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Orthogonality for quantum Latin isometry squares

Benjamin Musto∗ Jamie Vicary∗†

benjamin.musto@cs.ox.ac.uk j.o.vicary@bham.ac.uk

Goyeneche et al recently proposed a notion of orthogonality for quantum Latin squares, and showed
that orthogonal quantum Latin squares yield quantum codes. We give a simplified characterization
of orthogonality for quantum Latin squares, which we show is equivalent to the existing notion. We
use this simplified characterization to give an upper bound for the number of mutually orthogonal
quantum Latin squares of a given size, and to give the first examples of orthogonal quantum Latin
squares that do not arise from ordinary Latin squares. We then discuss quantum Latin isometry
squares, generalizations of quantum Latin squares recently introduced by Benoist and Nechita, and
define a new orthogonality property for these objects, showing that it also allows the construction of
quantum codes. We give a new characterization of unitary error bases using these structures.

1 Introduction

1.1 Summary

At QPL 2016 the present authors introducedquantum Latin squares[11, 14], as quantum structures
generalizing the well-known Latin squares from classical combinatorics [6]. Since then this work has
been built on separately by a number of researchers: in particular, by Goyeneche, Raissi, Di Martino
andŻyczkowski [7], who propose a notion oforthogonalityfor quantum Latin squares which allows
the construction of quantum codes; and also by Benoist and Nechita [4], who introducematrices of
partial isometries of type (1,2,3,4), generalizations of quantum Latin squares which characterize system-
environment observables preserving a certain set of pointer states.

In this paper we give a new formulation of orthogonality for quantum Latin squares, and use it to
relate and generalize the works just cited, and extend them in certain ways. In particular, we highlight
the following key contributions.

• We give a new, simplified definition of orthogonality for quantum Latin squares, and show that it is
equivalent to the existing definition of Goyeneche et al [7, Definition 3]. (Definition3, Theorem9.)

• We give the first example of a pair of orthogonal quantum Latin squares which are not equivalent
to a pair of classical Latin squares. (Example4 and Proposition13.)

• We show that there can be at mostn−1 mutually orthogonal quantum Latin squares of dimensionn
(Theorem18.)

• We define a notion ofquantum Latin isometry squarebased on thematrices of partial isometries
of type (1,2,3,4)defined by Benoist and Nechita [4, Definition 3.2], and define a new notion of
orthogonality for these objects. (Definitions19and25.)

• We show how orthogonal quantum Latin isometry squares can be used to build quantum codes.
(Theorem31.)
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2 Perfect tensors

• We show that unitary error bases give rise to orthogonal pairs quantum Latin isometry squares, and
in fact can be characterized in terms of them. (Theorem34.)

1.2 Related work

Since the introduction of quantum Latin squares by the present authors [14], two notions of orthogonality
for quantum Latin squares have been introduced, both of which extend the standard notion for classical
Latin squares.

The first such notion, to which we refer here asleft orthogonality, was introduced by the first
author [11], who showed it could be used to construct maximally entangled mutually unbiased bases.
Given a pair of classical Latin squares which are left orthogonal by this definition, the left conjugates
of each square are orthogonal Latin squares in the traditional sense [10]. This notion of orthogonality
between QLS is not comparable to that which we study in this paper.

More recently, Goyeneche et al [7] introduced another notion of orthogonality for quantum Latin
squares, which also extends the traditional definition for classical Latin squares, and the definition which
we study here is equivalent. They extended their notion to quantum orthogonal arrays, more general
objects which we do not consider here.

1.3 Outline

This paper has the following structure. In Section 2, we give background on quantum Latin squares,
introduce our new definition of orthogonality, and explore its consequences, especially in relation to the
work of Goyeneche et al [7]. In Section 3, we define quantum Latin isometry squares based on the work
of Benoist and Nechita [4], and investigate a new notion of orthogonality for these objects.

2 Quantum Latin squares and orthogonality

In this section we prove our main results concerning orthogonal quantum Latin squares. In Section2.1
we recall the definition of quantum Latin squares, give our new definition of orthogonality, and give
a nontrivial example. In Section2.2 we show that our notion of orthogonality is equivalent to a
previous, more complicated definition due to Goyeneche et al [7]. In Section2.3 we explore the
connection between equivalence and orthogonality of quantum Latin squares, and show that our example
of orthogonal quantum Latin squares is not equivalent to a pair of orthogonal classical Latin squares.
In Section2.4, we give a simpler definition of orthogonality for families of quantum Latin squares, and
show it agrees with that due to Goyeneche et al. In Section2.5, we prove an upper bound on the number
of mutually orthogonal quantum Latin squares that can exist in any dimension.

2.1 First definitions

We begin with the definition of a quantum Latin square, recently proposed by the present authors [14].

