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Abstract  
Parkinson’s disease (Pd) is the second most prevalent degenerative neurological condition 

worldwide. Improving and sustaining quality of life is an important goal for Parkinson’s patients. 

Key areas of focus to achieve this goal include earlier diagnosis and individualized treatment. 

This review discusses impulse control in Pd and examines how measures of impulse control from 

a response inhibition task may provide clinically useful information i) within an objective test 

battery to aid earlier diagnosis of Pd and ii) in post diagnostic Pd, to better identify individuals at 

risk of developing impulse control disorders with dopaminergic medication.  
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1. Introduction 
Parkinson’s disease (Pd) is a relatively common progressive neurodegenerative disease 

affecting about 6.3 million people worldwide (Apaydin, Ahlskog, Parisi, Boeve, & Dickson, 

2002; Braak, Ghebremedhin, Rub, Bratzke, & Del Tredici, 2004; EPDA, 2014). The pathological 

process which underlies Pd relentlessly progresses to the full-blown clinical syndrome over 

several years (Braak et al., 2004). Pd is associated with the degeneration of dopaminergic 

nigrostriatal neurons in the substantia nigra pars compacta (SNpc) (Apaydin et al., 2002; 

Cameron, Watanabe, Pari, & Munoz, 2010; Gradinaru, Mogri, Thompson, Henderson, & 

Deisseroth, 2009), as well as several other nuclei of the brainstem (Grinberg, Rueb, Alho, & 

Heinsen, 2010). Although motor symptoms are common landmarks for diagnosis and staging, Pd 

also involves disturbances in cognitive, limbic and autonomic systems.  

Currently there is no definitive test for Pd, making diagnosis relatively subjective. Clinical 

presentation of the disease can fluctuate over time, complicating disease monitoring and 

treatment evaluation. In addition, the pathology of this disease is only diagnostic in the brainstem 

which is difficult to study during life, adding to the challenge of unbiased and objective 

monitoring. The time between the onset of neurodegeneration and the ability to clinically 

diagnose Pd is termed the pre-diagnostic phase (Gaenslen, Swid, Liepelt-Scarfone, Godau, & 

Berg, 2011; Truong & Wolters, 2009).  During the pre-diagnostic phase, irretrievable 

dopaminergic neuron loss in the SNpc has not yet reached the threshold for diagnosis. This phase 

presents an opportunity for treatment optimization through earlier diagnosis using tools that are 

sensitive enough to identify early changes in biological systems. The aim of earlier diagnosis 
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would be to enable early neuroprotective therapies to prevent or delay further neuron 

degeneration (Berg & Poewe, 2012).  

Once diagnosed, there are further challenges presented to patients and clinicians from 

treatment side effects. The two most common forms of treatment are medication and surgery 

(deep brain stimulation, pallidotomy, etc.). One prevalent, under-reported and detrimental side 

effect to dopaminergic medication treatment is the development of impulse control disorders, 

which manifest as impulsive and compulsive behaviours in a variety of contexts. Treatment 

decisions would be aided by an objective method to predict and classify an individual’s risk of 

impulsivity with dopaminergic treatment. 

This review focuses on impulse control in Pd and how objective measures of impulse 

control could be used clinically pre and post diagnosis. The review has three main aims. First, to 

review and summarise functional changes in frontostriatal and basal ganglia-thalamocortical 

networks in Pd and their effect on impulse control, specifically response inhibition. Secondly, to 

introduce the potential of standardised response inhibition paradigms from motor behaviour 

research to provide useful measures within an objective test battery to identify insidious motor 

and non-motor changes during the pre-diagnostic phase, and aid earlier diagnosis. Third and 

finally, we introduce the idea of combining information obtained from response inhibition tasks 

with genetic analysis in the post-diagnostic phase of Pd to better identify mechanisms which 

predispose individuals to impulse control disorders with dopaminergic treatment.  
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2. Impulse control in Pd 
Execution of premature or inappropriate responses reflects poor impulse control (Duque & 

Ivry, 2009). There are two aspects of impulse control: cognitive/psychological and 

motor/behavioural (Nemoda, Szekely, & Sasvari-Szekely, 2011). Impulsive decision making (i.e. 

dysfunctional cognitive impulse control) manifests as an inability to evaluate the potential 

consequences of a decision and modify the decision accordingly, and has been associated with 

inferior structural integrity of white matter projections between the PFC and striatum (Peper et 

al., 2013). The inability to suppress an unnecessary action (i.e. impaired response inhibition) is 

an example of the motor/behavioural aspect (Nemoda et al., 2011).  

There is
 
a general decrease in impulse control with aging, seen in motor (Braver & Barch, 

2002; Fisk & Sharp, 2004), and cognitive impulse control (Fisk & Sharp, 2004). The age-related 

deterioration of motor impulse control is exacerbated with BG dysfunction as is evident in focal 

dystonia (Stinear & Byblow, 2004) and Pd (Bokura, Yamaguchi, & Kobayashi, 2005; Cooper, 

Sagar, Tidswell, & Jordan, 1994; Gauggel, Rieger, & Feghoff, 2004; I. Obeso et al., 2011). A 

dose-dependent inverted-U relationship (Goldman-Rakic, Muly Iii, & Williams, 2000) has been 

hypothesized to explain observed behavioural changes in impulse control associated with 

changes in dopamine neurotransmission in the prefrontal cortex (PFC) (Robbins & Arnsten, 

2009). For those with lower levels of dopamine neurotransmission, increasing PFC dopamine 

concentration promotes better motor (Congdon, Constable, Lesch, & Canli, 2009) and cognitive 

impulse control (Diamond, Briand, Fossella, & Gehlbach, 2004)and decreased impulsivity 

(Farrell, Tunbridge, Braeutigam, & Harrison, 2012).  
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2.1 Evidence for motor tests as biomarkers for Pd 
Deterioration of the motor system occurs well in advance of the clinical diagnosis of Pd. 

Evidence of subtle motor deficits exists during the pre-diagnostic stage. Therefore salient tests of 

motor function could become possible biomarkers. Years before clinical diagnosis patients 

subjectively report increased stiffness, slowness of movement, changes in gait pattern, reduced 

arm swing, tremor, and postural imbalance (de Lau, Koudstaal, Hofman, & Breteler, 2006; 

Gaenslen et al., 2011). Movement tasks are capable of providing objective measures of these 

abnormalities. Tasks of visuomotor control (Hocherman & Giladi, 1998) and handwriting 

(Horstink & Morrish, 1999) have identified deficits in the asymptomatic hand of patients in the 

early stage of Pd. Movement tasks which are able to detect subtle deterioration of motor control 

show greatest potential as biomarkers. 

