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were collected from eight waste and recycling sites in Ireland, including 

waste electrical and electronic equipment (WEEE), textiles, polyurethane 
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bromine content, in situ using a Niton™ XL3T GOLDD XRF analyser, the 
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based measurements of polybrominated diphenyl ethers (PBDEs), 

hexabromocyclododecane (HBCDD) and tetrabromobisphenol-A (TBBP-A) 
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were additionally found between results for PUFs, textiles and 

polystyrene samples, with the XRF over-estimating BFR concentrations by a 

factor of up to 1.9; this is likely due to matrix effects influencing XRF 

measurements. However, expanded (EPS) and extruded polystyrene (XPS) 
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of HBCDD in these materials.  
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The qualifier and quantifier lines, potential pitfalls like interferences and interference 

correction, this is really crucial and is still missing, please consider this to elaborate more on 
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included which states the qualifier and quantifier lines for the instrument: 

“Quantification and qualification of bromine for the Niton XL3t model are achieved using 

the K α1 line (11.9242 eV) and K α2 line (11.8776 eV) respectively.” 
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corrections were carried out: 

(i) removal of surface dust from samples – “For HIPS, ABS and insulation foam samples, the 

surface of the material was wiped with a clean non-fibrillating tissue prior to analysis, in 

order to remove sediment and dust which could interfere with the instrument’s primary x-

rays or may contain traces of bromine.”; 

(ii) thickness corrections for WEEE samples – “A thickness correction of 2 mm was 

additionally applied to the HIPS and ABS samples to help account for the finite thickness of 

the samples (per manufacturer guidelines); this reduces the risk of interference from 

substrate materials as the instrument internally estimates the density of an analyte based on 

Compton scattering of primary x-rays” (also outlined in section 3.2.2). Final paragraph of 

section 2.3 also includes a note on the additional test carried out to test the efficacy of 

thickness corrections, the results of which are noted in the Discussion section (lines 480-
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compressed to a thickness of approximately 3 cm (to achieve the thickness required for said 

materials for full attenuation of primary x-rays, per instrument manufacturer guidelines) and 

held in place by placing the instrument over the sample, in order to increase the density of 

the active analysis zone.”; 

(iv) instrument mode of operation – “The instrument was operated in the “plastics” mode of 

operation, which optimises the instrument’s settings for interaction of x-rays with low density 

polymer materials and quantification of specific elements in their matrices.” 
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Abstract 13 

The purpose of this study was to establish the efficacy of portable x-ray fluorescence (XRF) 14 

instrumentation as a screening tool for a variety of end of life plastics which may contain 15 

excess amounts of brominated flame retardants (BFRs), in compliance with European Union 16 

(EU) and United Nations Environment Programme (UNEP) legislative limits (low POP 17 

concentration limits – LPCLs).  555 samples of waste plastics were collected from eight 18 

waste and recycling sites in Ireland, including waste electrical and electronic equipment 19 

(WEEE), textiles, polyurethane foams (PUFs), and expanded polystyrene foams. Samples 20 

were screened for bromine content, in situ using a Niton™ XL3T GOLDD XRF analyser, the 21 

results of which were statistically compared to mass spectrometry (MS)-based measurements 22 

of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDD) and 23 

tetrabromobisphenol-A (TBBP-A) concentrations in the same samples. 24 

Regression between XRF and MS for WEEE samples show that, despite an overall 25 

favourable trend, large deviations occur for a cluster of samples indicative of other bromine-26 

based compounds in some samples; even compensating for false-positives due to background 27 

interference from electronic components, XRF tends to over-estimate MS-determined BFR 28 

concentrations in the 100 to 10,000 mg kg
-1

 range. Substantial deviations were additionally 29 

found between results for PUFs, textiles and polystyrene samples, with the XRF over-30 

estimating BFR concentrations by a factor of up to 1.9; this is likely due to matrix effects 31 

influencing XRF measurements. However, expanded (EPS) and extruded polystyrene (XPS) 32 

yielded much more reliable estimations of BFR-content due to a dominance of HBCDD in 33 

these materials.  34 

XRF proved much more reliable as a “pass/fail” screening tool for LPCL compliance 35 

(including a prospective LPCL on Deca-BDE based on REACH). Using a conservative 36 

threshold of BFR content exceeding legislative limits (710 mg kg
-1

 bromine attributed to 37 
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penta-BDE), XRF mistakenly identifies only 6 % of samples (34/555) as exceeding 38 

legislative limits. 39 

 40 

Keywords 41 

Waste Plastics; LPCL Screening; Quantification; PBDEs; HBCDD. 42 
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1. Introduction 44 

Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD) are two 45 

groups of brominated flame retardants (BFRs) which have been extensively applied to 46 

various commercial and consumer products to meet flammability standards.  HBCDD has 47 

been used as a flame retardant additive in expanded (EPS) and extruded (XPS) polystyrene 48 

insulation foams as well as in high impact polystyrene (HIPS) for electrical housing and 49 

junction boxes, as well as a textile coating agent for furniture and furnishings (Marvin et al., 50 

