 −0.01

ANN R 0.45–0.95 0.81 0.82–0.95 0.87

BRT R 0.43–0.95 0.81 0.83–0.95 0.88

SVM R 0.43–0.95 0.79 0.81–0.95 0.87

ANN COE 0.31–0.71 0.53 0.37–0.70 0.54

BRT COE 0.35–0.73 0.56 0.45–0.68 0.56

SVM COE 0.33–0.70 0.45 0.44–0.70 0.54

ANN RMSE 4.69–19.17 10.12 4.15–6.30 4.80

BRT RMSE 4.48–20.98 10.05 3.47–6.33 4.67

SVM RMSE 4.91–19.17 11.44 3.50–6.74 4.84

ANN NMGE 0.13–0.38 0.20 0.17–0.26 0.20

BRT NMGE 0.14–0.44 0.19 0.16–0.22 0.19

SVM NMGE 0.13–0.37 0.22 0.17–0.24 0.20

ANN IOA 0.58–0.86 0.75 0.69–0.85 0.77

BRT IOA 0.52–0.86 0.75 0.73–0.86 0.78

SVM IOA 0.59–0.85 0.71 0.72–0.85 0.77

Note:	Table	4	show	that	the	performance	in	terms	of	FAC2,	NMB,	NMGE,	RMSE,	R,	COE	and	IOA	values.	The	first	and	the	second	columns	display	the	names	of	the	models	and	the	performance	statistics	respectively.

The	rest	of	the	columns	show	the	upper,	lower	and	average	values	of	the	performance	statistics	for	all	the	AQM	sites.	The	third	and	the	fourth	represent	the	statistics	for	PM10	concentrations	while	the	fifth	and	the

sixth	columns	represent	the	statistics	for	PM2.5	concentrations.

Also,	about	95%	of	the	model	predictions	fall	within	the	factor	of	two	of	the	observations	as	indicated	by	FAC2	values.	The	bias	values	of	the	SVM	models	for	PM10	predictions	are	predominantly	negative	which	signifies	under

prediction.	It	also	overestimated	the	PM2.5	concentrations	at	all	the	sites	except	at	MY1	where	it	shows	underestimation.	Considering	the	average	R-values	(0.79–0.88),	the	predictions	of	the	models	show	high	correlations	with	the

observations.	Overall,	the	SVM	models	show	a	slightly	different	behaviour	where	it	shows	relatively	poorer	performance	than	the	ANN	and	BRT	models	in	the	predictions	of	PM10	while	it	shows	similar	performance	in	the	case	of	PM2.5

predictions.	The	reason	for	this	behaviour	could	be	that	the	SVM	overfitted	the	PM10	data	as	such	it	failed	to	generalise	the	performance	gained	during	the	training.

3.4	Emission	estimates	for	EUROIV/VI	scenario
ConsideringCosidering	the	period	between	2011	and	2015,	The	projected	traffic	composition	in	central	London	(NAEI,	2014)	shows	that	the	percentage	of	petrol	car	was	decreasing	while	the	percentages	of	diesel	car	and	electric

vehicles	were	on	the	increase	(see	Table	5).	However,	there	were	no	significant	changes	in	the	percentage	of	the	other	vehicles	between	this	period.	Also	the	percentage	of	diesel	LGVs	was	much	higher	than	that	of	the	petrol	LGVs	and

vice	versa	in	the	case	of	cars.	The	projected	percentagespercentatges	of	Taxi,	Bus/Coach,	HGVs	and	Motorcycles	remained	fairly	the	same	between	2011	and	2015.	The	EUROIV/VI	scenario	restrictions	were	imposed	on	these	traffic



projections	in	2011	and	2015	for	PM10	models	and	2012	and	2015	for	PM2.5	models.	The	variation	in	the	base	year	was	based	on	data	availability.

Table	5	Projected	traffic	composition	for	central	London	(NAEI,	2014).
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Year Year_2011 Year_2012 Year_2015