Definition 1. A quantum Latin square (QLS)Ψ of dimensionn is ann-by-n array of elements|Ψi j 〉 ∈Cn,
such that every row and every column gives an orthonormal basis forCn.

A point of notation: when we write|Ψi j 〉, the indicesi and j refer to the row and columns of the array
respectively, and take values in the set[n] = {0,1, . . . ,n−1}.
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Example 2. Here is a quantum Latin square of dimension 4, given in terms of the computational basis
elements{|0〉, |1〉, |2〉, |3〉} ⊂ C4:

|0〉 |1〉 |2〉 |3〉
1√
2
(|1〉− |2〉) 1√

5
(i|0〉+2|3〉) 1√

5
(2|0〉+ i|3〉) 1√

2
(|1〉+ |2〉)

1√
2
(|1〉+ |2〉) 1√

5
(2|0〉+ i|3〉) 1√

5
(i|0〉+2|3〉) 1√

2
(|1〉− |2〉)

|3〉 |2〉 |1〉 |0〉

It can readily be checked that along each row, and along each column, the elements form an orthonormal
basis forC4. A classical Latin squareis a quantum Latin square for which every element of the array
is in the computational basis. It is easy to see that classical Latin squares are exactly the ordinary Latin
squares studied in combinatorics [6], and so the theory of quantum Latin squares extends this classical
theory.

There is a standard notion of orthogonality for classical Latin squares [10]. The focus of this paper
is the extension of this property to quantum Latin squares, by way of the following new definition.

Definition 3. Two quantum Latin squaresΦ,Ψ of dimensionn areorthogonaljust when the set of vectors
{|Φi j 〉⊗ |Ψi j 〉|i, j ∈ [n]} form an orthonormal basis of the spaceCn⊗Cn.

We show in Theorem9 that this agrees with a more complicated definition recently proposed by
Goyeneche et al [7], in terms of partial traces of a tensor expression.

In that paper, it was shown that for classical Latin squares, this agrees with the classical notion of
orthogonality. However, no non-classical examples were given of orthogonal quantum Latin squares. We
now rectify this.

Example 4(Non-classical orthogonal quantum Latin squares). Define the unitary matrixU as follows:

U :=
1
√

3

















1 1 1 0 0 0 0 0 0

1 e
2π i
3 e

−2π i
3 0 0 0 0 0 0

1 e
−2π i

3 e
2π i
3 0 0 0 0 0 0

0 0 0 1
√

2 −i
√

6/7 0 0 0
0 0 0 1 −1/

√
2 −i

√
3/14 0 0 0

0 0 0 i i/
√

2
√

3/14 0 0 0
0 0 0 0 0 0

√
3/2

√
3/2 0

0 0 0 0 0 0
√

3/2 −
√

3/2 0
0 0 0 0 0 0 0 0

√
3

















Then the following arrays are a pair of orthogonal quantum Latin squares of dimension9:

|0〉 |2〉 |1〉 |3〉 |5〉 |4〉 |6〉 |8〉 |7〉

|2〉 |1〉 |0〉 |5〉 |4〉 |3〉 |8〉 |7〉 |6〉

|1〉 |0〉 |2〉 |4〉 |3〉 |5〉 |7〉 |6〉 |8〉

|6〉 |8〉 |7〉 |0〉 |2〉 |1〉 |3〉 |5〉 |4〉

|8〉 |7〉 |6〉 |2〉 |1〉 |0〉 |5〉 |4〉 |3〉

|7〉 |6〉 |8〉 |1〉 |0〉 |2〉 |4〉 |3〉 |5〉

U |3〉 U |5〉 U |4〉 |6〉 |8〉 |7〉 U |0〉 U |2〉 U |1〉

U |5〉 U |4〉 U |3〉 |8〉 |7〉 |6〉 U |2〉 U |1〉 U |0〉

U |4〉 U |3〉 U |5〉 |7〉 |6〉 |8〉 U |1〉 U |0〉 U |2〉

|0〉 |2〉 |1〉 |3〉 |5〉 |4〉 |6〉 |8〉 |7〉

|1〉 |0〉 |2〉 |4〉 |3〉 |5〉 |7〉 |6〉 |8〉

|2〉 |1〉 |0〉 |5〉 |4〉 |3〉 |8〉 |7〉 |6〉

U |6〉 U |8〉 U |7〉 |0〉 |2〉 |1〉 |3〉 |5〉 |4〉

U |7〉 U |6〉 U |8〉 |1〉 |0〉 |2〉 |4〉 |3〉 |5〉

U |8〉 U |7〉 U |6〉 |2〉 |1〉 |0〉 |5〉 |4〉 |3〉

|3〉 |5〉 |4〉 |6〉 |8〉 |7〉 U |0〉 U |2〉 U |1〉

|4〉 |3〉 |5〉 |7〉 |6〉 |8〉 U |1〉 U |0〉 U |2〉

|5〉 |4〉 |3〉 |8〉 |7〉 |6〉 U |2〉 U |1〉 U |0〉

(1)
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We now consider some equivalent characterizations of orthogonality, which will be useful later.