Motor deficits are present in de novo Pd patients compared to healthy age-matched 

controls.  For example, de novo Pd patients show impaired upper limb performance during 

bimanual (Ponsen et al., 2006) and unimanual (Pfann, Buchman, Comella, & Corcos, 2001; 

Ponsen, Daffertshofer, Wolters, Beek, & Berendse, 2008) movements. During a complex 

bimanual circle-drawing task, measures of success rate and accuracy are lower in Pd patients, 

especially in the non-dominant hand (Ponsen et al., 2006). However, even simple unimanual 

movement tasks reveal impairments in modulation of muscle activity and coordination in de 

novo patients (Pfann et al., 2001; Ponsen et al., 2008). Pfann and colleagues demonstrated that 

EMG can reveal an inability to modify movements according to task demands (impaired motor 

set) in de novo Pd patients during a rapid elbow flexion task. EMG traces of patients reveal an 

impaired modulation of muscle bursting during upper limb movements of both single-joint 

(Hallett & Khoshbin, 1980; Vaillancourt, Prodoehl, Verhagen Metman, Bakay, & Corcos, 2004) 
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and multi-joint movements (Farley, Sherman, & Koshland, 2004). EMG activity patterns are 

therefore a potentially sensitive motor measure for identification of Pd, with one study finding 

90% sensitivity at differentiating individuals with Pd from healthy controls during single-joint 

point-to-point flexion movements (Robichaud et al., 2009). Of note, one healthy control who 

demonstrated abnormal EMG was subsequently diagnosed with Pd 30 months later. Ultimately, 

evidence exists that non-invasive and objective motor measures from EMG have the potential to 

reveal subclinical neurophysiological abnormalities during the pre-diagnostic stage. 

 

2.2 Response inhibition in Pd 

2.2.1 Functional changes in basal ganglia-thalamocortical networks with Pd 

Nuclei of the BG are an integral part of the sensorimotor system, forming a cortico-

subcortico-cortical loop involved in planning, executing and cancelling responses. Response 

inhibition (RI) depends critically upon interactions between the right frontal cortex (in particular, 

the right inferior frontal gyrus) and the BG (Aron, Durston, et al., 2007; Aron & Poldrack, 2006; 

Coxon, Van Impe, Wenderoth, & Swinnen, 2012; Jahfari et al., 2011; Robbins, 2007; Swann et 

al., 2011; Zandbelt & Vink, 2010). Striatal grey matter atrophy has been linked to impaired RI in 

Pd (O'Callaghan, Naismith, Hodges, Lewis, & Hornberger, 2013).  The striatum is the main 

input to the BG, receiving projections from the cerebral cortex, midbrain and thalamus (Figure 

1). The striatum is divided into dorsal (caudate nucleus and putamen, separated by the internal 

capsule) and ventral regions (Kandel, Schwartz, Jessell, Siegelbaum, & Hudspeth, 2013). BG 

sensorimotor networks comprise the motor portions of the putamen, i.e. dorsal striatum  

(Alexander & Crutcher, 1990; Kandel et al., 2013).  
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Projecting from the dorsal striatum are two parallel pathways through the BG: the ‘direct’ 

and ‘indirect’ pathways (Figure 1).  Both pathways modulate thalamic output to the cortex by 

either increasing (‘direct’) or decreasing (‘indirect’) thalamocortical drive (Alexander & 

Crutcher, 1990; Danion & Latash, 2011). The STN has been recognized as another significant 

input structure of the BG (Coizet et al., 2009; Lanciego et al., 2004). A third ‘hyperdirect’ 

pathway projecting from the cortex can rapidly decrease thalamocortical drive (i.e. an inhibitory 

pathway) without synapsing onto the striatum, but rather directly onto the STN (Nambu, Tokuno, 

& Takada, 2002). Figure 1 illustrates examples of hyperdirect pathways from the inferior frontal 

cortex and the pre-SMA connecting directly to the STN. Evidence suggests that ‘hyperdirect’ 

pathways are critical for successful response inhibition (Aron, Behrens, Smith, Frank, & 

Poldrack, 2007; Aron & Poldrack, 2006; Coxon et al., 2012; King et al., 2012).  

The main BG output nuceli are internal globus pallidus (GPi) and substantia nigra pars 

reticulata (SNpr). These two structures provide sustained inhibitory input onto thalamocortical 

neurons. The general consensus is that movement initiation (through facilitation of the ‘direct’ 

pathway) is an active process, requiring a pause in tonic inhibition and disinhibition of the 

thalamus. The default state of the motor system is analogous to driving with the brakes on, or the 

‘hold your horses’ model (Ballanger et al., 2009). The spatial and temporal recruitment of the 

‘direct’, ‘indirect’ and ‘hyperdirect’ pathways gives rise to the complex functionality of the BG. 

The balance of neuronal output from the three BG pathways is usually maintained by 

dopamine through dopaminergic projections from the SNpc to all BG nuclei, but most 

significantly through the dense connections to the dorsal and ventral striatum (Bjorklund & 

Dunnett, 2007). The origins of the ‘direct’ and ‘indirect’ pathways are from separate populations 

of striatal medium spiny neurons. The ‘direct’ pathway originates from neurons expressing 
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predominantly D1 dopamine receptors (DRD1), and the ‘indirect’ pathway from neurons 

expressing predominantly D2 receptors (DRD2). Dopaminergic projections from the SNpc 

differentially activate the two striatal neuronal populations due to the different dominant 

postsynaptic receptors. Dopamine binding to DRD1 facilitates the ‘direct’ pathway, whereas 

dopamine binding at DRD2 suppresses the ‘indirect’ pathway (Danion & Latash, 2011; Gerfen et 

al., 1990; Kandel et al., 2013; J. A. Obeso, Guridi, Nambu, & Crossman, 2013). The presence of 

dopamine therefore modulates movement control by reinforcing any cortically initiated 

activation of BG-thalamocortical networks leading to disinhibition of thalamocortical neurons 

(Alexander & Crutcher, 1990).  

In Pd, RI is disrupted by dopamine disturbance within the sensorimotor BG-

thalamocortical network. The degeneration of nigrostriatal dopaminergic neurons reduces the 

dopaminergic modulation through reduced striatal dopamine levels (Kandel et al., 2013). 