2011, UNEP, 2017b). Of the three commercial PBDE formulations, Penta-BDE is reportedly 51 

almost exclusively used in polyurethane foams (PUFs) for domestic, office and automotive 52 

applications, along with minor applications in printed circuit boards and microprocessors in 53 

electrical and electronic equipment (EEE) (UNEP, 2010). Octa-BDE has been applied to 54 

acrylonitrile butadiene styrene (ABS) and HIPS, largely used as casings for EEE (EC, 2011). 55 

Deca-BDE was commonly used in coating agents applied to the surfaces of textiles and 56 

upholstery as well as applied to HIPS for EEE as an additive compound (Weil and Levchik, 57 

2009, IPCS, 1997).  Over the last two decades however, concerns about their toxicity, 58 

persistence and ability to bioaccumulate has led to their listing as persistent organic 59 

Pollutants (POPs) under the Stockholm Convention. The commercial mixtures of Penta- and 60 

Octa-BDE were listed in 2009 (UNEP, 2009), whilst HBCDD was listed in 2013 (UNEP, 61 

2013), and the Deca-BDE commercial mixture listed in 2017 (UNEP, 2017a). Another 62 

common legacy BFR, tetrabromobisphenol-A (TBBP-A), is also extensively used in as an 63 

additive in HIPS and ABS and also reactively added to printed circuit boards for EEE (Morf 64 

et al., 2003, IPCS, 1997). Though not currently under consideration for listing as a POP, 65 

TBBP-A has been recently classified as H410 (very toxic to aquatic species), and listed as a 66 

Class 2A carcinogen (Grosse et al., 2016, Malkoske et al., 2016). Additionally, waste articles 67 



5 
 

containing TBBP-A at concentrations in excess of 0.1 % is to be classified as “hazardous 68 

waste” (EU, 2017b). 69 

In the light of growing environmental concern, measures are being adopted in order to 70 

prevent further environmental contamination from goods which were treated with POP-BFRs 71 

(UNEP, 2009, EC, 2004). One such measure is the modification of recycling systems to 72 

include screening procedures for goods suspected to contain high concentrations of POPs, 73 

including POP-BFRs. Low POP concentration limits (LPCLs) of 1000 mg kg
-1

 have been 74 

established for each of the HBCDD, Penta-BDE and Octa-BDE commercial mixtures (EC, 75 

2010, EC, 2016, EU, 2017a), in addition to a limit on Deca-BDE to come into force in 2019 76 

(EU, 2017). However, a fast and cost-effective method of identifying products exceeding 77 

these limits has not yet been identified, with industry standards (such as conventional 78 

chromatographic-mass spectrometric techniques) being impractical for this purpose due to 79 

their high running costs and low throughput. 80 

Recently the use of portable x-ray fluorescence (XRF) measurements of elemental Br has 81 

been suggested as a surrogate measure of POP-BFR concentrations. Several studies have 82 

been performed to investigate the efficacy of portable XRF for the measurements of BFRs in 83 

various plastic products, including EEE (Gallen et al., 2014, Aldrian et al., 2015, Guzzonato 84 

et al., 2016) and furniture fabrics, foams and textiles (Petreas et al., 2016). Whilst these 85 

studies have had varying degrees of success, they have all concluded that XRF-based 86 

measurements are not capable of accurately quantifying concentrations of specific BFRs as 87 

XRF measures elemental bromine only. However, Aldrian et al. (2015) and Petreas et al. 88 

(2016) suggested that the use of XRF may be an effective screening tool for bromine content 89 

in WEEE and furniture, as well as Schlummer et al. (2015) concluding effective screening 90 

potential of HBCDD with the inclusion of an extraction process to distinguish the Br species. 91 

Furthermore, Guzzonato et al. (2016) demonstrated that the accuracy of XRF measurements 92 
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of Br in ABS and HIPS may be improved by use of custom-made solid reference standards 93 

containing Deca-BDE, and concluded that use of XRF to screen waste electrical and 94 

electronic equipment (WEEE) for compliance with LPCLs was feasible. The largest recent 95 

study (Sindiku et al., 2015) includes XRF screening in their methodology using varying 96 

ranges of Br content, proving relatively successful in screening for BFR-content (with an 97 

instrumental precision of ±20 %) but does highlight limitations in discerning the species of 98 

bromine. 99 

While the suitability of the XRF as a tool for predicting BFR concentrations has been 100 

evaluated previously, many of the studies hitherto have been on a relatively small scale (<50 101 

samples). Moreover, the range of plastics previously studied is limited to a few types and 102 

applications or do not show in-depth comparisons of the accuracy and precision of XRF with 103 

respect to MS analysis. In light of the introduction of LPCLs and the substantial mass of 104 

waste polymers that will require screening for compliance with LPCLs (e.g. 42,628 tonnes of 105 

WEEE collected in Ireland in 2013 (EPA, 2016)), it is vital that a rapid screening method is 106 

developed to enable fast and reliable identification of waste items exceeding LPCLs. 107 