Lemma 5. Two quantum Latin squaresΦ, Ψ are orthogonal if and only if one, and hence both, of the
following equivalent conditions hold:

n−1

∑
i, j=0

|Φi j 〉〈Φi j |⊗ |Ψi j 〉〈Ψi j | = In2 (2)

n−1

∑
i, j,p,q=0

〈Φi j |Φpq〉〈Ψi j |Ψpq〉|i j 〉〈pq| = In2 (3)

Proof. For the first condition, equation (2) says that if we sum up outer products of each element
of the family {|Φ〉i j ⊗ |Ψi j 〉|i, j ∈ [n]}, we get the identity; clearly this is equivalent to the statement
that the family yields an orthonormal basis. For the second condition, consider the linear map
S= ∑i, j |i〉| j〉〈Φi j |〈Ψi j |, an operator onCn ⊗Cn. The quantum Latin squaresΦ,Ψ are orthogonal if
and only if this map is unitary, since it transports the orthonormal basis{|Φ〉i j ⊗|Ψi j 〉|i, j ∈ [n]} to the
computational basis. Since it is an operator on a finite-dimensional Hilbert space,S is unitary if and only
if it is an isometry, and equation (3) is the isometrycondition.

Orthogonality of quantum Latin squares is unaffected by conjugation of one of the squares.

Definition 6. Given a quantum Latin squareΨ, itsconjugateΨ∗ is the quantum Latin square with entries
(Ψ∗)i j = (Ψi j )∗.

Lemma 7. Two quantum Latin squaresΦ,Ψ are orthogonal just whenΦ∗,Ψ are orthogonal.

Proof. SupposeΦ,Ψ are orthogonal quantum Latin squares. Then by equation (3), it follows
that ∑n−1

i, j,p,q=0〈Φi j |Φpq〉〈Ψi j |Ψpq〉 = δipδ jq. So for all (i, j) 6= (p,q) either 〈Φi j |Φpq〉 = 0 or
〈Ψi j |Ψpq〉 = 0, and we know that〈Φi j |Φi j 〉 = 〈Ψi j |Ψi j 〉 = 1. Since 0,1 ∈ R, we conclude that
∑n−1

i, j,p,q=0〈Φ
∗
i j |Φ∗

pq〉〈Ψi j |Ψpq〉 = δipδ jq, and hence by equation (2) it follows that Φ∗,Ψ are orthogonal.
The converse then follows since(Φ∗)∗ = Φ.

2.2 Relationship to previous notion of orthogonality

The following definition of orthogonality for quantum Latin squares has recently been proposed. It is
less conceptual than our Definition3, and more complex to work with.

Definition 8 ([7], Definition 3). Two quantum Latin squaresΦ,Ψ are GRMZ-orthogonal(in their
terminology, “disentangled orthogonal”) when for each tensor factorX ∈ {A,B,C}, the following holds:

TrX

(
n−1

∑
i,p, j=0

|Φi j 〉〈Φi j |A⊗|Ψp j〉〈Ψp j|B⊗|i〉〈p|C

)

= In2 (4)

We now show this is equivalent to our Definition3.

Theorem 9. Two quantum Latin squaresΦ,Ψ are orthogonal if and only if they are GRMZ-orthogonal.

Proof. We first consider equation (4) for the caseX = C, which yields the following equation:

n−1

∑
i, j,p=0

|Φi j 〉〈Φp j|⊗ |Ψi j 〉〈Ψp j|〈p|i〉 =
n−1

∑
i, j=0

|Φi j 〉〈Φi j |⊗ |Ψi j 〉〈Ψi j |〈i j |i j 〉 = In2 (5)
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This corresponds to our equation (2). By Lemma5, it will hold if and only if Φ,Ψ are orthogonal.
We now show that the trace conditions overX = A andX = B in the GRMZ-orthogonality definition

are redundant, in the sense that they hold automatically for all pairs of quantum Latin squaresΦ,Ψ,
regardless of orthogonality. We analyze the case thatX = B; the caseX = A is similar. The trace
condition yields the following equation:

n−1

∑
i, j,p=0

〈Φi j |Φp j〉|Ψi j 〉〈Ψp j|⊗ |i〉〈p| = In2

But this equation is holds for any quantum Latin squaresΦ,Ψ, as follows:

n−1

∑
i, j,p=0

〈Φi j |Φp j〉|Ψi j 〉〈Ψp j|⊗ |i〉〈p| =
n−1

∑
i, j,p=0

δip|Ψi j 〉〈Ψp j|⊗ |i〉〈p| =
n−1

∑
i, j=0

|Ψi j 〉〈Ψi j |⊗ |i〉〈i|

=
n−1

∑
i=0

(
n−1

∑
j=0

|Ψi j 〉〈Ψi j |

)

⊗|i〉〈i| =
n−1

∑
i=0

In⊗|i〉〈i| = In⊗

(
n−1

∑
i=0

|i〉〈i|

)

= In⊗ In

Here the first equality uses the fact thatΦ is a QLS, the second equality uses the definition ofδi j , and the
third equality rearranges the sum, the fourth equality uses the fact thatΨ is a QLS, and the final equalities
are trivial algebraic manipulations. This completes theproof.

