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Abstract Loss normalization is the prerequisite for

understanding the effects of socioeconomic development,

vulnerability, and climate changes on the economic losses

from tropical cyclones. In China, limited studies have been

done on loss normalization methods of damages caused by

tropical cyclones, and most of them have adopted an

administrative division-based approach to define the

exposure levels. In this study, a hazard footprint-based

normalization method was proposed to improve the spatial

resolution of affected areas and the associated exposures to

influential tropical cyclones in China. The meteorological

records of precipitation and near-surface wind speed were

used to identify the hazard footprint of each influential

tropical cyclone. Provincial-level and national-level (total)

economic loss normalization (PLN and TLN) were carried

out based on the respective hazard footprints, covering loss

records between 1999–2015 and 1983–2015, respectively.

Socioeconomic factors—inflation, population, and wealth

(GDP per capita)—were used to normalize the losses. A

significant increasing trend was found in inflation-adjusted

losses during 1983–2015, while no significant trend was

found after normalization with the TLN method. The

proposed hazard footprint-based method contributes to a

more realistic estimation of the population and wealth

affected by the influential tropical cyclones for the original

year and the present scenario.

Keywords China � Direct economic loss � Loss
normalization � Tropical cyclones � Typhoon disaster risk

1 Introduction

Global society has experienced a dramatic increase of

losses from natural hazard-induced disasters in recent

decades. Among all natural hazards, tropical cyclones

(TCs) are one of the major threats to human society, and

the related damages and losses are on the rise. From 1970

to 2015, 5 out of 10 natural catastrophes that caused most

inflation-adjusted insured losses were TCs (Swiss Re

2016).

While historical damage records can provide much

information for estimating how much loss TCs will cause

today, these losses need to be normalized to the current

socioeconomic levels because exposure and vulnerability

change over time. The procedure, commonly called loss

normalization, has been applied in many studies on

exploring loss trends and the effects of anthropogenic cli-

mate changes (Crompton et al. 2010; Bouwer 2011).

Most studies assume a proportional relationship between

the magnitudes of losses and the exposure levels (the

population and assets that are at risk) if the hazard and

vulnerability remain constant (Pielke Jr et al. 2003;

Raghavan and Rajesh 2003; Schmidt et al. 2009; Zhang

et al. 2009). Using certain proxies to represent exposure

levels, including population and wealth changes, the pro-

cess of loss normalization can be expressed in mathemat-

ical terms as follows (adapted from Eichner 2013):
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Losstoday ¼ Lossyear X � Proxytoday

Proxyyear X
;

where Losstoday is the normalized loss under the current

socioeconomic conditions; Lossyear X is the original loss

caused by the TC that occurred in year X; and Proxytoday
and Proxyyear X are the proxy values in the base year

(usually a recent) and year X.

Two basic questions need to be considered in loss nor-

malization: (1) which socioeconomic factors should be

used as the proxies; and (2) what spatial resolution should

be adopted for the proxies and losses. For the first, infla-

tion, population, and wealth are three common factors to

consider (Pielke Jr et al. 2008; Bouwer 2011). Among all

the factors, gross domestic product (GDP) has been fre-

quently used to represent the wealth a region or a country

owns. Other indicators such as GDP per capita, income per

capita, and coastal county housing units also have been

used to indicate the amount of property at risk (Bouwer

2011). Population can also be a proxy for the exposure

level of a region or country.

The second question is related to the difference between

the area affected by the TC event and the spatial resolution

of the proxies and losses. For example, when loss values

are recorded for every province individually, but a TC

affects only a small part of each province, the use of a

national GDP or provincial GDP for loss normalization is

probably unsuitable. Currently, most studies use the

national or regional (such as provincial and county-level)

socioeconomic indicators to normalize losses, which may

lead to an over- or underestimation of the effect of expo-

sure on the magnitudes of loss. Considering this problem,

Eichner et al. (2016) proposed to use a cell-based loss

normalization method to take into account the real impact

area of hazards.