Therefore the aims of this study are to (i) examine the efficacy of portable XRF 108 

measurements as a predictor of BFR concentrations in a wide range of plastics in the waste 109 

stream; and (ii) to determine whether portable XRF can be used as a “pass/fail” screening 110 

tool for the interception of waste products exceeding LPCLs. These aims were achieved by a 111 

large scale sampling campaign of recyclable plastics at waste and recycling sites in Ireland. 112 

XRF measurements of bromine in a variety of waste articles (including WEEE plastics, 113 

domestic and end of live vehicle (ELV) soft furnishings (PUF and upholstery fabrics) and 114 

EPS/XPS insulation) were taken prior to quantitative analysis of selected BFRs via either 115 

GC/MS or LC-MS/MS. To our knowledge, this is the first assessment of XRF as a tool for 116 

monitoring compliance with LPCL legislation. Moreover, it represents the most 117 
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comprehensive assessment to date of the accuracy and suitability of hand-held XRF analysis 118 

for quantification of BFR levels in waste articles. 119 

 120 

2. Materials and Methods 121 

2.1 Materials 122 

Chemical standards for native BDEs -28, -47, -77, -99, -100, -128, -153, -154, -183, -196, -123 

197, -203, -209, native α-HBCDD, β-HBCDD, γ-HBCDD, 
13

C12-BDE-209, 
13

C12-α-HBCDD, 124 

13
C12-β-HBCDD, 

13
C12-γ-HBCDD, d18-γ-HBCDD and 

13
C12-TBBP-A were purchased from 125 

Wellington Laboratories (Guelph, ON, Canada). PCB-129 was purchased from Accustandard 126 

(New Haven, CT, USA). All solvents (HPLC grade hexane, dichloromethane (DCM), iso-127 

octane and methanol) and sulfuric acid (>95 %) were purchased from Fisher Scientific 128 

(Loughborough, UK). 129 

 130 

2.2 Sample Collection and Field Measurement 131 

Samples were obtained from eight waste and recycling sites in Ireland and their bromine 132 

concentrations measured in situ using a hand-held XRF device. Samples from a range of 133 

different waste categories were collected: HIPS and ABS hard plastic casings from WEEE; 134 

soft furnishings and textiles typical in both domestic and vehicular environments; and 135 

polystyrene foams from building insulation and packaging materials. Following collection 136 

and XRF analysis, destructive chemical analysis via GC-MS and LC-MS/MS was carried-out 137 

on small sub-samples taken from the same parent product, within the immediate vicinity of 138 

the area subjected to XRF analysis. This was performed to evaluate the accuracy with which 139 
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the XRF-determined bromine concentrations correlated with those of GC/MS or LC-MS/MS 140 

measurements of selected BFRs. 141 

In total, matched Br and BFR measurements were obtained for 555 samples; Table 1 provides 142 

an overview of the number of samples collected from each “waste type”. Following on-site 143 

use of the XRF instrument, small sections of the scanned areas (~1-2 cm
2
 for HIPS/ABS, 144 

upholstery and textiles, or ~ 1-2 cm
3
 for polystyrene and PUF) were subsequently removed 145 

and individually stored in labelled polyethylene bags. These collected samples were then 146 

shipped to the University of Birmingham where concentrations of POP-BFRs and TBBP-A 147 

were determined. 148 

 149 

2.3 XRF Analysis 150 

Each measurement involved placing the XRF instrument directly on to the measurement 151 

surface, with the operator standing directly behind the instrument for the duration of the 152 

measurement. As per Niton UK guidelines on the use of the device, secondary x-rays 153 

projected from the specimen deviate at angles around the device (mostly laterally) as well as 154 

at much lower intensities than primary x-rays, thus attenuating rapidly. Using the secondary 155 

dose rates produced during plastics mode of operation, on plastic materials, and with varying 156 

substrates (air, concrete, wood, etc.), the maximum dose for the user (at the device’s trigger) 157 

was calculated for the sum of all measurements carried out and found to be well-below the 158 

annual dose for a category B radiation worker (i.e. <20 mSv in any single year). 159 

Determination of total bromine content in the samples was carried out in situ using a Niton 160 

XLt3-900 GOLDD X-Ray Fluorescence Analyser.  Calibration was performed by Niton UK 161 

using proprietary standards containing varying concentrations of relevant inorganic 162 

compounds in a polymer matrix. Quantification and qualification of bromine for the Niton 163 
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XL3t model are achieved using the K α1 line (11.9242 eV) and K α2 line (11.8776 eV) 164 

respectively. The instrument was operated in the “plastics” mode of operation, which 165 

optimises the instrument’s settings for interaction of x-rays with low density polymer 166 

materials and quantification of specific elements in their matrices. Standard analyses using 167 

the XRF instrument in this mode gives a 95 % confidence interval (CI = ± 2σ) with each 168 

measurement taken. The duration of analysis ranged from 30 to 105 seconds with longer 169 

iterations required to improve instrumental uncertainty in samples with high bromine content 170 

and for samples comprising of low density materials (Zawisza, 2012). 171 

For HIPS, ABS and insulation foam samples, the surface of the material was wiped with a 172 

clean non-fibrillating tissue prior to analysis, in order to remove sediment and dust which 173 

could interfere with the instrument’s primary x-rays or may contain traces of bromine. A 174 

thickness correction of 2 mm was additionally applied to the HIPS and ABS samples to help 175 

account for the finite thickness of the samples (per manufacturer guidelines); this reduces the 176 

risk of interference from substrate materials as the instrument internally estimates the density 177 

of an analyte based on Compton scattering of primary x-rays. The instrument window was 178 

then placed flat against the sample surface and a measurement of bromine content carried out 179 