Electric	car 0.0% 0.0% 0.1%

Petrol	car 40.1% 38.5% 34.0%

Diesel	car 23.0% 24.6% 29.0%

Taxi	(black	cab) 12.4% 12.4% 12.4%

Electric	LGV 0.0% 0.0% 0.1%

Petrol	LGV 0.6% 0.4% 0.3%

Diesel	LGV 11.2% 11.4% 11.4%

Rigid	HGV 3.1% 3.1% 3.1%

Articulated	HGV 0.4% 0.4% 0.4%

Bus	and	coach 4.2% 4.2% 4.2%

Motorcycle 5.1% 5.1% 5.1%

The	PM10	emissions	estimated	with	and	without	the	scenario	show	that	the	emission	from	diesel	cars,	LGVs,	Taxis,	Bus/Coaches	and	HGVs	has	largely	reduced	due	to	the	implementation	of	the	EUROIV/VI	scenario	compared	to

the	small	reduction	by	the	petrol	vehicles	(see	Fig.	3).	The	total	PM10	emission	reduction	due	to	the	scenario	in	2011	was	414.7 kg/yr	out	of	which	only	4.5 kg/yr	was	from	the	petrol	vehicles.	The	PM	emission	in	2015	was	generally

lower	compared	to	the	year	2011.	Also,	In	the	year	2015,	there	was	no	reduction	in	the	PM10	emission	of	petrol	LGV,	Rigid	HGV	and	Articulated	HGV.	This	behaviour	could	be	attributed	to	the	improvement	in	vehicle	technology	and	the

likely	effect	of	the	existing	emission	control	strategies	in	London	which	might	make	the	scenario	to	be	less	effective	in	2015.	However,	the	PM10	emissions	from	the	London	Taxi	show	the	highest	PM10	emissions	reduction	of	173.2 kg/yr

due	to	the	scenario	while	PM10	emissions	of	the	diesel	LGV	and	Buses/Coaches	were	reduced	by	39.7 kg/yr	and	53.7 kg/yr	respectively.	Having	large	reduction	from	these	vehicles	is	an	indication	of	the	large	impact	of	the	scenario	if	it

were	to	be	implemented	in	2015,	because	they	fall	into	a	category	of	vehicles	with	high	particle	emissions	(see	Figs.	4	and	5).

Fig.	3	Estimated	annual	PM10	emission	rates	(kg/yr)	with	and	without	EUROIV/VI	scenario	for	MY1.
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Moreover,	the	scenario	in	2012	and	2015	for	the	PM2.5	emissions	reduction	shows	the	same	trend	as	in	the	case	of	PM10	with	one	important	difference	where	there	was	PM2.5	emissions	increase	of	1.7 kg/yr	in	2012	and	62 kg/yr

in	2015	by	diesel	cars	(see	Fig	4).	Overall,	the	implementation	of	the	scenario	resulted	in	higher	reductions	in	the	emissions	of	Taxis,	diesel	LGV	and	Buses/Coaches.

3.5	Performance	of	the	ML	models	in	predicting	the	effect	of	EUROIV/VI	scenario
The	models	were	 first	used	 to	predict	 the	particle	 concentrations	 in	2011	and	2015	without	 the	EUROIV/VI	 scenario.	The	ANN	and	BRT	models	predicted	 that	 in	2015,	without	 the	EUROIV/VI	 scenario	 the	annual	mean

concentrations	of	PM10	at	the	sites	will	be	reduced	by	0.86μg/m3	–	5.35μg/m3	across	the	sites	(see	Fig	5).	Also,	they	predicted	that	the	number	of	days	where	PM10	was	greater	than	50μg/m3	will	be	reduced	by	3–26	days	across	the	sites.

The	 sites	with	 higher	 traffic	 volume	 (MY1,	 BT4	 and	GR8)	 have	 shown	 higher	 reductions	 than	 the	 remaining	 sites.	 In	 both	 cases,	 SVM	models	 predicted	much	 higher	 reduction	 than	ANN	 and	BRT	models	which	 is	 not	 realistic

considering	the	amount	of	decrease	in	the	emission	rates.	The	reduction	shown	by	the	ANN	and	BRT	between	2011	and	2015	might	be	due	to	the	current	implementation	of	various	emission	control	strategies	put	in	place	in	London

and	the	continuous	improvement	in	the	vehicle	technology	due	to	strict	regulations	on	particle	emissions.

When	the	scenario	was	implemented	using	data	collected	in	2011,	the	models	predicted	a	slight	reduction	in	the	annual	mean	PM10	concentrations	and	the	number	days	where	PM10	was	greater	than	50μg/m3	as	shown	in	Fig.

6.	ANN	and	BRT	models	predicted	that	the	annual	mean	PM10	concentrations	will	be	reduced	by	0.04–8.2	μg/m3	depending	on	the	site.	However,	at	KC2,	the	ANN	model	predicted	that	the	annual	mean	PM10	concentrations	would	have

been	increased	by	7.3 μg/m3	while	BRT	model	show	that	the	concentrations	would	increase	by	1.2	and	0.6 at	CR4	and	KC5	sites	respectively.	The	SVM	models	predicted	a	much	larger	increase	in	the	annual	concentrations	at	all	the

sites	despite	the	decrease	in	the	emission	rates.