Reduced striatal dopamine results in less activation of striatal DRD1 and DRD2 affecting the 

‘direct’ and ‘indirect’ pathways, respectively. Through decreased activation of DRD2s, striatal 

inhibitory projections to the GPe become more active through reduced suppression. There is 

increased striatal inhibition of the GPe, subsequent disinhibition of the STN and therefore STN 

hyperactivity within the ‘indirect’ pathway. Simultaneously, striatal projections to the GPi and 

SNpr become less active through decreased DRD1 activation (Alexander & Crutcher, 1990). As 

a result of increased STN excitation and reduced striatal inhibition, there is increased activity of 

the GPi and SNpr, and a subsequent increase in tonic inhibition of the thalamocortical projection 

neurons. Therefore, with Pd, maladaptive modulation of tonic inhibition of the thalamus through 

the separate striatal neuron subpopulations and subsequent BG pathways (Albin, Young, & 

Penney, 1989) has a crucial impact on motor impulse control i.e. response inhibition.  
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2.2.2 Functional changes in frontostriatal networks with Pd 
In Pd, abnormal modulation of striatal and PFC dopamine results in dysfunction within 

frontostriatal networks (Shepherd, 2013) and impaired impulse control. Networks involving the 

PFC and striatum are implicated not only in motor control, but also in several cognitive 

functions, including memory, action selection, behaviour reinforcement, and contextual 

conditioning (Alexander & Crutcher, 1990; Goto & Grace, 2005; Pennartz et al., 2009). 

Dysfunction of frontostriatal networks can therefore contribute to a multitude of symptoms. As 

with many biological systems the key to optimizing function is balance. The optimal range for 

dopaminergic neurotransmission for frontostriatal networks is best illustrated by the inverted-U 

relationship. For example, the optimal range of PFC dopaminergic neurotransmission is 

surrounded by that above or below optimal (Figure 2), resulting in decreased PFC function. 

However the relationship between dopamine and functional performance is also complex, and 

includes several contributing factors. 

Reducing dopamine neurotransmission can impair certain functions while enhancing 

others. The functional state of the PFC relates to RI performance. RI tasks are sensitive to 

cognitive deficits as well as motor impairments, and are essentially cognitive-motor tasks. In 

addition to proficient motor impulse control, RI also requires efficient attention control 

(Tachibana, Aragane, Miyata, & Sugita, 1997) and cognitive flexibility (Cooper et al., 1994), 

both of which recruit the PFC. Decreasing prefrontal dopamine promotes cognitive flexibility in 

young (Blasi et al., 2005; Colzato, Waszak, Nieuwenhuis, Posthuma, & Hommel, 2010) and 

older (Fallon, Williams-Gray, Barker, Owen, & Hampshire, 2013) healthy individuals and Pd 
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patients (Cools, Miyakawa, Sheridan, & D'Esposito, 2010), at the expense of cognitive stability. 

These findings are in line with Dual State Theory (Durstewitz & Seamans, 2008) whereby a 

DRD1 dominated system contains high energy barriers between neural state representations. This 

system therefore favours stability and perseveration. Conversely, a DRD2 dominated system 

favours switching between representational states through low energy barriers.  Direct 

neurophysiological evidence for Dual State Theory is supported by rodent models (Goto & 

Grace, 2005). The inverted-U relationship explains why equivalent changes to dopaminergic 

neurotransmission can have opposite effects on cognitive functions.  

In early Pd, dopamine concentrations are decreased within regions of the SN and striatum, 

yet paradoxically dopamine concentration is increased in the PFC (Kaasinen et al., 2001). This 

counterintuitive increase in PFC dopamine could reflect compensation within the 

mesocorticolimbic (MCL) network (Rakshi et al., 1999; Zigmond, Abercrombie, Berger, Grace, 

& Stricker, 1990). It could be due to reduced striatal dopamine levels, given the well-studied 

inverse relationship between MCL and nigrostriatal dopaminergic systems (Akil et al., 2003; 

Carr & Sesack, 2000; Carter & Pycock, 1980; Jahanshahi et al., 2010; Kolachana, Saunders, & 

Weinberger, 1995; Pycock, Carter, & Kerwin, 1980; Roberts et al., 1994; Sawamoto et al., 

2008). A hyperdopaminergic MCL network causes greater dopamine transmission between the 

ventral tegmental area and PFC. In the early stages of Pd, the increase in PFC dopamine 

effectively ‘shifts’ patients to the right of the curve compared to healthy controls. Crucially, a 

shift to the right may increase or decrease cognitive performance by moving the individual into 

or beyond the optimal range of dopamine for a task. Average young healthy individuals cluster 

toward the left of the inverted-U while early Pd patients tend to cluster toward the right (Figure 

2). Higher prefrontal dopamine enhances attentional control (required for RI) in healthy 
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individuals (Blasi et al., 2005) but impairs it in patients (Williams-Gray, Hampshire, Barker, & 

Owen, 2008). These findings illustrate how increasing dopamine in early Pd has opposite effects 

on prefrontal function and neural activity compared to younger healthy individuals (Fallon et al., 

2013). 

Measures of RI demonstrate strong potential to objectively identify abnormalities in the 

frontostriatal and sensorimotor BG-thalamocortical networks inherent to Pd. Midbrain and 

cortical regions such as the striatum, SN, STN, globus pallidus, supplementary motor area/pre-

supplementary motor area and PFC, all demonstrate impaired activity in Pd as described above. 

These areas form part of the right-lateralized inhibitory control network which projects input to 

the primary motor cortex via the thalamus (Figure 1) (Aron, Fletcher, Bullmore, Sahakian, & 

Robbins, 2003; Aron & Poldrack, 2006; Bellgrove, Hester, & Garavan, 2004; Coxon, Stinear, & 

Byblow, 2006, 2009; Garavan, Ross, & Stein, 1999; Liddle, Kiehl, & Smith, 2001; Mostofsky et 

al., 2003; Picard & Strick, 1996; Rubia, Smith, Brammer, & Taylor, 2003; Stinear, Coxon, & 

Byblow, 2009). Furthermore, involvement of the PFC could mean RI tasks are sensitive to 

prefrontal cognitive deficits present in the disease. Here we examine only RI tasks that require 

observable motor behaviour, as opposed to other types of behavioural inhibition, such as the 

Stroop Colour Word test or tests of deferred gratification.  

3. Response inhibition tasks in pre-diagnostic Pd 
Motor RI has traditionally been investigated using a stop-signal or go/no-go task. These 

tasks involve externally cued motor responses. An anticipatory response inhibition (ARI) task 

(Slater-Hammel, 1960) allows investigation of internally cued anticipated motor responses.  All 

three RI tasks have provided useful insights into the initiation and inhibition processes required 

for successful control of a motor response. The primary dependent measures for each task and 
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the expected affect of Pd on each measure is presented in Table 1. Subtle design differences 

between the tasks enables the examination of cancelling three fundamentally different processes; 

a planned, externally generated or internally generated action. There is therefore the question as 

to which task design is optimally suited to identify Pd biomarkers. To date there are published 

studies using go/no-go and stop-signal paradigms in Pd, but no published studies using an ARI 

task with Pd patients. 