(with a minimum thickness of 10 cm for insulation samples and as presented at 180 

approximately 2 mm for HIPS and ABS samples). Upholstery and other soft furnishings were 181 

manually folded, compressed to a thickness of approximately 3 cm (to achieve the thickness 182 

required for said materials for full attenuation of primary x-rays, per instrument manufacturer 183 

guidelines) and held in place by placing the instrument over the sample, in order to increase 184 

the density of the active analysis zone. Three repeat measurements were carried out on each 185 

sample, several centimetres apart from each scanning point and at varying orientations. These 186 

repeat measurements were required to be carried out on the same plastic panel/area and under 187 
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the same experimental conditions in order to detect instances of heterogeneous distribution of 188 

BFRs within the body of sample. 189 

Additional XRF measurements of bromine concentrations on available sub-samples of WEEE 190 

HIPS and ABS samples (i.e. those aliquots removed for BFR determination) were carried out 191 

in a controlled laboratory setting. These measurements were made in order to determine the 192 

instances where bromine detected during field measurements were due to background 193 

interference, being attributed to the presence of bromine in underlying electronic components 194 

rather than from the polymeric casing itself. 195 

 196 

2.4 Extraction and Clean-Up 197 

For quantitative analysis of BFRs, samples were extracted and cleaned according to methods 198 

previously described (Abdallah et al., 2017). Briefly, aliquots of samples (20-100 mg) were 199 

cut with a retractable blade and weighed directly into a 15 mL glass centrifuge tube and 200 

spiked with 20 ng of BDEs -77 and -128, 
13

C12- α-, -β, and γ-HBCDD, 
13

C12-TBBP-A, and 40 201 

ng 
13

C12-BDE-209 as internal standards. Approximately 3 mL of dichloromethane (DCM) 202 

was added to the aliquot and vortexed for 2 minutes, followed by 30 minutes sonication. The 203 

extraction process was repeated three times with the combined extracts collected in a separate 204 

glass centrifuge tube. Crude extracts were concentrated under a gentle stream of N2 to near-205 

dryness and reconstituted in 2 mL hexane. Extracts were washed with >95 % sulfuric acid 206 

and supernatant organic layer was collected and concentrated to near-dryness under a gentle 207 

N2 stream. Samples were reconstituted in 200 μL of iso-octane containing 0.2 ng µL
-1

 PCB-208 

129 as a recovery standard. After determination of PBDEs via GC-MS, extracts were 209 

reconstituted in methanol containing 0.2 ng µL
-1

 d18-γ-HBCDD for determination of 210 

HBCDDs and TBBP-A via LC-MS/MS analysis. 211 
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 212 

2.5 Mass Spectrometric Analysis 213 

Quantitative analysis of PBDEs was performed in a single injection on a ThermoFisher Trace 214 

1310 gas chromatograph coupled to a ThermoFisher ISQ mass spectrometer (MS). The MS 215 

was operated in electron ionisation mode using selective ion monitoring (SIM). One µL of 216 

the purified extract was injected for analysis using a programmable temperature vapouriser 217 

(PTV) onto a Restek Rxi-5Sil MS column (15m x 0.25 mm x 0.25 µm film thickness). 218 

Helium was used as the carrier gas at a flow rate of 1.5 mL min
-1

. Full GC/MS parameters 219 

have been reported previously (Abdallah et al., 2017).  220 

HBCDDs were measured using a Shimadzu LC-20AB Prominence binary pump liquid 221 

chromatograph equipped with a Sil-20A auto sampler and a DGU-20A3 vacuum degasser 222 

coupled to an AB Sciex API 2000 triple quadrupole MS. Chromatographic separation was 223 

achieved using Agilent Pursuit XRS3 C18 column (150 mm x 2 mm, I.D., 3 µm particle size) 224 

and a mobile phase of (a) 1:1 methanol/water and (b) methanol at a flow rate of 180 µL min
-1

. 225 

Molecular ionisation was achieved using an electrospray ionisation (ESI) source operated in 226 

negative ion mode. The MS/MS was operated in the multiple reaction monitoring (MRM) 227 

mode. The MRMs transitions monitored were on m/z 640.6 → 79, m/z 652.4 → 79 and m/z 228 