Remark 10. Goyeneche et al also discuss the notion of “entangled orthogonal quantum Latin squares”.
They prove that such a thing is exactly a single 2-uniform tensor. We choose to avoid this “entangled
orthogonal” terminology, since the 2-uniform terminology is well-known.

2.3 Equivalence and orthogonality

Two classical Latin squares are said to be equivalent if one can be transformed into the other by
permutations of the rows, columns or computational basis state labels. Similarly, there is a notion of
equivalence between quantum Latin squares [14], which we now recall.

Definition 11. Two quantum Latin squaresΦ,Ψ of dimensionn are equivalentif there exists some
unitary operatorU onCn, family of modulus-1 complex numbersci j , and permutationsσ ,τ ∈ Sn, such
that the following holds for alli, j ∈ [n]:

ci jU |Φσ(i),τ( j)〉 = |Ψi j 〉 (6)

If the permutation data is the same, then orthogonality is preserved by arbitrary equivalences on each
factor.

Lemma 12. Given quantum Latin squaresΦ,Ψ,Φ′,Ψ′ of dimension n, unitary operators U,V onCn,
families of modulus-1 complex numbers ci j ,di j , and permutationsσ ,τ ∈ Sn such that

|Φ′
i j 〉 := ci jU |Φσ(i),τ( j)〉 |Ψ′

i j 〉 := di jV|Ψσ(i),τ( j)〉 (7)

thenΦ,Ψ are orthogonal if and only ifΦ′,Ψ′ are orthogonal.
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Proof. By Definition3 we have the following for alli, j,m,n:

〈Φmn|Φi j 〉〈Ψmn|Ψi j 〉 = δimδ jn

⇔ 〈Φm′n′ |U
†◦U |Φi′ j ′ 〉〈Ψm′n′ |V

†◦V|Ψi′ j ′ 〉 = δi′m′δ j ′n′cm′n′c
∗
i′ j ′dm′n′d

∗
i′ j ′

⇔ 〈Φm′n′ |U
†c∗m′n′ ◦ci′ j ′U |Φi′ j ′ 〉〈Ψm′n′ |V

†d∗
m′n′ ◦di′ j ′V|Ψi′ j ′ 〉 = δi′m′δ j ′n′

⇔ 〈Φ′
mn|Φ

′
i j 〉〈Ψ

′
mn|Ψ

′
i j 〉 = δimδ jn

Whereσ(i) = i′,τ( j) = j ′,σ(m) = m′ andτ(n) = n′.

We now show that the pair of orthogonal quantum Latin squares illustrated in Example4 are not
equivalent to any pair of orthogonal Latin squares.

Proposition 13. The orthogonal quantum Latin squares of Example4 are not equivalent to a pair of
orthogonal classical Latin squares.

Proof. It is enough to show that the left-hand quantum Latin square of Example4, which we callΦ, is not
equivalent to a classical Latin square. Clearly no permutation of the rows or columns could transformΦ
into a classical Latin square. Suppose for a contradiction that there exists a unitary operatorV and a set of
phasesci j such that|ηi j 〉 := ci jV|Φi j 〉 are all computational basis elements, and therefore yield a classical
Latin square. Then for alli, j,m,n, we must have〈ηmn|ηi j 〉 = 0 or 1. We choosem= 0, n = 3, i = 6 and
j = 2 to obtain〈η03|η62〉 = c∗03c62〈Φ03|V†V|Φ62〉 = c∗03c62〈Φ03|Φ62〉 = c∗03c62〈3|U |4〉 = c∗03c62

√
2/3.

But since theci j have modulus 1, this can never equal 0 or 1, and the contradiction isestablished.

2.4 Generalization to multiple systems

We now extend this definition to sets of quantum Latin squares, generalising mutually orthogonal Latin
squares. In particular, we show that no essentially new concept is introduced, with the existing pairwise
orthogonality property being sufficient.

Definition 14 (MOQLS). A family of m quantum Latin squares{Φk|k ∈ [m]} aremutually orthogonal
if they are pairwise orthogonal.