3.1 Go/no-go task 
The majority of trials in the motor go/no-go task require participants to make a motor 

response as quickly as possible when a Go cue is presented. Occasionally the Go signal is 

replaced by a No-Go signal (Figure 3A), indicating the participant should make no response. The 

go/no-go task design examines the ability to withhold a planned response (i.e. action restraint) 

which is often necessary to resolve pre-response conflict. The go/no-go task has been used to 

examine RI in Pd. Individuals with Pd have delayed reaction times (RTs) (Cooper et al., 1994; 

Tachibana et al., 1997) and greater error rates (Bokura et al., 2005) compared to healthy controls 

on this task, supporting ideas of impaired conflict resolution in Pd (Cooper et al., 1994). 

However, unlike the earlier studies, Bokura et al. found no significant difference in RTs between 

Pd patients and controls. Yet the decreased accuracy of patients, specifically the higher rate of 

false alarm responses, may indicate the presence of a speed-accuracy trade-off; RTs shortened at 

the expense of accuracy. More recent studies conflict with the results of earlier studies. For 

example, no difference in error rate or RT between Pd patients and healthy controls (Beste, 

Willemssen, Saft, & Falkenstein, 2010).  Furthermore, RTs and error rates on the go/no-go task 

were unable to distinguish between healthy controls and patients with early Pd (Baglio et al., 

2011). RT could not differentiate between de novo, early treated and chronic Pd patients (Cooper 
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et al., 1994). Overall the contradictory findings suggest the go/no-go task lacks sufficient 

sensitivity in the context of Pd. The lack of sensitivity and correlation to disease severity 

suggests measures from this type of RI task are inappropriate biomarkers for Pd. 

3.2 Stop-signal task 
The stop-signal task has played an integral part in elucidating the role of BG and cortical 

structures which form the right-lateralized inhibitory control network. The majority of trials 

again require a motor response as quickly as possible to an external Go signal. On some trials, a 

Stop signal is presented at a variable delay after the Go signal (stop-signal delay, SSD) (Figure 

3B, left). Longer SSDs increase the probability of an incorrect response. The SSD can change 

dynamically during the task using a staircase procedure to ensure convergence to a stop time that 

results in 50 % probability of successful inhibition: p(respond) = 0.5.  The task design enables 

the measurement of the efficacy and the latency of the inhibitory process, calculated as the 

difference between the Stop signal for p(respond) = 0.5 and mean RT on Go trials (stop-signal 

reaction time, SSRT) (Figure 3B, right). Interpretation of the SSRT is based on the ‘horse-race’ 

model (De Jong, Coles, Logan, & Gratton, 1990; Logan & Cowan, 1984), built on the premise of 

independent excitatory and inhibitory mechanisms. Response execution is a result of excitatory 

mechanisms, triggered by the Go signal. Inhibitory mechanisms are triggered by the Stop signal, 

which prevent response execution. Whichever mechanism ‘wins the race’ determines whether a 

motor response is generated. The SSRT signifies the latency at which each mechanism ‘wins’ 

half the time. SSRT is often used to examine the integrity of inhibitory mechanisms.  

The stop-signal task has been used to examine motor control in Pd. Mild to moderately 

advanced Pd patients have difficulty initiating and inhibiting responses during the stop-signal 

task (Gauggel et al., 2004; Mirabella et al., 2012; I. Obeso et al., 2011; Swann et al., 2011) 
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compared to controls, manifesting as slower RTs and longer SSRTs. RI motor deficits are 

accompanied by deficits in volitional inhibition on cognitive tests (I. Obeso et al., 2011), 

supporting the presence of generalized impulse control deficits in Pd. Curiously, Gauggel and 

colleagues (2004) were unable to find a correlation between impaired RI and disease severity in 

Pd. 

To be sensitive to the progressive degeneration associated with disease severity, a task 

needs to adequately recruit and challenge the BG system. Although the stop-signal and go/no-go 

tasks offer advantages from having well-defined go and stop cues, they require participants to 

respond to external cues (i.e. a signalled response). Externally cued movements require less 

involvement of the BG system compared to internally generated movements (Jahanshahi et al., 

1995). Therefore, measures taken during inhibition of externally generated movements are less 

likely to be sensitive to the ongoing deterioration of the BG network integrity during Pd. 

Additionally, probability of successful inhibition on the stop-signal task increases with slower 

RTs to the go signal (Lappin & Eriksen, 1966). Lappin and Eriksen (1996) were the first to 

observe that participants could delay their response to improve their chance of successful 

inhibition if a stop cue was presented. More recently, it has again been acknowledged that the 

stop-signal task allows adjustments to response strategies (e.g. slowing of responses) to balance 

the requirements of execution and inhibition (Verbruggen & Logan, 2009). The stop-signal task 

may therefore be better described as investigating action postponement. If patients are aware of 

their deteriorating impulse control, they may adjust their response strategy and slow down, or 

postpone, their response to enable better reaction to the stop cue. The delayed patient RTs 

reported by Gauggel et al. (2004) may be reflecting such a strategy.  
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3.3 Anticipatory response inhibition tasks  
The ARI paradigm is based on that of Slater-Hammel (1960). In the original study, healthy 

young participants anticipated and stopped the sweep dial of a clock face at a target position by 

depressing a switch. Subsequent studies have used a rising or ‘filling’ bar (Coxon, Stinear, & 

Byblow, 2007; MacDonald, Stinear, & Byblow, 2012; Yamanaka & Nozaki, 2013; Zandbelt, 

Bloemendaal, Hoogendam, Kahn, & Vink, 2013; Zandbelt & Vink, 2010). The stop signal 

consists of the indicator automatically stopping before the target (Figure 3C, left). Slater-

Hammel found that participants had a 50 % probability of successfully inhibiting their prepared 

response when the sweep dial stopped 166 ms before the target. With ARI the closer in time that 

the Stop signal is to the target position, the greater the probability that a Go response will be 

generated. As with the stop-signal task, the timing of the Stop signal can be programmed to 

converge on a stop time that produces 50 % successful inhibition to allow the calculation of 

SSRT. Thus, ARI tasks also permit the estimation of latency and accuracy of inhibition (Figure 

3C, right). In ARI, response execution is relatively constrained compared to other RI tasks, as 

response times are tightly distributed around a defined target. This is because ARI tasks require 

participants to internally generate and inhibit an anticipated motor response rather than react to a 

signal. The anticipatory nature of the default response enables the examination of volitional 

inhibition during preparation of an internally generated response.  