657.7 → 79 for the native and the 
13

C12-labelled HBCDD diastereomers respectively and 229 

540.8 → 79, m/z 552.8 → 79 were used to monitor native and 
13

C12-labelled TBBP-A. Full 230 

LC-MS/MS parameters have been reported previously (Abdallah et al., 2008). 231 

 232 

2.6 Quality Assurance/Quality Control 233 

For BFR analysis, a reagent blank consisting of 100 mg of anhydrous sodium sulfate was 234 

analysed with every batch of 11 samples. “Control” samples were created using plastics and 235 
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textiles that contain no BFRs and were also analysed throughout the study; three Controls 236 

were assessed for each matrix. None of the target compounds were found above the limits of 237 

detection in the blanks. Therefore results were not corrected for blank residues and method 238 

limits of detection (LOD) and quantification (LOQ) were estimated based on a signal to noise 239 

ratio (S/N) of 3:1 and 10:1 respectively. 240 

Method accuracy and precision was assessed via repeated analysis of certified reference 241 

materials (CRMs) ERM-EC591 (polypropylene), ERM-EC590 (polyethylene) in addition to 242 

textiles (polyester fabrics), extruded polystyrene and expanded polystyrene that have been 243 

previously measured by this laboratory and another. All values were found to be close to 244 

certified or indicative levels, with a relative standard deviation of <15 % (Abdallah et al., 245 

2017). 246 

 247 

2.7 Exclusion Criteria for Regression Analysis 248 

The regression analysis comprised a comparison between XRF-determined bromine, and the 249 

equivalent bromine concentrations attributed to quantified BFRs (see supporting information, 250 

S2). However, the accuracy of the XRF instrument must be taken into consideration for the 251 

regression between its results of bromine concentrations and those from the mass 252 

spectrometric analyses. The XRF instrument displays as a 95 % confidence interval or ± 2 253 

standard deviations (± 2σ) for each analysis carried out; although this value can be altered, it 254 

provides a sufficiently concise confidence interval to establish the stability of analyses. 255 

During the analysis of EPS and XPS foam samples using the XRF device, a ± 2σ interval as 256 

high as 16 mg kg
-1

 bromine occurred with a “null” reading (i.e. the value determined by the 257 

XRF instrument was 0 ± 16 mg kg
-1

), thus a conservative 20 mg kg
-1

 value was chosen as the 258 

XRF analyser’s limit of detection (LODX). For the remaining polymeric materials – PUF, 259 
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HIPS, ABS, upholstery, textiles – a LODX of 10 mg kg
-1

 was chosen using the same criteria 260 

as established for XPS and EPS samples (with a max ± 2σ interval of 8 mg kg
-1

 for these 261 

sample groups). Therefore, in instances where each of the triplicate XRF measurements 262 

conducted on each sample fell below the LODX, that sample was not considered for the 263 

regression analysis. If, however, one of the triplicate measurements was above the LODX 264 

(and even if the average was below), the sample was included, in consideration of possible 265 

non-uniform BFR distribution throughout the body of the sample.  266 

 267 

3. Results 268 

3.1 Total Bromine Concentrations Determined by XRF Analyses 269 

Table 1 shows a summary of the bromine concentrations quantified using the XRF during in 270 

situ analyses. Highest bromine concentrations were detected in the WEEE waste category at 271 

110,000 mg kg
-1

 and 150,000 mg kg
-1

 in IT & Telecoms and Display samples respectively. 272 

Very high concentrations (exceeding 10,000 mg kg
-1

) were also detected in the Furniture 273 

Upholstery, ELV Upholstery, and ELV (other) sample groups. The Fridge/Freezer, Curtain, 274 

C&D XPS, Mattress Foam and Mattress Upholstery sample groups showed very low 275 

maximum Br concentrations (< 1,000 mg kg
-1

) along with low median and mean values. This 276 

indicates that these sample groups underwent low levels of treatment with bromine-277 

containing compounds, and/or experienced transfer of bromine-containing compounds while 278 

in use or during storage for recycling/transfer (Rauert et al., 2014). The remaining sample 279 

groups showed maximum bromine content between 1,000 and 10,000 mg kg
-1

 which, along 280 

with the aforementioned groups with concentrations in samples reaching roughly 150,000 mg 281 

kg
-1

 Br, demonstrates potential from some articles in these groups to exceed LPCLs. 282 

However, as is evidenced by the low median concentrations for the sample groups relative to 283 
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the maximum values, samples with excessively high concentrations of bromine make up a 284 

minority of each remaining sample group. This indicates a relatively low proportion of waste 285 

articles potentially treated with POP-BFRs in these sample groups (with the possible 286 

exception of Display, Furniture Foam, Furniture Upholstery, and Vehicle Foam samples 287 

groups).  288 

We have additionally observed so-called “false-positives” in different waste categories. A 289 

“false positive” corresponds to a situation where the XRF measurement of Br indicates the 290 

LPCL for a POP-BFR to be exceeded, but the POP-BFR concentration is below the LPCL. 291 