Fig.	4	Estimated	annual	PM2.5	emission	rates	(kg/yr)	with	and	without	EUROIV/VI	scenario	for	MY1.
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Fig.	5	The	difference	between	the	prediction	of	the	models	from	2011	to	2015	without	the	scenario.	The	annual	mean	PM10	concentrations	(left)	and	a	number	of	days	where	PM10	is	greater	than	50μg/m3	(right).

alt-text:	Fig.	5



The	ANN	and	SVM	predicted	an	increase	in	the	PM10	concentrations	in	2011	with	the	implementation	of	the	scenario	at	KC2	while	BRT	predicted	a	slight	reduction.	This	failure	in	the	case	of	ANN	and	SVM	might	be	attributed

to	the	amount	of	missing	values	imputed	in	the	data	used	for	the	training	of	the	models.	The	data	captured	at	this	site	in	2011,	was	73%,	and	after	the	imputation,	there	were	twenty	eight	days	when	PM10	concentrations	were	higher

than	50μg/m3	as	against	the	seven	days	in	the	original	data.	Also,	the	95	and	99	percentiles	increased	by	10μg/m3	in	the	imputed	data.	Therefore,	the	performance	of	the	models	might	be	affected	as	the	imputation	heavily	influenced

the	original	data.

In	the	same	year	the	ANN	and	BRT	models	predicted	various	degrees	of	reduction	in	the	number	of	days	where	PM10	concentrations	were	higher	than	50 μg/m3	except	at	CR4	and	KC5	where	BRT	predicted	increase.	Also,	at

KC2	the	ANN	model	predicted	an	increase	of	12	days.	However,	SVM	models	consistently	predicted	large	increase	at	the	sites.

When	the	scenario	was	implemented	using	2015	data,	the	ANN	and	BRT	predicted	that	the	annual	mean	PM10	concentrations	will	be	reduced	by	0.14–2.18 μg/m3	as	shown	in	Fig.	7.	They	predicted	high	reduction	at	most	of	the

sites	except	at	GR5,	KC5	and	MY1	where	they	predicted	less	than	0.3 μg/m3	reduction.	At	the	BT4,	GR5,	and	KC5	sites,	the	two	models	show	approximately	the	same	performance.	Moreover,	At	CR4	site,	the	BRT	model	predicted	a

decrease	of	6	μg/m3	which	is	unusually	high	compared	with	the	results	of	the	remaining	models.	However,	in	the	case	of	number	of	days	with	PM10	greater	than	50μg/m3,	BRT	and	ANN	predicted	different	reductions	at	most	of	the	sites

except	at	BT4	and	KC2.	The	SVM	models	predicted	higher	increase	all	the	sites	except	at	CR4	where	it	predicted	reduction	of	3	days.

The	EUROIV/VI	scenario	explained	above	was	also	applied	in	predicting	the	concentrations	of	PM2.5	in	2012	and	2015.	The	ML	models	predicted	reduction	of	the	annual	mean	PM2.5	concentrations	ranging	between	0.3 μg/m3	at

GR9	to	2 μg/m3	at	MY1.	In	most	cases,	the	predictions	of	the	ANN	and	SVM	were	similar	while	BRT	shows	slightly	different	results.	The	same	trend	was	also	observed	when	the	scenario	was	implemented	in	2015	where	they	predicted

higher	reduction	at	MY1	and	GR8	as	shown	in	Fig.	8	(middle).

Fig.	6	The	difference	between	the	prediction	of	the	models	with	and	without	the	scenario	in	2011.	The	annual	mean	PM10	concentrations	(left)	and	the	number	of	days	where	PM10	is	greater	than	50μg/m3	(right).

alt-text:	Fig.	6

Fig.	7	The	difference	between	the	prediction	of	the	models	with	and	without	the	scenario	in	2015.	Annual	mean	PM10	concentrations	(left)	and	the	number	of	days	with	PM10	greater	than	50μg/m3	(right)	in	2015.

alt-text:	Fig.	7



All	 the	models	predicted	a	 reduction	 in	 the	concentrations	 from	2012	 to	2015	 (see	Fig.	8	 right),	 even	 though	 there	was	an	 increase	 in	 traffic	volume.	The	 reduction	might	be	attributed	 to	 the	 improvement	 in	 the	vehicle

technology	and	other	air	quality	control	measures	being	implemented	in	London	(TFL,	2016).