Most research on loss normalization focuses on the

developed countries, especially the United States (Pielke Jr

et al. 2008; Sander et al. 2013; Estrada et al. 2015). Only a

few studies have analyzed TC impacts and losses in China

based on limited loss records (Zhang et al. 2009, 2011;

Fischer et al. 2015). Zhang et al. (2009) normalized the TC

losses for the period of 1983–2006, using annual national

GDP, and found no trend in the normalized loss data.

Zhang et al. (2011) carried out a similar analysis for the

period of 1984–2007, also using annual national GDP as

the normalization proxy, and concluded that the increase of

direct economic losses was mainly due to the socioeco-

nomic development of China, similar to the conclusion of

Zhang et al. (2009). Fischer et al. (2015) improved the loss

normalization method for TCs in China by using provincial

socioeconomic and loss data and longer time series of loss

data (up to 2013) than previous research. These authors

used both the conventional normalization method (using

the consumer price index, net/disposable income, and

population as proxies) and an alternative normalization

method (using general income as the proxy) to normalize

the loss data at the provincial level. No significant trend

was found in the normalized losses using either method.

The existing studies on the economic impacts of TCs in

China have contributed substantially to the normalization

and attribution of typhoon disaster losses. However, they

were mostly carried out at the provincial and the national

levels, ignoring the real footprint of each TC and regional

disparities.

Based on the previous research, this study adopted a

hazard footprint-based approach to normalize the direct

economic losses caused by TCs in China during the period

1983–2015. The proposed method aimed to provide a more

comprehensive, updated, and higher-resolution loss analy-

sis for TC disasters in China.

2 Data

This study focused on the direct economic losses caused by

TCs in China’s mainland (including Hainan Province) from

1983 to 2015. Two kinds of official data sources of his-

torical loss records for the TCs in China were used: (1) the

total direct economic loss from each TC and the impacted

provinces from 1983 to 1998, extracted from China’s

Tropical Cyclone Disasters Dataset (1949–1999) released

by the National Climate Center (NCC) of the China

Meteorology Administration (CMA) (NCC 2001); and (2)

the provincial-level and mainland-wide total direct eco-

nomic losses caused by each TC from 1999 to 2015,

published in China’s Yearbooks of Meteorology

(2000–2004) (CMA 2000–2004) and China’s Yearbooks of

Meteorological Disaster (2005–2016) (CMA 2005–2016).

Although a county-level dataset had been used by the

research group in the NCC (Gemmer et al. 2011; Fischer

et al. 2015; Wang et al. 2016), that dataset was compiled

based on several different data sources and may have

involved substantial processing due to the mismatching or

incongruence among the different data sources; and the

county-level dataset is not publicly available and cannot be

easily accessed by the public. Thus, this study made full

use of the best publicly available loss data for the impact

analysis of historical TCs.

Tropical cyclone track and intensity were derived from

the CMA Tropical Cyclone Best Track Dataset, including

data on 6-hourly track locations, 2-min mean maximum

sustained wind speed, and minimum air pressure (Ying

et al. 2014). Daily precipitation data and daily maximum

wind speed from 2474 nationwide meteorological obser-

vation stations were obtained from the National Meteoro-

logical Information Center (NMIC) of the CMA.
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Data on the national consumer price index (CPI),

provincial GDP, provincial GDP per capita, and population

during the period of 1983–2015 were all obtained from the

National Bureau of Statistics of China (NBSC).1 The land

area of each province was derived from the China City

Statistical Yearbook (NBSC 2016).

3 Methodology

In this study we identified the hazard footprint of each

influential TC based on the loss records and meteorological

data (TC-induced wind and precipitation) and calculated

the affected population and wealth based on the hazard

footprint results. The loss normalization methodology

proposed by Pielke Jr and Landsea (1998) and later

updated by Pielke Jr et al. (2008) were adopted to conduct

loss normalization at both the national and the provincial

levels. The trends of normalized losses were tested using

both linear regression and Mann–Kendall tests.

3.1 Calculation of Hazard Footprint

Hazard footprint is defined as the impact area of each

influential TC, which was identified based on both the loss

records and the TC-induced wind and precipitation records.

Specifically, the provinces affected by each influential TC

event were obtained from the historical loss records, and

the actual impact area in each affected province was

identified based on the TC-induced wind and rainfall

intensities.