ARI tasks produce interesting results with individuals with BG disorders. For example 

patients with focal hand dystonia (FHD) have an increased latency and decreased efficacy of 

their motor inhibitory process (Stinear & Byblow, 2004). In this study, the indicator had to stop a 

greater distance from the target position for patients than healthy controls, to obtain a 50 % 

probability of successful inhibition (lower R50, Figure 4A). When patients did successfully 
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inhibit their response, they demonstrated a greater probability of partial EMG bursts in the 

agonist muscle even with no overt movement (Figure 4B), indicating the production of an 

incomplete response. Overall, ARI measures and EMG revealed that FHD patients had greater 

difficulty inhibiting their anticipated motor response compared to healthy age-matched controls.  

Although much is known about deficits in simple and choice reaction times in Pd based on 

externally cued tasks, less is known about the self-initiation and cancellation of anticipatory 

responses. An ARI task has not yet been used in a published study with Pd patients. 

Nevertheless, preliminary data with de novo patients and healthy age-matched controls indicate 

novel insights into elements of voluntary control using an ARI task (unpublished data). Apart 

from decreased accuracy on execution trials, de novo patients also show abnormal EMG patterns 

of activation prior to initiation of the motor response (Figure 4C, D). Patients demonstrate a 

predominance of multiple, ineffective EMG bursts during execution trials, contributing to 

indications that EMG activity patterns may be a sensitive motor measure for identification of Pd 

(Farley et al., 2004; Hallett & Khoshbin, 1980; Pfann et al., 2001; Vaillancourt et al., 2004). 

Taken together, the variability in response times and abnormal EMG patterns signify patients 

have difficulty suppressing their imminent response and timing it correctly to intercept the target, 

indicating deficits in predictive internal motor timing. Temporal processing and movement 

timing, required for successful predictive internal motor timing, recruit the PFC (Jahanshahi et 

al., 2010) and dopaminergic BG pathways (Meck, 1996; O'Boyle, Freeman, & Cody, 1996), 

specifically the SN (Fan, Rossi, & Yin, 2012). So it logically follows that Pd patients would 

experience internal motor timing deficits (Harrington, Haaland, & Hermanowicz, 1998; 

Malapani et al., 1998; Pastor, Jahanshahi, Artieda, & Obeso, 1992), as indicated by the response 

times and EMG patterns from the pilot data. Nevertheless, this is not always the case (Bareš, 
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Lungu, Husárová, & Gescheidt, 2010). On the other hand, Bares and colleagues only reported 

behavioural results. The novel motor control deficits revealed by the pilot study were not evident 

at a purely behavioural level. EMG recordings were used in combination with the task to reveal 

the abnormalities. An ARI task, in combination with EMG, may be able to reveal abnormalities 

of motor function beyond current clinical examination abilities.  

Interestingly, the preliminary results with the ARI task were able to distinguish between de 

novo patients and controls on Go trials, with the EMG and behavioural data revealing deficits in 

internal motor timing. Given these results, and the fact that SSRT does not always correlate with 

disease severity (Gauggel et al., 2004), Go trials in the context of a RI task might provide the 

more sensitive and useful biomarkers during the pre-diagnostic period. 

Overall, the ARI task satisfies the three criteria necessary to obtain quantitative, objective 

and sensitive measures of the motor deficits during the pre-diagnostic phase of Pd (Maetzler & 

Hausdorff, 2012): 1) ARI challenges the BG system by requiring generation and cancellation of 

internally-generated movements, 2) used in combination with EMG measures, ARI can be used 

to assess motor function beyond clinical evaluation standards and 3) ARI can distinguish 

between patients and controls at the earliest phase of the disease. Given these three main criteria, 

ARI may also be able to monitor Pd progression, although further research will be required to 

test this.  

The positive results produced using the go/no-go and stop-signal tasks in the context of Pd 

serve to motivate the use of RI tasks with Pd patients in the pre-diagnostic stage. Theoretically, 

for reasons stated above, an ARI task may perform even better at differentiating between healthy 

controls and pre-diagnostic Pd patients. This theory is supported by the pilot data using an ARI 
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task with de novo patients. However more research is certainly needed and it is currently unclear 

which RI task would reveal the most salient biomarkers of Pd.  

3.4 Bimanual response inhibition  
The majority of RI studies have investigated execution and cancellation of simple 

unimanual responses, with or without a preceding choice decision. Fewer studies have 

investigated execution and cancellation of unitary, bimanual responses using either the stop-

signal (Aron & Verbruggen, 2008; Claffey, Sheldon, Stinear, Verbruggen, & Aron, 2010; Ko & 

Miller, 2011; Majid, Cai, George, Verbruggen, & Aron, 2012) or ARI task (Coxon et al., 2007, 

2009; Coxon et al., 2012; MacDonald et al., 2012). There is evidence to suggest that bimanual RI 

tasks may be even more salient than unimanual RI in the context of Pd. Individuals with Pd 

demonstrate impaired bimanual coordination, especially in an anti-phase pattern (Almeida, 

Wishart, & Lee, 2002; Byblow, Summers, Lewis, & Thomas, 2002; Geuze, 2001; Ponsen et al., 

2006) or when performing two different movements simultaneously (Brown, Jahanshahi, & 

Marsden, 1993). Importantly, bimanual coordination dysfunction is present in de novo Pd 

(Ponsen et al., 2006). In-phase movements require symmetric activation of homologous muscles, 

whereas anti-phase movements require simultaneous activation of non-homologous muscles. 

MacDonald et al. (2012) investigated bimanual ARI performance and compared homologous 

versus non-homologous muscles. Surprisingly, healthy younger adults are able to perform the 

task equally well with both muscle pairings. However Pd patients would be expected to exhibit 

worse performance using non-homologous muscle pairings. Importantly, since the ARI task 

effectively constrains the Go response, it should provide a valid estimate of the inhibitory 

process in Pd patients. A bimanual RI task may reveal more subtle motor deficits than unimanual 

RI for pre-diagnostic Pd.   
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Another advantage of a bimanual task is that it permits the examination of partial response 

cancellation, a cognitively and neurophysiologically demanding behaviour. When a subset of an 

action must be cancelled while the remaining components continue, the remaining components 

are substantially delayed (Aron & Verbruggen, 2008; Claffey et al., 2010; Coxon et al., 2007, 

2009; Ko & Miller, 2011; MacDonald et al., 2012). Furthermore the subsequently delayed 

response is executed at a higher gain as indicated by a greater rate of EMG onset and force 

production (Coxon et al., 2007; Ko & Miller, 2011; MacDonald et al., 2012). The delay and gain 

of EMG is greater with homogeneous digit pairings compared to heterogeneous pairings 

(MacDonald et al., 2012). Given the expected damage to gain setting nuclei in the brainstem that 

accompanies early Pd (Braak et al., 2004; Grinberg et al., 2010), the bimanual ARI paradigm of 

MacDonald et al. (2012) may be salient for detecting the onset of Pd.  