By comparison, a “false negative” would occur where the POP-BFR concentration is above 292 

the LPCL, but this is not indicated by the XRF measurement of Br. These occurrences will be 293 

reported by waste category in the following sections. 294 

 295 

3.2 XRF – MS Total Bromine Measurement Comparison  296 

Concentrations of BFRs in the samples included in this study have been previously reported 297 

by Drage et al. (2018). For comparison with XRF measurements they have been briefly 298 

outlined in Table 1. Additionally, following MS-analysis of the collected samples, some 299 

sample groups including the Mattress, Curtain, Carpet, ELV (other), Fridge/Freezer, and ELV 300 

(other) sample groups showed either no excessive concentrations of BFRs or very few 301 

samples with excess concentrations. These groups were therefore considered unsuitable to act 302 

as comparative metrics for regressions between MS and XRF analyses.  303 

3.2.1 – WEEE Hard Plastics 304 

In addition to the 65 WEEE samples excluded based on Br<LODX (Section 2.7), a further 15 305 

samples were omitted from the regression analysis due to laboratory confirmation of a 306 

background interference during in situ measurements of the samples (Section 2.3). Table 2 307 
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shows the results obtained for these 15 samples, comparing the average of the on-site 308 

triplicate XRF measurements to lab-based duplicate XRF measurements, the latter more 309 

accurately equating to the actual concentrations of bromine in the samples. 310 

Application of this additional exclusion criterion yielded a final data set of 70 ABS/HIPS 311 

samples remaining for regression analysis, the result of which is shown in Figure 1. The 312 

linear regression coefficient (slope, m) is 0.98 and the coefficient of determination (R
2
) is 313 

0.614. However, a notable cluster of samples (n = 10) show much higher concentrations of 314 

bromine as determined by XRF analysis compared to the concentrations determined by 315 

GC/MS / LC-MS/MS analysis (defined here as “true” Br content). Figure 2 (a) is a Bland-316 

Altman plot showing the variation in the Br content determined via XRF analysis as a 317 

percentage of true Br content [((XRF-MS)/MS) x 100], where it can be seen that these 318 

outliers show at least a 4.9-fold overestimation of “true” Br content (z-test, p < 0.001) 319 

compared to a maximum of 2.4-fold overestimation in the remainder. It is likely therefore 320 

that these samples contained bromine in BFR-type chemicals other than those analysed for by 321 

the MS methods used herein, such as BTBPE, tetrabromophtalic acid, and DPDPE (Al-322 

Omran and Harrad, 2016, Petty et al., 2016, IPCS, 1997).  323 

Figure 2 (b) highlights large variations still exist between Br concentrations obtained for the 324 

same samples via the two measurement techniques. Samples with similar concentrations of 325 

BFRs show varying deviations between the techniques such that even employment of a 326 

correction factor would have limited success in improving the regression, across all 327 

concentrations shown herein. For example, samples with total Br concentrations ranging 328 

between 100 and 1,000 mg kg
-1

  show deviations from -3 % to +250 % between the analysis 329 

techniques for approximately 60 % of all WEEE samples therein. These variations may in 330 

part be due to the presence of NBFRs alongside TBBP-A, HBCDD and PBDEs, reflecting the 331 
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XRF instrument’s inability to specify the precise chemical form of bromine present in 332 

samples.  333 

3.2.2 – Furniture and Vehicle Foam 334 

The XRF and MS derived concentrations of Br in 43 PUF samples are compared (Figure 3) 335 

showing a slope of 1.70 and a R
2
 value of 0.98. The high regression coefficient for these 336 

samples is likely the result of interferences with primary and secondary x-rays in the high 337 

thickness and low density of the PUF samples examined. Internal XRF approximations of the 338 

sample’s density using Compton scattering can be heavily influenced due to the presence of 339 

air pockets in the samples, leading to a significant bias in the accurate quantification of 340 

elemental bromine (and other elements) (Zawisza, 2012). However, assuming these biases are 341 

relatively consistent throughout different PUF samples, measured results can be subsequently 342 

multiplied by a correction factor derived from the inverted slope of linear regression to 343 

correct this bias.  344 

Although this correction factor (μpuf = 1.70
-1

 = 0.59) can improve the accuracy of the XRF-345 

measurements, its precision in the analysis of PUF samples remains unreliable, with relative 346 

standard deviation (RSD) for individual measurements ranging from 1 % to 172 % (RSDavg = 347 

39 %). In addition, repeated XRF analyses of PUF samples on a dedicated test stand in a 348 

controlled laboratory setting showed high variability in Br content depending on the 349 

orientation of the sample and the surface facing the analyser window. It was observed upon 350 

repeated laboratory measurements of eight furniture foam samples whose XRF results 351 

deviated by >250 % from the corresponding MS-concentrations, that five of the samples had 352 

shown substantial differences (z-test, p < 0.001) in the detected concentration of bromine on 353 

surfaces which were cut away from the body of the PUF item compared to the surface 354 

adjacent to the upholstery (S1 (a), S4). This – akin to previous observations of BFR migration 355 
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from fabric to dust via direct contact (Rauert et al., 2016) is consistent with migration of 356 