The influential TCs that caused damages (losses larger

than zero) in China’s mainland during 1983–2015 were

selected. Then the daily maximum 10-min mean wind and

daily rainfall triggered by each event were derived from the

records of meteorological stations using the Objective

Synoptic Analysis Technique (OSAT), which was pro-

posed by Ren et al. (2007) for TC precipitation and mod-

ified and used by Lu et al. (2016) for TC wind.

For each influential TC event, the maximum values of

the daily maximum 10-min mean wind and daily rainfall

during the whole TC lifetime at each station were derived

and interpolated to create raster files using the inverse

distance weighting (IDW) method at a spatial resolution of

3 km. The rainfall and wind speed raster data were

respectively classified into five classes according to their

intensity (Table 1) and masked using the vector file of

China’s boundaries. Then the two raster files of rainfall and

wind for the same TC event were ‘‘mosaicked’’ to a new

raster file of hazard class using the ArcGIS Mosaic tool,2

adopting the maximum of the overlapping cells as the

output cell value. The hazard classes range from 1 to 5.

The area of each hazard class in each affected province

(obtained from loss records) for each influential TC event

was calculated using the ArcGIS spatial analyst tool Tab-

ulate Area. The areas in a hazard class of no less than 3—

that is those areas that have experienced at least heavy rain

(more than 50 mm in 24 h) or gales (more than

17.2 m s-1)—were extracted for each affected province.

These areas were taken to be the ‘‘hazard footprint’’ of the

corresponding influential TC event. An example of a TC

hazard footprint is shown in Fig. 1. All the processing of

vector and raster data in this study was conducted using

Python 2.7.3.3

The affected area ratio for each affected province of each

TC event was calculated by dividing the area of the hazard

footprint by the total land area of the province. Then the

affected population (and GDP) of each province for the TC

event in the original year when the disaster event happened

and the base year 2015 were calculated by multiplying the

affected area ratio with the total population (and GDP) of

each province in the original year and 2015 (supposing the

population and GDP are evenly distributed in the area of the

same province because the boundaries of the county-level

administrative divisions have been changing all the time—

thus the historical socioeconomic and loss data are most

reliable and robust at the provincial level). For example,

according to the results of the hazard footprint, 2006 strong

tropical storm Bilis (200604) affected most of Guangxi

(81%) and Guangdong (76%), half of Fujian (53%) and

Zhejiang (50%), and part of Hunan (30%) and Jiangxi (19%).

The population of the six provinces in 2006 was 46.3

(Guangxi), 94.7 (Guangdong), 35.9 (Fujian), 49.6 (Zhejiang),

65.0 (Hunan), and 45.1 (Jiangxi) million, respectively.

Therefore, the total population affected by Bilis (200604)

was 81% 9 46.3 ? 76% 9 94.7 ? 53% 9 35.9 ? 50% 9

49.6 ? 30% 9 65.0 ? 19% 9 45.1 = 182.3 million. If

Bilis had occurred in 2015, the total affected population

would have been 198.4 million, supposing vulnerability

remained the same.

3.2 Loss Normalization

This study adopted the loss normalization methodology

proposed by Pielke Jr and Landsea (1998) and updated by

Pielke Jr et al. (2008). Our study basically followed the

‘‘PL05’’ method in Pielke Jr et al. (2008), which adjusted

the original economic losses for inflation, wealth, and

population to a reference year—in our study, 2015 was set

1 http://data.stats.gov.cn/.

2 http://pro.arcgis.com/en/pro-app/tool-reference/data-management/

mosaic.htm.
3 https://www.python.org/.
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as the reference year. The method can be expressed using

the following equation:

NLoss2015 ¼ Lossoriginal � R Inf � R Wealth� R Pop

NLoss2015 is the normalized loss, Lossoriginal is the original

loss record. The inflation ratio (R Inf ) was calculated by

dividing the national CPI of 2015 by the national CPI of the

year when the TC event happened. The inflation-adjusted

losses were calculated by multiplying Lossoriginal with only

R Inf , and were used to replace the original losses for

investigation before adjusting for exposures.