Definition 15 (GRMZ-MOQLS). A family of m quantum Latin squares{Φk|k ∈ [m]} are GRMZ–
mutually orthogonalwhen the following equations hold, whereX indicates a partial trace over any of the
m+1 subsystems:

TrX

(
n−1

∑
i, j,p,q=0

|Φ0
i j 〉〈Φ

0
pq|⊗ |Φ1

i j 〉〈Φ
1
pq|⊗ ...⊗|Φm−1

i j 〉〈Φm−1
pq |⊗ |i j 〉〈pq|

)

= In2 (8)

Proposition 16 (MOQLS = GRMZ-MOQLS). A family of m quantum Latin squares{Φk|k ∈ [m]} are
mutually orthogonal just when they are GRMZ–mutually orthogonal.

Proof. We label thekth QLS system byAk and the two other systems in equation (8) asα andβ . SoX
can range overmelement subsets of{A0,A1, ...,Am−1,α,β}. We will label such sets by the two elements
that are NOT included so for example(Ag,Ah) = {A0, ...,Ag−1,Ag+1, ...,Ah−1,Ah+1, ...Am−1,α ,β}.
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First we show that for allg andh, substitutingX = (Ag,Ah) into equation (8) reduces to equation (2)
and so by varyingg andh we obtain Definition14. Let X = (Ag,Ah) then we have:

n−1

∑
i, j,p,q=0

〈Φ0
pq|Φ

0
i j 〉 ∙ ∙ ∙ 〈Φ

g−1
pq |Φg−1

i j 〉|Φg
pq〉〈Φ

g
i j |〈Φ

g+1
pq |Φg+1

i j 〉 ∙ ∙ ∙ 〈Φg−1
pq |Φh−1

i j 〉|Φh
pq〉〈Φ

h
i j |〈Φ

h+1
pq |Φh+1

i j 〉

∙ ∙ ∙ 〈Φm−1
pq |Φm−1

i j 〉〈pq|i j 〉 = In2 ⇔
n−1

∑
i, j=0

|Φi j 〉〈Φi j |⊗ |Ψi j 〉〈Ψi j | = In2

Thus equation (8) implies Definition (14) and forX = (Ag,Ah) Definition14 implies equation (8) for all
g andh. We now show that Definition14 implies equation (8) for all possible values ofX.

Since∑n−1
j=0〈Φi j |Φp j〉 = δip by the quantum Latin square property, we have that for allk, substituting

X = (Ak,α) into equation (8) reduces to∑n−1
i, j=0 |Φ

k
i j 〉〈Φk

i j | ⊗ | j〉〈 j| = In2, which holds for all QLS.

Similarly by settingX = (Ak,β ) we obtain∑n−1
i, j=0 |Φ

k
i j 〉〈Φk

i j |⊗ | j〉〈 j|= In2 which again holds for all QLS.
Finally we are left withX = (α ,β ), which gives the following:

n−1

∑
i, j,p,q=0

〈Φ0
i j |Φ

0
pq〉...〈Φ

m−1
i j |Φm−1

pq 〉|i j 〉〈pq| = In2 (9)

Split them QLS into pairs. Equation (3) is equivalent to∑n−1
i, j,p,q=0〈Φi j |Φpq〉〈Ψi j |Ψpq〉 = δipδq j. If m is

even then the LHS of equation (9) becomes∑n−1
i, j,p,q=0 δipδpq|i j 〉〈pq| which is a resolution of the identity.

For m odd we have∑n−1
i, j 〈Φm−1

i j |Φm−1
i j 〉|i j 〉〈i j | which again is a resolution of the identity since all entries

of a QLS are unit vectors.

We now state the following corollary of Lemma12 in the context of MOQLS.

Corollary 17. Given a set of MOQLSΦk, the set of quantum Latin squares with entries ci jUk|Φk
σ(i),τ( j)〉

are also mutually orthogonal, for any set of unitary operators Uk, complex phases ci j and
permutationsσ ,τ.

2.5 Upper bounds on the number of mutually orthogonal quantum Latin squares

We now show that the upper bound for the number of MOQLS of a given size is equal to the upper bound
for MOLS.

Theorem 18. Any family of MOQLS of dimension n has size at most n−1.

Proof. Suppose that we have a set ofm-MOQLS |Φ0
i j 〉, ..., |Φ

m−1
i j 〉 of size n× n. By Corollary 17

we can apply unitaries to each QLS such that the first row of every QLS is the computational basis
|i〉, i ∈ {0, ...,n−1}. Consider〈Φk

10|Φ
l
10〉 for somek, l ∈ {0, ...,m−1} such thatk 6= l . We have that:

〈Φk
10|Φ

l
10〉 =

n−1

∑
i=0

〈Φk
10|i〉〈i|Φ

l
10〉 =

n−1

∑
i=0

〈Φk
10|Φ

k
0i〉〈Φ

l
0i |Φ

l
10〉

=
n−1

∑
i=0

〈Φk
10|Φ

k
0i〉〈Φ

l∗
10|Φ

l∗
0i 〉 =

n−1

∑
i=0

〈Φk
10|Φ

k
0i〉〈Φ

l
10|Φ

l
0i〉 = δi0δ01 = 0

So them unit vectors|Φi
10〉 together with|0〉 arem+ 1 linearly independent vectors. Thusm can be at

mostn−1.
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3 Quantum Latin isometry squares and error detecting codes

We now introduce a generalisation of quantum Latin squares. A unit vector|Ψ〉 of dimensionn is a trivial
example of an isometry|Ψ〉 :C→Cn. We can thus considern dimensional QLSs as arrays of isometries
of this type. This perspective leads to the following definition which generalises QLSs.