BFRs from overlying upholstery fabric into underlying PUF, resulting in higher 357 

concentrations of BFRs in PUF near contact surfaces and spatially declining concentrations 358 

deeper within the material. 359 

3.2.3 – Furniture and Vehicle Upholstery 360 

For the regression of the 66 upholstery samples included a slope of 1.38 and a R
2
 of 0.86 361 

were determined (S5 (a)), indicating a strong correlation between the analytical techniques. 362 

Similar to the PUF samples, the upholstery samples also appear to require a correction factor 363 

(µupholstery = 1.38
-1

 = 0.72) in order to account for the relatively low density of the material and 364 

the resultant matrix effects. However, a Bland-Altman plot similar to Figure 2 (a) 365 

demonstrated the XRF’s overestimation of bromine concentrations by up to 180 % for 366 

concentrations exceeding 100 mg kg
-1

 and several thousand percent for lower concentrations. 367 

This phenomenon may simply be more obscured at larger concentrations due to the 368 

magnitude of concentrations involved and also possibly due to a “screening-effect” within the 369 

matrix of the material during XRF analysis, whereby multiple bromine atoms are in a linear 370 

formation with respect to the analyser resulting in only the first and none of the subsequent 371 

bromine atoms being detected (Zawisza, 2012). 372 

The relative homogeneity of repeated XRF measurements and the high discrepancies between 373 

Br concentrations obtained via the two measurement techniques revealed in the Bland-374 

Altman plot (S1 (b)), are – as for PUF materials – likely attributable to the presence of BFRs 375 

not measured in this study or, in the case of some ELV samples containing green upholstery, 376 

the use of green pigment containing bromine. In similar fashion to WEEE samples (Section 377 

3.2.1), only 25 % of samples yielded  Br concentrations derived by XRF that agreed within 378 

±25 % of those obtained via MS (following application of the correction factor). However, 379 
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given the high treatment concentrations with HBCDD and Deca-BDE, the XRF could still be 380 

successfully applied to the screening of upholstery for excess POP-BFRs as false-positives 381 

(instances where XRF analysis indicates exceedance of an LPCL where none actually 382 

occurred) at such elevated bromine concentrations were rare in this study. 383 

3.2.4 –Insulation Foams - Expanded Polystyrene (EPS) 384 

Of the 47 original EPS samples, 17 were excluded from the analysis due to determination of 385 

Br concentrations below LODX. Br concentrations obtained for the remaining samples via 386 

XRF and MS underwent regression analysis (Figure 4) showing a linear slope of 1.20 and R
2
 387 

of 0.98. The XRF measurements again appear to require a calibration factor in order to 388 

correct the regression for offsets caused by matrix effects. Implementing this, XRF 389 

measurements of 16 out of 30 samples correlate to within 25 % of MS results with 12 of these 390 

16 (for which Br >1000 mg kg
-1

) agreeing to within 10 % of MS-determined bromine 391 

content. 392 

Despite this favourable agreement for samples containing higher Br concentrations (i.e. 393 

>1000 mg kg
-1

) analysis of the data using a Bland-Altman plot (S1 (c)) reveal potentially 394 

significant outliers in this sample group most notably in the 0-10 mg kg
-1

 Br concentration 395 

range (z-test, p < 0.05), as determined by MS analysis, despite exclusion of samples <LODX. 396 

Additionally, the relative standard deviations (RSDs) of the triplicate XRF measurements 397 

indicate that the samples showing poor agreement between XRF and MS have large RSDs 398 

(>25 %) between the individual XRF measurements, the largest RSDs (173 % each) being 399 

attributed to the significant outliers highlighted in S1 (c). Selection criteria for more accurate 400 

categorisation of Br concentrations can potentially be established from these observations; 401 

specifically, omission of samples with 0-10 mg kg
-1

 Br-content (from MS analysis) and those 402 
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with RSDs over 25 % (from triplicate XRF analysis, results in over 80 % of samples being 403 

categorised as accurate to within 10 % of the true HBCDD concentration. 404 

One noteworthy EPS sample showed a much larger discrepancy between XRF-determined 405 

bromine (average bromine = 3354 mg kg
-1

; RSD = 12 %) and LC-MS/MS (total bromine = 406 

1030 mg kg
-1

) analyses. Repeat XRF measurements of the same sample in-lab yielded an 407 

average for four measurements of 4275 mg kg
-1

 bromine with a RSD of 19 % – the higher 408 

RSD being attributable to the small sample size relative to the XRF measurement window, 409 

such that primary x-rays are not interacting with the target sample. Such a variation between 410 

XRF-determined- and LC-MS/MS-determined bromine did not occur in any other samples 411 

within this group, potentially indicating another bromine-based compound in this particular 412 

sample, such as tribromoallylether or PolyFR (Schlummer et al., 2015, IPCS, 1997). 413 

3.2.5 –Insulation Foams - Extruded Polystyrene (XPS) 414 

The linear regression for the 20 XPS samples for which XRF- and MS-derived Br 415 

measurements were compared (S5 (b)) shows a linear slope of 1.93 with a R
2
 of 0.97. This 416 

sample group shows the largest deviation from a unity regression. Following correction, a 417 