4. Pre-diagnostic Pd: RI tasks as a component of an objective test 

battery 
We propose that RI tasks have potential utility during the pre-diagnostic stage to reveal 

subtle, sub-clinical motor abnormalities to aid with earlier diagnosis of Pd. The diagnosis of Pd 

currently remains a clinical one, with no definitive biochemical or genetic diagnostics. The only 

definitive Pd diagnosis is through a post-mortem. Diagnosis is particularly difficult in the very 

early stages of the disease, and is based on the presentation of motor symptoms and a positive 

response to Pd medication. Unfortunately, there is a substantial length of time between the onset 

of neurodegeneration and the ability to clinically diagnose Pd. This period is known as the pre-

diagnostic (prodromal) phase, also referred to as the pre-motor phase, and can last up to ten years 

(Gaenslen et al., 2011; Gonera, van't Hof, Berger, van Weel, & Horstink, 1997).  However our 
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contention is that pre-motor is not an appropriate term given the evidence of motor abnormalities 

during this time. For simplicity we refer to this stage as pre-diagnostic.  

Biomarkers are objectively measurable characteristics indicative of normal biological 

processes (Michell, Lewis, Foltynie, & Barker, 2004). One of the most basic goals for 

biomarkers is to help shorten the pre-diagnostic stage of Pd, and to facilitate better treatment and 

ultimately better quality of life. It is estimated that 50 – 70 % of irretrievable dopaminergic 

neuron loss is needed in the SNpc to develop the characteristic symptoms required for clinical 

diagnosis (Fearnley & Lees, 1991; Marino et al., 2012; Riederer & Wuketich, 1976). This means 

the extent of degeneration has not yet reached this critical point during the majority of the pre-

diagnostic phase, providing a window of opportunity for early neuroprotective therapies to 

prevent or delay further neuron degeneration. The goal of earlier diagnosis is therefore an 

important one. For example, if it were possible to diagnose Pd early in the pre-diagnostic stage  

and a causal therapy was available, then further neuronal loss in the SNpc may even be 

preventable (Braak et al., 2003).  

During the pre-diagnostic phase unspecific symptoms appear in isolation. For this reason, 

such symptoms are only confirmed retrospectively after clinical diagnosis, but it is also possible 

for healthy individuals to exhibit many of these unspecific symptoms as part of normal ageing 

e.g. impaired sense of smell, disturbed sleep, balance disturbance, muscle stiffness. Although the 

simple occurrence of select symptoms is not sufficient for a Pd diagnosis (Gaenslen et al., 2011), 

the presentation of certain symptoms in a predicted chronological order (Braak et al., 2003; 

Przuntek, Muller, & Riederer, 2004) may identify a higher risk for Pd.  It has been proposed that 

at least two positive tests on potential pre-diagnostic symptoms may be considered sufficient 

evidence to diagnose a patient as clinically possible to have Pd and begin protective therapy 
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(Truong & Wolters, 2009). Affirmation of this probable diagnosis may be acquired through a 

response to Pd treatment.  

For a measure to be useful for early detection in Pd, it is necessary to prospectively 

investigate a group of individuals at risk of developing the disease. However, the first step is to 

examine whether the measure is capable of discriminating between a diagnosed group at the 

earliest stage of the disease and healthy age-matched controls. Before a test is deemed to have 

clinical utility, research is required to verify its sensitivity, specificity and plausibility. If one can 

assume that severity distinguishes between the pre-diagnostic and early clinical (de novo) state, it 

can be inferred that tests which are successful at differentiating between de novo patients and 

controls also show promise for differentiating during the pre-diagnostic stage. 

Several techniques are currently under investigation for identifying early and subtle non-

motor changes to biological processes during the pre-diagnostic stage (for a review see Michell 

et al. 2004). These include MRI (Gattellaro et al., 2009; Lewis, Dove, Robbins, Barker, & Owen, 

2003; Martin, Wieler, & Gee, 2008; Peran et al., 2010; Tessa et al., 2008), transcranial 

sonography (Izawa, Miwa, Kajimoto, & Kondo, 2012), cerebral spinal fluid analyses (Goldstein, 

Holmes, & Sharabi, 2012), rapid eye movement (REM) sleep disturbance, olfactory function, 

protein build-up in colonic neurons (Shannon, Keshavarzian, Dodiya, Jakate, & Kordower, 

2012),  amongst others. A full discussion of non-motor biomarkers is beyond the scope of this 

review.  However it is worth noting that the most prevalent non-motor symptoms of Pd involve 

specific brainstem nuclei (for a review see Grinberg et al. 2010). For example, 

neurodegeneration in the olfactory bulb leads to olfactory dysfunction and lesions within the 

medulla oblongata and pontine tegmentum are involved in REM sleep behavioural disorder 

(Braak et al., 2003; Braak et al., 2004; Del Tredici, Rüb, De Vos, Bohl, & Braak, 2002). Due to 
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the neurobiological pattern of Pd progression, olfactory and REM sleep behaviour disorder 

symptoms appear before degeneration of SNpc neurons which cause motor symptoms. For this 

reason, we regard these non-motor biomarkers as optimal for combined use with a RI task into 

an objective test battery, to utilize the crucial period when damage to dopaminergic neurons may 

be preventable, or at least delayed. Biomarkers derived from magnetic resonance imaging (MRI) 

may also complement the early behavioural manifestations of Pd and prove useful in objectively 

monitoring disease progression. It is unlikely that any single biomarker will be perfect for Pd. 

Due to the heterogeneity of the disease, it is more likely that a faction of biomarkers will be 

required.  