Definition 19 (Isometric Latin square). An n-by-n array of isometrieski j : Cai j → Cd is an isometric
Latin square, denoted(ki j ,ai j ,d) if the following hold for all i, j, p,q∈ {0, ...,n}:

k†
ip ◦kiq = δpqIaip (10)

k†
p j ◦kq j = δpqIam j (11)

n−1

∑
i=0

ki j ◦k†
i j =

n−1

∑
j=0

ki j ◦k†
i j = Id (12)

Remark 20. Quantum Latin squares of sizen×n are isometric Latin squares such thatai j = 1 for all i
and j, and are therefore of the form(|Φi j 〉,1,n).

We can build quantum Latin isometry squares from arbitrary families of unitaries, as follows.

Definition 21. For a Hilbert spaceCn equipped with a family ofmunitaries{Ui : Cn → Cn|i ∈ [m]}, we
can build a quantum Latin isometry square of size m as(Uiδi j ,nδi j ,n).

Such a quantum Latin isometry squareL(U ) is diagonal, with nonzero isometries only on the leading
diagonal. It is straightforward to see that the quantum Latin isometry square axioms are satisfied.

3.1 Skew projective permutation matrices

Given a pair of isometric Latin squares that share the same multiset of valuesai j we can compose them
in the following way to form a new structure.

Definition 22 (Skew projective permutation matrix). Given a pair of isometric Latin squares(ki j ,ai j ,b)
and(qi j ,ai j ,b) then we define then-by-n array of linear operatorsTi j : Cb → Cb as defined below to be
askew projective permutation matrix(skew PPM)T.

Ti j := qi j ◦k†
i j (13)

A partial isometryis a linear map such that the restriction to the orthogonal complement of its kernel
is an isometry. Alternatively, a partial isometryA is a linear map such thatA◦A† ◦A = A. The initial
spaceof a partial isometry is the orthogonal complement of its kernel. Thefinal spaceis its range [4].

Given a pair of isometrieski j ,qi j : Cai j → Cb we can form the following composite linear maps

Ki j : = ki j ◦k†
i j (14)

Qi j : = qi j ◦q†
i j (15)

Ti j : = qi j ◦k†
i j (16)

It is easy to show thatKi j andQi j are orthogonal projectors. SinceTi j ◦T†
i j ◦Ti j = qi j ◦k†

i j ◦ki j ◦q†
i j ◦qi j ◦

k†
i j = qi j ◦k†

i j = Ti j we have thatTi j is a partial isometry. The initial and final spaces ofT are the spaces
projected onto byKi j andQi j respectively.

By the above we can alternatively define skew PPMs as matrices of partial isometriesTi j : Cb → Cb

such that the initial and final spaces are orthogonal and spanCb along each row and column.
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Remark 23. Skew PPMs were shown to characterise quantum channels that preserve pointer states and
are referred to as matrices of partial isometries fulfilling certain additional conditions in a recent paper
by Benoist and Nechita (See [4], Definition 3.2 conditions (C1) to (C4)).

Projective permutation matrices (PPMs) are square arrays of projectors that form a projective POVM
on every row and column. Skew PPMs generalise PPMs, which can be seen as skew PPMs coming from
a pair of identical isometric Latin squares, in which case the partial isometriesTi j are all orthogonal
projectors.
Remark 24. PPMs, also known as magic unitaries and quantum bijections between classical sets, have
recently appeared in the context of quantum non-local games [1, 2, 12, 13] and the study of compact
quantum groups [3, 5, 16].

We now extend the definition of orthogonal quantum Latin squares to isometric Latin squares.
Definition 25 (Orthogonal isometric Latin squares). A pair of isometric Latin squares(ki j ,ai j ,d) and
(qi j ,ai j ,d) areorthogonalif the operatorsTi j = qi j ◦k†

i j are span the operator space and for all non-zero

Ti j we have that Tr(T†
i j ◦Ti j ) = a for somea∈ C.

We refer to a skew PPM composed of a pair of orthogonal isometric Latin squares as anorthogonal
skew PPM.