The GDP per capita was used in this study to represent

the wealth of a region or country. Thus, the wealth ratio

(R Wealth) was derived by dividing the GDP per capita in

2015 by the inflation-adjusted GDP per capita in the

occurrence year of the TC event. The inflation-adjusted

GDP per capita was derived by multiplying the original

GDP per capita by the inflation ratio.

The population ratio (R Pop) was derived by dividing

the affected population if the event had happened in 2015

by the affected population derived using the hazard foot-

print as described in Sect. 3.1.

To make full use of the collected data, loss normaliza-

tion was conducted in two parts: one was the provincial-

level loss normalization for TCs in 1999–2015, and the

other was the national-level (total) loss normalization for

TCs in 1983–2015.

Table 1 Classification of tropical cyclone (TC) rainfall and wind intensity

Class 24-Hour rainfall Wind

Grade Range

(mm)

Grade Beaufort scale Range

(m s-1)

1 Under moderate rain 0–25.00 Strong breeze 6 10.80–13.90

2 Big rain 25.01–50.00 High wind 7 13.91–17.20

3 Heavy rain 50.01–100.00 Gale 8 17.21–20.80

4 Very heavy rain 100.01–250.00 Strong gale 9 20.81–24.50

5 Extreme heavy rain 250.01–1000 Storm 10 24.51–200

Fig. 1 Example of a tropical cyclone (TC) hazard footprint in

China’s mainland: spatial distributions of (a) rainfall class; (b) wind

class; and (c) hazard footprint of 2006 tropical cyclone Bilis

(200604). Since 1959, each TC that develops over the western North

Pacific (to the north of the equator and to the west of 180 �E, and
includes the South China Sea) with maximum sustained wind speed

over 24.4 m s-1 (tropical storms) has been assigned an international

number for identification. It originally consists of 4 digits with the

former two digits denoting the year, and the latter two denoting the

number of the TCs with intensities above tropical storm. Here we

added two more digits with the first four representing the year of

event for better clarity
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(1) Provincial-level loss normalization (PLN) for TCs in

1999–2015. The normalized loss for each TC was calcu-

lated as follows:

PLN Lossi 2015 ¼
Xm

j¼1

Lossij � R Infi � R Wealthij

� R Popij;

where PLN Lossi 2015 is the normalized total loss of the

TC event i supposing it happened in 2015; Lossij is the

original loss in province j caused by the event i; R Infi is

the inflation ratio for the year of the TC event’s occurrence;

R Wealthij is the wealth ratio for province j and event i;

and R Popij is the population ratio for province j and event

i.

Since R Infi � R Wealthij in the above equation cancels

out R Infi, the equation can be rewritten as:

PLN Lossi 2015 ¼
Xm

j¼1

Lossij �
GDPpc2015j

GDPpcij

� �
� R Popij

where GDPpc2015j and GDPpcij are the GDP per capita of

province j in 2015 and in the year when event i happened,

respectively.

(2) National-level (total) loss normalization (TLN) for

TCs in 1983–2015. The normalized loss (TLN Lossi 2015)

for each TC was calculated as follows:

TLN Lossi 2015 ¼ Lossi � R Infi � R Wealthi � R Popi

in which Lossi is the original total loss, and for the affected

region of the event i,R Wealthi and R Popi were related in

the calculation. The equation can be rewritten as:

TLN Lossi 2015 ¼ Lossi � Affec GDP2015j=Affec GDPij

where Affec GDP2015j and Affec GDPij are the total

affected GDP in the affected area in 2015 supposing the

event i happened, and in the original year, respectively (the

calculation method has been explained in Sect. 3.1).

3.3 Trend Analysis

To understand the changes in TC losses, the trends in

frequency and loss time series were analyzed using statis-

tical methods. Two typical methods were applied in this

study: the least square linear regression and the Mann–

Kendall tests. The former is a parametric test and assumes

there is a linear trend in the time series (Haan 1977; Pat-

tanayak and Kumar 2013); the latter is a non-parametric

test that has been widely used to detect trends in environ-

mental time series (Mann 1945; Kendall 1975). For both

methods, significances have been tested at the level of 0.05.

4 Results

The characteristics of the 217 influential TCs during

1983–2015 were summarized and analyzed first, and then

both the provincial and the national level normalized loss

results were presented. The high-risk provinces and top

influential TC events with highest normalized losses were

identified thereafter. Trend in normalized losses was tested,

and no trend was found in the normalized losses.