5.  Post-diagnostic Pd 

5.1 Response inhibition and impulse control disorders  

Response inhibition tasks may also have utility in post-diagnostic Pd and for evaluating 

treatment options. One prevalent, detrimental and under-reported side effect of dopaminergic 

medication in Pd is the prevalence of impulse control disorders (ICDs). The incidence of ICDs in 

Pd patients is as high as 20% (Weintraub, 2009), and suggests some individuals have greater 

susceptibility for developing ICDs than others. The identified risk factors for ICDs include age at 

Pd onset with ICD more prevalent in younger patients, being male, being single, having a family 

or personal history of addictive behaviours, dopamine agonist medication in combination with 

levodopa treatment, high doses of dopaminergic medication, long duration of dopaminergic 

treatment, and a personality profile characterized by impulsiveness (Ceravolo, Frosini, Rossi, & 

Bonuccelli, 2009; Giladi, Weitzman, Schreiber, Shabtai, & Peretz, 2007; Klos, Bower, Josephs, 

Matsumoto, & Ahlskog, 2005; Voon, Thomsen, et al., 2007; Weintraub et al., 2010; Weintraub 

et al., 2006). ICDs manifest as addictive behaviours including pathological gambling, 
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compulsive shopping, binge eating, and hypersexuality (for a review see Voon et al. 2007). 

Treatment decisions would be aided by an objective method to predict and classify an 

individual’s risk of developing impulsive side effects.  

Impaired impulse control is associated with an increased risk of developing ICDs. Pd 

patients on dopamine replacement therapies exhibit higher levels of impulsivity (Isaias et al., 

2008) and disinhibition (Pontone, Williams, Bassett, & Marsh, 2006) than healthy controls, 

which are both associated with an increased probability of impulsive disorders. There are several 

reasons to suspect that a RI paradigm could provide a quantifiable measure of risk for ICD 

development.  For instance, D2 dopamine receptors are specifically implicated in RI (Colzato, 

van den Wildenberg, & Hommel, 2013; Colzato, van den Wildenberg, Van der Does, & 

Hommel, 2010; Eagle et al., 2011; Ghahremani et al., 2012; Hamidovic, Dlugos, Skol, Palmer, & 

de Wit, 2009; Nandam et al., 2013) and are a common target of several routinely prescribed 

dopamine agonist  medications known to cause ICDs. Second, RI is impaired in pathological 

gamblers and individuals with an ICD manifesting as Tourette syndrome (Goudriaan, 

Oosterlaan, de Beurs, & van den Brink, 2006). Poletti et al. (2012) identified that difficulty on 

executive tasks requiring high levels of impulse control such as a RI task may signal increased 

risk for the development of ICDs in medicated Pd patients, but this has not yet been tested. As 

impaired inhibitory control has been specifically implicated in individuals with ICDs, SSRTs 

produced from a RI task may be the most useful dependent variable to provide a quantifiable 

measure of risk for ICD development. 

Without question, the development of ICDs are associated with dopamine agonist (DA) 

medication  (Dodd et al., 2005; Grosset et al., 2006; Klos et al., 2005; Voon et al., 2006; 

Weintraub et al., 2006), e.g pramipexole, pergolide and ropinirole (Tyne, Medley, Ghadiali, & 
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Steiger, 2004). The incidence of ICDs is about 14 – 20 % in patients prescribed DAs (Weintraub, 

2009; Weintraub et al., 2010; Weintraub et al., 2006). Although de novo Pd patients can also 

develop ICDs in the absence of dopaminergic medication (Antonini et al., 2011; Avanzi et al., 

2006), the risk is no higher than for healthy controls (Weintraub, Papay, & Siderowf, 2013). One 

idea is that early detection of impaired impulse control may prevent ICDs from developing by 

informing clinicians and guiding medication selection and timing. Once dopaminergic therapy 

begins,  early detection of impaired impulse control would signal the need for monitoring at-risk 

patients (Voon, Potenza, & Thomsen, 2007).  

It is worth briefly re-examining how dopaminergic medication may trigger ICDs. ICDs are 

essentially extreme cases of dopaminergic dysregulation of voluntary and goal-directed 

behaviours. The current hypothesis on the mechanistic root of ICDs is the hyperdopaminergic 

state of the MCL system in early Pd (Cools, 2006; Sawamoto et al., 2008) which is then 

exacerbated by dopaminergic medication. Medication is targeted at optimising motor function by 

augmenting depleted nigrostriatal dopamine. Unfortunately medications lack network specificity, 

therefore the relatively preserved ventral striatum, caudate nucleus and PFC within cognitive and 

MCL networks can become hyperdopaminergic (Cools, 2006; Vaillancourt, Schonfeld, Kwak, 

Bohnen, & Seidler, 2013), deviating from their optimal dopaminergic activity and function along 

their individual inverted-U curve. Increasing tonic dopamine activity in the PFC and ventral 

striatum disrupts associative learning and behaviour modification (Goto & Grace, 2005; Schultz, 

2002). Contextual behaviour modification is impaired during healthy aging (Chowdhury et al., 

2013) and in Pd patients (Rowe et al., 2008). Further disruption of this behavioural mechanism 

through dopamine dysregulation is hypothesized to contribute to the development of ICDs. 

Interestingly however, at a group level DA administration does not necessarily impair RI in Pd 
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(Antonelli et al., 2013). Using the delay discounting task and go/no-go RI task, Antonelli et al. 

found pramipexole increased impulsivity during the delay discount task but had no effect on 

reaction time or frequency of unsuccessful no-go trials in the RI task. Treatment with 

pramipexole influenced cognitive impulse control (impulsive choice), but not motor impulse 

control (impulsive action). The lack of effect on motor impulse control may be partly due to the 

go/no-go task design, as discussed in section 3.1. Nevertheless, Wylie et al. (2012) found 

measures of motor impulse control could not dissociate between Pd patients with and without 

ICDs.  

5.2 Does genetic makeup predispose some individuals to impulse control 

disorders? 
As in many pathological conditions, responses to both disease and treatment options may 

depend on an individual’s genetic profile. Here we briefly review what is known about genes 

involved in dopaminergic transmission. Dopamine regulating genes are integrally involved in the 

functioning of BG-thalamocortical networks and are postulated to dictate response to 

dopaminergic medication. Inter-individual differences in DNA sequences exist as a result of 

mutations, referred to as polymorphisms. Crucially, genetic variation within the dopaminergic 

system can influence traits known to be modulated by dopamine, such as impulsivity (Nandam et 

al., 2013; Nemoda et al., 2011).  Genetic variability will have the greatest influence on behaviour 

when dopamine neurotransmission deviates from close-to-optimal levels i.e. dopamine 

dysregulation, for example at either extreme end of the inverted-U relationship (Figure 2).  

Here we identify five genes that are particularly influential in dopamine neurotransmission, 

most of which have received some attention related to ICDs. Catechol-O-methyltransferase 

(COMT) and dopamine transporter (DAT) genes influence synaptic dopamine concentrations. 
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COMT polymorphisms affect executive function, including impulse control (Blasi et al., 2005; 

Colzato, Waszak, et al., 2010; Congdon et al., 2009; Diamond et al., 2004; Fallon et al., 2013; 

Farrell et al., 2012; Foltynie et al., 2004; Hoogland et al., 2010; Krämer et al., 2007; Williams-

Gray et al., 2008; Williams-Gray, Hampshire, Robbins, Owen, & Barker, 2007). 