We now give a more algebraic characterisation of the above definition.
Lemma 26. Given a pair of n×n isometric Latin squares(ki j ,ai j ,d) and(qi j ,ai j ,d) define the following
linear map S: Cn⊗Cn → Cd ⊗Cd:

S:=
n−1

∑
i, j,p,q=0

d−1

∑
x=0

|i j 〉⊗〈x|qi j ◦k†
i j ⊗〈x| (17)

The isometric Latin squares(ki j ,ai j ,d) and(qi j ,ai j ,d) are orthogonal just when S is an isometry.

Proof. SinceTi j span the operator space we have:

n−1

∑
i, j=0

d−1

∑
x,y=0

|y〉⊗ki j ◦q†
i j |y〉〈x|qi j ◦k†

i j ⊗〈x| = Id2 (18)

Remark 27. We also have that Tr(T†
i j ◦Tpq) = δipδ jqTr(T†

i j ◦Ti j ).
Remark 28. A PPM can never be orthogonal since the projectorsTi j of a PPM span the operator space
for every row and column.

We now show that orthogonal isometric Latin squares generalise orthogonal QLSs (and therefore
orthogonal Latin squares).
Lemma 29. Pairs of QLS are orthogonal isometric Latin squares if and only if they are orthogonal
quantum Latin squares.

Proof. Consider a pair ofn-by-n QLSs(|ki j 〉,1,n) and(|qi j 〉,1,n) such that they are orthogonal isometric
Latin squares by Definition25. By Lemma26, eitherS is an isometry. SinceS is a linear operator on a
finite dimensional Hilbert spaceS is unitary. This yields the following equation:

n−1

∑
i, j,x,y=0

|ki j 〉〈qi j |x〉〈y|qi j 〉〈ki j |⊗ |x〉〈y| =
n−1

∑
i, j=0

|ki j 〉〈ki j |⊗ |q∗i j 〉〈q
∗
i j | = In2

By Lemmas5 and7 this holds if and only if|qi j 〉 and|ki j 〉 are orthogonalQLS.
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Analogously to MOLS and MOQLS, we definemutually orthogonal isometric Latin squaresto be
sets of pairwise orthogonal isometric Latin squares.

We now prove the main result of this section, a construction of error correcting codes from orthogonal
skew PPMs. In there famous 1997 paper Knill and Laflamme proved that certain one-to-three 4-valent
tensors can be used as encoding maps for quantum codes that detect a single error. These tensors have
only slightly less structure than perfect tensors.

Theorem 30. [9] Given a three-to-one tensor〈Ei jk | : Ca → Cb⊗Cc⊗Cd, it is an encoding map that
detects a single error if the following hold:

b−1

∑
i=0

c−1

∑
j=0

d−1

∑
l ,k=0

|Ei jl 〉〈Ei jk |⊗ |l〉〈k| = Ia⊗ Id (19)

b−1

∑
i=0

c−1

∑
l , j=0

d−1

∑
k=0

|Eilk〉〈Ei jk |⊗ |l〉〈 j| = Ia⊗ Ic (20)

b−1

∑
l ,i=0

c−1

∑
j=0

d−1

∑
k=0

|El jk〉〈Ei jk |⊗ |l〉〈i| = Ia⊗ Ib (21)

Theorem 31. Given an n-by-n pair of orthogonal isometric Latin squares(ki j ,ai j ,d) and (qi j ,ai j ,d)
skew PPM T= ∑n−1

i, j=0Ti j ⊗ |i〉〈 j|; the following one-to-three tensor is an encoding map that detects a
single error:

〈T| :=
n−1

∑
i, j=0

|i〉⊗qi j ◦k†
i j ⊗| j〉 (22)

Proof. First we show equation (19), we have:

d−1

∑
x=0

n−1

∑
l ,i, j=0

|T〉〈T|⊗ |l〉〈i| =
d−1

∑
x=0

n−1

∑
l ,i, j=0

|l〉⊗kl j ◦q†
l j |x〉〈x|qi j ◦k†

i j ⊗〈i|

(11)
=

n−1

∑
i, j=0

|i〉⊗ki j ◦k†
i j ⊗〈i|

(12)
= Id ⊗ In

Equation (21) can be derived from equations (10) and (12) similarly.
We now show equation (20).

d−1

∑
x,y=0

n−1

∑
i, j=0

|T〉〈T|⊗ |y〉〈x| =
d−1

∑
x,y=0

n−1

∑
i, j=0

|y〉⊗ki j ◦q†
i j |y〉〈x|qi j ◦k†

i j ⊗〈x|

(18)
= Id2

The condition that a pair of isometric Latin squares are dimensionally compatible in order to form
a skew PPM, together with the orthogonality condition puts heavy constraints upon the possible values
for ai j andd. It is not obvious that such structures, other than that of orthogonal QLSs should exist.
We show in the next example that pairs of orthogonal isometric Latin squares do exist and even in low
dimension.
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Example 32. We present a pair of orthogonal Latin isometry squaresQ andK and associated orthogonal
skew PPMT. We haven = 8, d = 4 andai j = 2 or 0 for all i, j ∈ {0, ...,7}. There ared2 = 16 non-zero
Ti j as required to span the operator space.