4.1 Characteristics of Influential Tropical Cyclones

During 1983–2015

According to the CMA, the intensity of TCs can be clas-

sified into six classes based on the maximum wind speeds

at landfall or at the closest point to the mainland coastline:

Tropical depression (TD, 10.8–17.1 m s-1); Tropical

storm (TS, 17.2–24.4 m s-1); Strong tropical storm (STS,

24.5–32.6 m s-1); Typhoon (TY, 32.7–41.4 m s-1);

Strong typhoon (STY, 41.5–50.9 m s-1); and Super

typhoon, (C 51.0 m s-1).

During 1983–2015, a total of 217 events caused losses

(larger than 0). In the loss dataset, two successive events,

including 2012 tropical cyclones Saola (201209) and

Damrey (201210), and 2012 tropical cyclones Tembin

(201214) and Bolaven (201215), were grouped as one

event with one total loss value because their losses could

not be easily separated. The intensity of such an event

group was defined as the maximum intensity of the two

composing TCs. Among the 217 influential TCs, 195

(89.9%) made landfall on China’s mainland, and only a

few passed by off the coast of China and dissipated over

open water.

Among all the influential TC events in the 1983–2015

period, STSs had the highest frequency ratio, and TYs had

the highest ratio in terms of inflation-adjusted total loss,

followed by STSs and STYs (Fig. 2). While the frequency

ratio of SuperTYs (1%) was much lower than that of TSs

(20%), SuperTYs caused total losses that were almost as

high as those of the TSs (with a ratio of 7%). This indicates

the great damage potentials triggered by SuperTYs.

Figure 3 shows the temporal changes of the frequency

of influential TCs ranging from 1 (in 1983) to 13 (in 2013),

with an annual average of 6.7. The average annual fre-

quency during 1983–1999 was 5.7, versus 7.5 during

2000–2015. The linear fit and test of significance indicate

that there is a significant upward trend (p value = 0.01,

significant at 0.05 level) in the frequency, although the

linear regression model does not fit very well considering a

low value of R2 (0.2, that is only 20% of total variance in

frequency can be explained by the model).
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Table 2 shows the top 10 influential TCs by inflation-

adjusted total loss (in billion CNY), and Fig. 4 shows their

tracks. All 10 TCs made landfall on China’s mainland.

Most of the top 10 influential TCs made direct landfall in

Zhejiang and Fujian Provinces, with landfall intensities no

less than 25 m s-1 (STS).

4.2 Provincial-Level Loss Normalization (PLN)

Results

According to the provincial TC loss records, 20 provinces

were affected during 1999–2015 by the 126 influential TC

events. The provinces of Zhejiang, Fujian, Guangdong, and

Guangxi were affected most frequently by TCs, more than

40 times each in the 17 years (Table 3 and Fig. 5). The top

five provinces with the highest inflation-adjusted losses and

normalized losses were Zhejiang, Guangdong, Fujian,

Guangxi, and Hainan. The ranks of the original losses,

Fig. 3 Scatter plot showing the

frequency of the 217 influential

tropical cyclones in China

during 1983–2015 and the linear

fit (the dotted line)

Fig. 2 Frequency ratios and inflation-adjusted total loss ratios,

grouped by intensity classes, of the 217 influential tropical cyclones

that affected China’s mainland during 1983–2015 (TD tropical

depression, TS tropical storm, STS strong tropical storm, TY typhoon,

STY strong typhoon, SuperTY super typhoon)

Table 2 Top 10 influential tropical cyclones in China, 1983–2015, by inflation-adjusted total loss (in 2015 billion CNY and USD)

No. Typhoon ID Year Typhoon name Landfall (yes/no) Maximum wind

speeda (m s-1)

Intensity

class

Inflation-adjusted total losses

(in 2015 bn CNY (USD))

1 199608 1996 Herb Yes 35 TY 93.42 (15.00)

2 201323 2013 Fitow Yes 42 STY 65.30 (10.48)

3 199711 1997 Winnie Yes 40 TY 60.75 (9.75)