Polymorphisms within the genes encoding for the dopamine D1 (DRD1, rs4532), D2 

(DRD2, rs1800497) and D3 (DRD3, rs6280) receptors can affect dopamine neurotransmission 

(Nemoda et al., 2011; Pearson-Fuhrhop, Minton, Acevedo, Shahbaba, & Cramer, 2013). DRD2s 

are specifically implicated in RI performance (Colzato, van den Wildenberg, et al., 2010; 

Ghahremani et al., 2012; Hamidovic et al., 2009; Nandam et al., 2013) and their impact is 

magnified during aging (Colzato et al., 2013). Mutations within DRD1 (Comings et al., 1997) 

and DRD3 (Lee et al., 2009) have been associated with impulsive behaviours. D3 receptors are 

abundant in the ventral striatum (Gurevich & Joyce, 1999), which forms part of the MCL 

network. The link between DRD3 polymorphisms and impulsive behaviour in Pd provides 

further support for the involvement of the MCL network in ICDs.  

The combined effect on dopaminergic neurotransmission of mutations within these five 

genes has recently been quantified by determining a dopamine gene score for 50 individuals 

engaged in a motor learning task (Pearson-Fuhrhop et al., 2013). The effect of dopaminergic 

medication on motor learning varied with dopamine gene score: participants with lower levels of 

dopamine neurotransmission showed an improvement in motor learning on dopaminergic 

medication, whereas medication had a detrimental effect on those with higher dopamine gene 

scores. Dopaminergic genes may also determine how an individual responds to dopaminergic 

medication in the context of impulse control. Indeed, DAs produce opposite individual effects on 

impulse control that are dependent on a patient’s baseline performance without medication 
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(Wylie et al., 2012).  It is our contention that investigating individual dopamine genetic profiles 

in combination with cognitive-motor impulse control measures may reveal important information 

that can account for the divergent DA effects on impulse control and possible susceptibility to 

ICDs, which in turn could lead to more individualized treatment of Pd. For these reasons, 

considering only the effect of dopaminergic medication on RI performance, without allowing for 

dopaminergic gene profiles, may not be capable of identifying risk of ICDs.  

6. Conclusion 
Motor, cognitive, and limbic systems are impaired in Pd due to dopaminergic dysregulation. RI 

may offer potential utility and RI tasks may provide salient biomarkers which inform diagnostic 

criteria as well as identifying individuals at risk of developing ICDs. Given the contextually rich 

dataset provided by a RI task, the salient measures provided during the pre- and post-diagnostic 

stage are most likely to be in different behavioural contexts. Execution trials of a RI task, rather 

than SSRT, might provide the most sensitive and useful biomarkers during the pre-diagnostic 

period. In contrast, it is more likely that SSRT measures will provide the more useful markers 

post-diagnosis when evaluating ICD risk. Our contention is that further research is warranted to 

determine if RI tasks should form part of an objective, combined motor and non-motor test 

battery, to assist with earlier diagnosis. To inform individualized treatment decisions post-

diagnosis, the risk of ICDs may best be determined through assessments and screening that may 

include RI measures and obtaining a dopaminergic genetic profile.  
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Figure Legends: 

FIGURE 1. Model of the cortico-BG-thalamocortical sensorimotor networks involved in 

movement execution and inhibitory control. The ‘direct’,’ indirect’ and ‘hyperdirect’ pathways 

are represented at a basic level. Grey boxes indicate nuclei of functional BG; arrows indicate 

facilitatory input; filled circles indicate inhibitory input; open diamond indicates dopamine-

dependent input; IFC, inferior frontal cortex; SNpc, substantia nigra pars compacta; GPe, globus 

pallidus externus; STN, subthalamic nucleus; GPi, globus pallidus internus; SNpr, substantia 

nigra pars reticulata; pre-SMA, pre-supplementary motor area; M1, primary motor cortex. 

FIGURE 2. The task-dependent inverted-U relationship between function and dopaminergic 

neurotransmission in the PFC. Area on the curve between dashed vertical lines denotes optimal 

function and transmission of dopamine. Healthy young adults lie to the left of the curve, early Pd 

patients to the right. Factors which move individuals to the right of the curve include 

dopaminergic medication and neurophysiological changes in early Pd. As Pd progresses, an 

individual moves towards the left along the curve. An individual’s position and movement along 
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the curve will also depend on their dopaminergic genetic profile, and whether it causes higher or 

lower baseline dopamine neurotransmission. PFC: prefrontal cortex; Pd: Parkinson’s disease. 

FIGURE 3. Schematics of Go/No-Go (A), Stop Signal (B) and Anticipatory Response Inhibition 

(C) task displays during execution and inhibition trials. The distribution of Go responses is 

represented for the Stop Signal and Anticipatory Response Inhibition tasks (right), demonstrating 

how the latency of the inhibition process is calculated (stop signal reaction time) using 

assumptions of the race model. p(respond): probability of a response.  

FIGURE 4. Results from an ARI task with individual’s with focal hand dystonia (FHD) (A,B) 

and de novo Pd patients (C, D). The target is presented at 800 ms in both studies. A: Patients 

with FHD require an earlier mean stop time to achieve 50 % successful inhibition (R50) 

compared to healthy age-matched controls. B: At the majority of stop times prior to the target, 

patients with FHD demonstrate a greater probability of EMG bursts during successfully inhibited 

responses compared to controls. FHD patients had greater difficulty inhibiting their pre-planned 

response than controls. (Reproduced with permission from Stinear & Byblow 2004) Error bars 

denote standard deviation. *p<0.05, **p<0.01. C: EMG traces from extensor digitorum 

communis during an ARI execution trial. Top: Individual trace from a de novo Pd patient, motor 

response at 815 ms. Note the two small bursts of EMG prior to the muscle activity that produced 

the motor response. Bottom: Individual trace from a healthy age-matched adult, motor response 

at 792 ms. Note the lack of EMG activity prior to the burst of muscle activity that produced the 

motor response. (Unpublished data). D: Individual data from 5 de novo Pd patients and 5 healthy 

age-matched adults, showing the probability of these early, ineffective bursts of EMG activity. 

De novo Pd patients are more likely to produce these premature EMG responses. (Unpublished 

data). EMG: electromyography; Pd: Parkinson’s disease.  
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Table Legends: 

TABLE 1: p(respond) = 0.5 = 50 % probability of a behavioural response. 