We fix the computational basis|a〉, |b〉 for C2 and|0〉, |1〉, |2〉 |3〉 for C4.
We present the first Latin isometry squareQ:

|0〉〈a|+ |1〉〈b| |2〉〈a|+ |3〉〈b| 0 0 0 0 0 0

|2〉〈a|+ |3〉〈b| |1〉〈a|+ |0〉〈b| 0 0 0 0 0 0

0 0 |0〉〈a|− |1〉〈b| |3〉〈b|− |2〉〈a| 0 0 0 0

0 0 |2〉〈a|− |3〉〈b| |0〉〈a|− |1〉〈b| 0 0 0 0

0 0 0 0 |1〉〈a|+ |2〉〈b| |0〉〈a|+ |3〉〈b| 0 0

0 0 0 0 |3〉〈b|− |0〉〈a| |2〉〈b|− |1〉〈a| 0 0

0 0 0 0 0 0 |0〉〈a|+ |2〉〈b| |3〉〈b|− |1〉〈a|

0 0 0 0 0 0 |1〉〈a|+ |3〉〈b| |2〉〈b|− |0〉〈a|

Now we present the Latin isometry squareK:

|0〉〈a|+ |1〉〈b| |2〉〈a|+ |3〉〈b| 0 0 0 0 0 0

|2〉〈a|+ |3〉〈b| |0〉〈a|+ |1〉〈b| 0 0 0 0 0 0

0 0 |0〉〈a|+ |1〉〈b| |3〉〈a|+ |2〉〈b| 0 0 0 0

0 0 |2〉〈a|+ |3〉〈b| |1〉〈a|+ |0〉〈b| 0 0 0 0

0 0 0 0 |2〉〈a|+ |1〉〈b| |3〉〈a|+ |0〉〈b| 0 0

0 0 0 0 |3〉〈a|+ |0〉〈b| |2〉〈a|+ |1〉〈b| 0 0

0 0 0 0 0 0 |2〉〈a|+ |0〉〈b| |3〉〈a|+ |1〉〈b|

0 0 0 0 0 0 |3〉〈a|+ |1〉〈b| |2〉〈a|+ |0〉〈b|

Finally we present the associated skew projective permutation matrixT with entriesTi j :

|0〉〈0|+ |1〉〈1| |3〉〈2|+ |2〉〈3| 0 0 0 0 0 0

|2〉〈2|+ |3〉〈3| |1〉〈0|+ |0〉〈1| 0 0 0 0 0 0

0 0 |0〉〈0|− |1〉〈1| |3〉〈2|− |2〉〈3| 0 0 0 0

0 0 |2〉〈2|− |3〉〈3| |0〉〈1|− |1〉〈0| 0 0 0 0

0 0 0 0 |2〉〈1|+ |1〉〈2| |3〉〈0|+ |0〉〈3| 0 0

0 0 0 0 |3〉〈0|− |0〉〈3| |2〉〈1|− |1〉〈2| 0 0

0 0 0 0 0 0 |2〉〈0|+ |0〉〈2| |3〉〈1|− |1〉〈3|

0 0 0 0 0 0 |3〉〈1|+ |1〉〈3| |2〉〈0|− |0〉〈2|

By Theorem31, the following three-to-one 4-valent tensor is an encoding map that detects a single error:

〈T| :=
n−1

∑
i, j=0

|i〉⊗Ti j ⊗| j〉
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3.2 Orthogonal quantum Latin isometry squares from unitary error bases

Here we recall the standard notion of unitary error basis, and show that they can be used to construct
orthogonal pairs of quantum Latin isometry squares, which are not quantum Latin squares. Unitary
error bases were introduced by Werner [17], and provide the basic data for quantum teleportation, dense
coding and error correction procedures [8, 15, 17].

Definition 33. For a Hilbert spaceCn, aunitary error basisis a family of unitary operatorsUi : H → H
which span the space of operators, and which are orthogonal under the trace inner product:

Tr(Ui ◦U†
j ) = nδi j (23)

We now show that unitary error bases can be characterized in terms of orthogonality of quantum
Latin isometry squares.

Theorem 34.For a Hilbert spaceCn and a family of unitaries Ui :Cn→Cn, the following are equivalent:

• the quantum Latin isometry squares(Uiδi j ,nδi j ,n) and(Inδi j ,nδi j ,n) are orthogonal;

• the family{Ui |i ∈ [n2]} forms a unitary error basis.

Proof. The orthogonality condition for the quantum Latin isometry squares unpacks to the requirement
that the matricesUi are orthogonal and span the space of operators; this is exactly the unitary error basis
condition.
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