4 201209, 201210 2012 Saola, Damrey Yes 25 STS 54.28 (8.71)

5 200604 2006 Bilis Yes 30 STS 45.50 (7.31)

6 201409 2014 Rammasun Yes 70 SuperTY 45.28 (7.27)

7 201211 2012 Haikui Yes 42 STY 39.89 (6.40)

8 199406 1994 Tim Yes 30 STS 37.68 (6.05)

9 199417 1994 Fred Yes 40 TY 32.41 (5.20)

10 199615 1996 Sally Yes 50 STY 31.29 (5.02)

1 USD = 6.2284 CNY, which was the average exchange rate in 2015 reported by NBSC (2015)

STS strong tropical storm, TY typhoon, STY strong typhoon, SuperTY super typhoon
aAt landfall or at the closest point to the coast
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Table 3 Losses and frequencies of the 126 influential tropical cyclones in the 20 affected provinces in China during 1999–2015 (the rankings are

indicated in parentheses)

Province Original losses

(in bn CNY)

Inflation-adjusted losses

(in 2015 bn CNY)

Normalized losses

(in 2015 bn CNY)

Frequency of influential TCs

Zhejiang 221.5 (1) 259.5 (1) 504.6 (1) 62 (1)

Fujian 98.9 (3) 124.6 (3) 372.2 (2) 49 (2)

Guangdong 184.7 (2) 209.1 (2) 369.2 (3) 45 (3)

Guangxi 61.4 (4) 73.1 (4) 210.2 (4) 43 (4)

Hainan 52.5 (5) 60.6 (5) 129.9 (5) 38 (5)

Hunan 28.8 (6) 37.0 (6) 117.0 (6) 25 (6)

Shandong 23.6 (7) 27.0 (7) 54.3 (7) 19 (7)

Anhui 18.0 (9) 21.0 (9) 43.9 (8) 15 (8)

Jiangsu 15.0 (10) 17.9 (10) 41.0 (9) 12 (9)

Jiangxi 13.7 (12) 16.2 (11) 35.9 (10) 12 (10)

Liaoning 21.5 (8) 23.0 (8) 26.4 (11) 11 (11)

Hebei 14.6 (11) 15.5 (12) 16.6 (12) 8 (12)

Hubei 5.5 (13) 6.2 (13) 11.8 (13) 8 (13)

Yunnan 5.4 (14) 5.8 (14) 9.2 (14) 6 (14)

Shanghai 3.7 (15) 4.5 (15) 7.7 (15) 4 (15)

Henan 1.3 (17) 1.7 (17) 4.5 (16) 2 (16)

Jilin 1.9 (16) 2.0 (16) 3.3 (17) 2 (17)

Heilongjiang 1.1 (18) 1.2 (18) 1.2 (18) 2 (18)

Tianjin 0.2 (19) 0.3 (19) 0.9 (19) 1 (19)

Guizhou 0.2 (20) 0.2 (20) 0.5 (20) 1 (20)

Fig. 4 Tracks and landfall intensities of the top 10 influential (by inflation-adjusted total loss) tropical cyclones in China’s mainland, 1983–2015

(STS strong tropical storm, TY typhoon, STY strong typhoon, SuperTY super typhoon)
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inflation-adjusted losses, and normalized losses in the

affected provinces are almost consistent with the rank of

frequency of influential TCs (the correlation coefficients

are larger than 0.8). This indicates that the spatial distri-

bution of provincial losses is mainly influenced by the

frequency of influential TCs.

Figure 6 shows the temporal development of inflation-

adjusted losses and normalized losses. The linear fits show

that there are no statistically significant trends in either

inflation-adjusted losses or normalized losses (p values are

0.08 and 0.14, respectively). The result of the Mann–

Kendall trend test also indicates no significant trend (tested

at the significance level of 0.05, with p values of 0.15 and

0.09, respectively).

4.3 National-Level (Total) Loss Normalization

(TLN) for Tropical Cyclones in 1983–2015

The statistics of the normalization factors for the 217

influential TCs are given in Table 4. Among the three

ratios, R Wealth has the largest range and standard devi-

ation, followed by R Inf and R Pop.