The	ML	models	are	data	driven,	and	they	are	trained	to	mimic	the	observed	data	based	on	the	relationships	they	derive	 from	predictor	variables	and	the	response	variables	data.	Therefore,	 their	performance	will	 largely

depend	on	the	accuracy	and	completeness	of	the	data.	The	models	have	shown	good	performance	in	predicting	the	particle	concentrations.	Their	poor	performance,	where	it	occurred,	could	be	mostly	attributed	to	their	inability	to

capture	the	extreme	events	such	as	extremely	high	or	low	concentrations	that	are	rarely	happening	in	most	of	the	sites.	This	behaviour	is	not	unexpected	as	they	have	some	element	of	statistics	in	their	formulation	that	has	a	bias

towards	the	most	frequent	events.	Another	reason	that	will	also	contribute	to	their	poor	performance	is	the	amount	of	missing	data	in	the	training	and	testing	data.	An	attempt	has	been	made	to	reduce	this	effect	by	using	some	missing

data	imputation	algorithms.	The	SVM	models	show	different	prediction	behaviour	compared	to	the	BRT	and	ANN	models	where	they	predicted	increase	in	the	PM10	statistics	at	most	of	the	sites.	However,	they	performed	similarly	in

the	case	of	PM2.5.	The	reason	for	this	behaviour	could	not	be	reliably	established,	but	it	was	suspected	that	the	models	might	have	overfitted	the	training	data	and	subsequently	failed	to	generalise	the	performance.

4	Conclusions
This	paper	explores	the	use	of	machine	learning	models	in	air	quality	management.	The	performance	of	the	models	in	predicting	PM10	and	PM2.5	concentrations	at	twelve	monitoring	sites	in	London	was	compared.	Also,	the

performance	of	the	models	in	evaluating	the	effect	of	a	hypothetical	air	quality	management	scenario	on	roadside	particle	concentrations,	PM10	and	PM2.5	was	compared.	The	ANN	and	BRT	performed	better	than	the	SVM	in	predicting

PM10	concentrations	while	they	vary	only	little	in	their	performance	when	predicting	PM2.5	concentrations.

The	 ANN	 method	 selected	 traffic	 emissions	 from	 various	 vehicles	 as	 the	 most	 contributing	 variables	 followed	 by	 the	 roadside	 and	 background	 oxides	 of	 nitrogen,	 temperature,	 wind	 directions	 and	 temporal	 variables

respectively.	The	BRT	method	gave	preference	to	the	roadside	and	background	concentrations	of	oxides	of	nitrogen	and	background	particle	concentrations	while	indicating	similar	but	lower	contributions	from	the	remaining	variables.

Combining	the	information	gained	from	the	two	methods,	the	traffic,	roadside	and	background	concentrations	of	gaseous	pollutants	could	help	in	determining	the	levels	of	roadside	particle	concentration.	Therefore,	it	is	recommended

that	relevant	environmental	agencies	and	other	stakeholders	should	maintain	more	quality	data	on	these	variables	so	that	they	can	be	used	in	training	ML	models	to	effectively	manage	the	roadside	concentrations	of	PM10	and	PM2.5.

Also,	oxides	of	nitrogen	were	seen	to	be	highly	correlated	with	the	PM10	and	PM2.5.	Therefore,	effective	monitoring	and	control	of	these	pollutants	might	help	in	managing	the	particle	concentrations.

When	evaluating	the	effectiveness	of	the	EUROIV/VI	scenario,	the	ANN	and	BRT	models	predicted	reductions	in	the	PM10	and	PM2.5	concentrations.	While	in	a	few	cases,	they	predicted	that	the	concentrations	will	remain

unchanged.	The	SVM	model	consistently	predicted	higher	PM10	concentrations	when	tested	with	the	scenario	while	predicting	a	much	smaller	decrease	in	PM2.5	concentrations.	However,	it	predicted	a	much	larger	decrease	in	PM10

concentrations	in	2015	without	the	scenario.	According	to	all	the	performance	metrics	used	in	this	study,	the	SVM	model	was	the	poorest	in	predicting	PM10	whereas	it	shows	similar	performance	with	ANN	and	BRT	in	predicting	PM2.5.

This	behaviour	could	be	attributed	to	overfitting	during	SVM	training,	however,	this	study	recommends	that	the	application	of	SVM	method	in	air	quality	management	should	be	further	investigated.
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