The annual inflation-adjusted losses and normalized

losses during 1983–2015 and their trends are shown in

Fig. 7. The largest inflation-adjusted loss and normalized

loss both occurred in 1996 (141.9 and 876.8 billion CNY in

2015 prices). For inflation-adjusted losses, the p value of

the linear fit is 0.01 (\ 0.05), indicating a significant

upward trend with a slope of 3.3. For normalized losses, the

linear fits show that there are no statistically significant

trends because the p value is 0.18 ([ 0.05). The Mann–

Fig. 6 Inflation-adjusted losses and normalized losses (provincial-

level loss normalization, PLN) from the 126 influential tropical

cyclones in China during 1999–2015 and their linear fits

Table 4 Statistical characteristics of the three normalization fac-

tors—inflation ratio (R Inf ), wealth ratio (R Wealth), and population

ratio (R Pop) for the 217 influential tropical cyclones

R Inf R Wealth R Pop

Min. 1.0 1.0 1.0

Max. 5.3 13.7 2.0

Mean 1.9 3.8 1.2

SD 1.1 2.8 0.2

Fig. 5 Spatial distribution of the frequencies and total losses from the 126 influential tropical cyclones in the 20 affected provinces in China’s

mainland during 1999–2015
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Kendall trend test for the annual inflation-adjusted losses

also shows a significant upward trend (p value = 0.0004),

while the annual normalized losses show no significant

trend at the significant level of 0.05 because the p value is

- 0.06 (± of the p value denotes upward/downward

trend).

The major information for the top 10 influential TCs by

normalized losses is shown in Table 5, and their tracks are

shown in Fig. 8. The 10 TCs mostly made landfall in the

three coastal provinces: Zhejiang, Fujian, and Guangdong.

The largest normalized loss was caused by 1996 typhoon

Herb (199608), which made landfall in Fujian Province

with the maximum wind speed of 35 m s-1 (TY in inten-

sity class). Table 5 shows that for most of the top 10

influential TCs, the major factor contributing to the nor-

malized losses is R Wealth, which indicates that the areas

affected by those TCs had experienced substantial growth

in GDP per capita by 2015, compared to the 1990s.

To compare the two normalization methods, the nor-

malized results for the influential TCs during 1999–2015

are shown in the scatter plot (Fig. 9). The linear fit shows

that the two sets of normalized losses are highly correlated

with a R2 equal to 0.98. The differences between PLN-

losses and TLN-losses for the 126 influential TCs are

mostly slight, ranging from - 1.03 to 33.81, with an

average of 1.83 (in 2015 bn CNY) during 1999–2015.

Therefore, the results of the hazard footprint-based loss

normalizations at both the provincial and national levels

have shown great consistency. The results of provincial

distribution of the PLN-losses during 1999–2015 provide

credible and important information for identifying high-

risk areas although the loss data only cover a period of

17 years.

The conventional loss normalization method, which

takes account of the whole area of the affected provinces

instead of the cell-based hazard footprints, was also applied

to the 217 influential TCs during 1983–2015. Figure 10

shows that the hazard footprint-based and non-hazard

footprint-based normalized losses are highly correlated,

with a coefficient of 0.77 and a p value lower than 0.05

Fig. 7 Total annual inflation-

adjusted losses and normalized

losses (national-level loss

normalization, TLN) from the

217 influential tropical

cyclones in China during

1983–2015 and their linear fits

Table 5 Top 10 influential tropical cyclones in China by normalized losses by the national-level (total) loss normalization (TLN) method during

1983–2015

No. Year Typhoon ID Name Original loss

(in bn CNY)

R Inf R Wealth R Pop Normalized loss (in 2015

bn CNY (USD))

1 1996 199608 Herb 65.3 1.4 6.0 1.1 611.8 (98.23)

2 1997 199711 Winnie 43.6 1.4 4.0 1.2 283.9 (45.58)

3 1994 199406 Tim 20.8 1.8 5.8 1.2 254.8 (40.91)

4 1994 199417 Fred 17.9 1.8 5.5 1.3 226.1 (36.30)

5 1996 199615 Sally 21.9 1.4 4.2 1.3 172.3 (27.66)

6 1992 199216 Polly 7.6 2.6 5.7 1.2 136.7 (21.95)

7 1986 198607 Peggy 2.1 4.4 7.8 1.8 130.4 (20.94)

8 2006 200604 Bilis 34.8 1.3 2.0 1.1 97.6 (15.67)

9 1994 199405 Nameless 8.5 1.8 4.4 1.4 93.2 (14.96)

10 1985 198506 Jeff 1.2 4.7 11.3 1.3 88.4 (14.19)
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(indicating the linear relationship is significant at 0.05

level). The total annual normalized losses based on the

non-hazard footprint normalization method are about 30%

higher on average than the results based on the hazard

footprint-based TLN method. The largest difference

appears in 1994, with a value of 257.7 billion CNY

(Fig. 11). In that year, the major contributing influential TC

events were typhoon Tim (199406) and Fred (199417),

with differences of 73.5 and 69.6 billion CNY respectively

between the two methods. The hazard footprint-based

normalization method has apparently made the estimation

of exposures closer to reality, which is important for a

close examination of the effects of socioeconomic factors

on TC damage and losses.

Fig. 9 Scatter plot showing the correlation between the loss

normalization results from the provincial-level loss normalization

(PLN) and the national-level (total) loss normalization (TLN)

methods for the 126 influential tropical cyclones in China’s mainland

during 1999–2015

Fig. 8 Tracks and landfall intensities of the top 10 influential TCs (by normalized total losses) in China’s mainland during 1983–2015

(TS tropical storm, STS strong tropical storm, TY typhoon, STY strong typhoon)

Fig. 10 Scatter plot showing the correlation between the loss

normalization results from the hazard footprint-based and non-hazard

footprint-based national-level (total) loss normalization (TLN) meth-

ods for the 217 influential tropical cyclones in China’s mainland

during 1983–2015
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5 Conclusion

This study explored the hazard footprint-based loss nor-

malization method of TCs in China’s mainland over the

33 years from 1983 to 2015. The hazard footprints of

influential TCs were identified by considering the intensi-

ties of the induced rainfall and wind, and then the affected

ratio of areas of each province for each event was calcu-

lated to obtain the affected population and GDP at a higher

spatial resolution. To make full use of the available data,

two kinds of normalization—provincial-level and national-

level (total) loss normalization (PLN and TLN) were car-

ried out, covering loss records over 1999–2015 and

1983–2015, respectively. Trends in inflation-adjusted los-

ses and normalized losses were tested using both the linear

regression method and the non-parametric Mann–Kendall

method.

Losses were normalized using inflation ratio, population

ratio, and wealth (GDP per capita) ratio in both provincial-

and national- level normalizations. The results of the PLN-

losses show that TC risks concentrate in the provinces of

Zhejiang, Guangdong, Fujian, Guangxi, and Hainan in

terms of both inflation-adjusted losses and normalized

losses. However, no significant linear or non-linear trend

was found in either the inflation-adjusted losses or the

PLN-losses. But the results of the TLN-losses show that

there is an upward non-linear trend in inflation-adjusted

losses but no trend in the TLN-losses.

Our study found that socioeconomic factors have con-

tributed substantially to the increasing TCs’ damages and

losses, which is consistent with most of the previous

studies (Zhang et al. 2009, 2011; Fischer et al. 2015). More

attention should be paid to the high-risk coastal areas and

the potential catastrophic damages caused by landfall TCs

along with the rapid growth of population and wealth. By

applying a hazard footprint-based loss normalization at

both provincial and national levels, this study has improved

the current methods of loss normalization for TCs in China

and contributed to a better understanding of TC risks under

the current socioeconomic conditions.

This study, nevertheless, has several limitations. Like

many other studies, it assumed constant vulnerability over

time in the loss normalization process, which may not be

true in reality (Estrada et al. 2015). Although vulnerability

is much more difficult to calibrate, more studies on the

change of vulnerability and the associated effects on TC

risks should be carried out in the future. Also, the

assumption that losses are proportional to the population

and wealth ignores the more complex interactions between

these factors (Estrada et al. 2015). But a more robust model

has not yet been established (Hallegatte 2015) and further

research and discussion are needed.
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