Bland-Altman plot (S1 (d)) shows an even distribution for samples for containing >200 mg 418 

kg
-1

 bromine. However, the variation between the two Br metrics at concentrations up to 200 419 

mg kg
-1

 remains high (±100 %).  420 

This sampling, however, contained only a few with excessive concentrations of BFRs, and 421 

too few overall for a more definitive linear regression. Relatively few samples have been 422 

treated with BFRs and generally at much lower concentrations and other waste categories 423 

based on this sampling. However, a more statistically significant sample size may reveal as 424 

yet unseen nuances to this plastic. 425 

 426 
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4. Discussion 427 

4.1 Utility of XRF Instrumentation as a Pass/Fail Screening Tool for LPCL Compliance 428 

In the context of portable XRF’s potential use as a tool for testing compliance with POP-BFR 429 

LPCL values, the incidence of “false positives” and “false negatives” is crucial. A “false 430 

positive” is defined here as a specific source misclassification scenario, i.e. a situation where 431 

the XRF measurement of Br indicates the LPCL for a POP-BFR to be exceeded, but the POP-432 

BFR concentration is below the LPCL. By comparison, a “false negative” occurs where the 433 

POP-BFR concentration is above the LPCL, but this is not indicated by the XRF 434 

measurement of Br (Section 3). For the purposes of discussion here, we have assumed a 435 

conservative Br LPCL value based on the Br detected being due to penta-BDE. Thus, any 436 

sample exceeding 710 mg Br/kg is assumed here to exceed the POP-BFR LPCL of 1,000 mg 437 

POP-BFR/kg (including 1000 mg kg
-1

 limit for Deca-BDE established by REACH). 438 

Of the 555 items we tested, there were 34 false positives and no false negatives when the 439 

current LPCLs for POP-BFRs are considered: 26 occurred in WEEE items (1 large household 440 

appliance, 12 display items, 6 small domestic appliances, and 7 IT items); the remainder, in 2 441 

vehicle fabric samples, 1 vehicle foam sample, 1 carpet sample, 1 mattress foam sample, 1 442 

furniture upholstery sample, and 2 furniture foam samples. These resulted from 443 

concentrations >1,000 mg kg
-1

 of either TBBP-A alone (n=15), as yet unidentified bromine-444 

containing compounds (n=11), and in 8 instances enhancement of measured BFR 445 

concentrations. However, 5 of the 11 samples with unidentified compounds are attributable to 446 

false-positives due to background interference (Section 3.2.1) which therefore reduces the 447 

number of false-positives to 29 of 555. Translating these incidences into percentages, our 448 

data show that use of portable XRF to monitor compliance with current LPCLs for PBDEs 449 

and HBCDD would mean that 5.2 % of articles from the waste categories studied would be 450 
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incorrectly identified as requiring special treatment. This compares to 47 (8.5 %) of articles 451 

identified as genuinely exceeding current LPCLs and REACH limits.  452 

The implications of such false positives are essentially that a small additional percentage of 453 

articles will not be available for recycling and that there will be an additional unnecessary 454 

economic cost incurred when such articles are subjected to special treatment. Balanced 455 

against these issues, it may be argued that as the cause of the false positives are likely to be 456 

either known or unidentified BFRs not targeted in our study, which may themselves become 457 

subject to future legislative restriction; false positives can potentially be viewed as an 458 

acceptable limitation of the use of XRF as a screening tool for LPCL compliance. By 459 

comparison, false negatives would exert a more detrimental impact as they would allow 460 

regulated POP-BFRs to remain in circulation. However, the absence of false negatives in our 461 

study, suggests that use of hand-held XRF will only very rarely – if ever - fail to identify 462 

articles that exceed LPCL values.  463 

Our data on false positives indicate that portable XRF could be a viable tool for testing 464 

compliance with LPCLs for EPS/XPS, as well as ELV waste and waste soft furnishings, 465 

while further underlining the potential issues with the use of hand-held XRF to test for LPCL 466 

compliance in WEEE due to the more frequent presence of TBBP-A and other as yet 467 

unidentified compounds in such items.   468 

 469 

4.2 Accuracy and Precision of XRF-Determined Bromine as a Surrogate for POP-BFRs 470 

Upon comparing the results of total Br from portable XRF analysis with compound-specific 471 

mass spectrometry, the overall accuracy of XRF strongly depends on the type of polymer 472 

under investigation. Though the regression of all sample-groups appears to follow a generally 473 

linear correlation between XRF and MS results, the deviation of the slopes from unity in most 474 
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of the plastic types indicates that matrix effects occur prominently in low-density materials. 475 

Br concentrations obtained from XRF measurements were adjusted based on subsequent 476 

mass spectrometric analyses of the same samples thus allowing for a correction factor to be 477 

inferred (Section 3.2). However, for use of this instrument as a standalone analyser for 478 

accurately quantifying total bromine concentrations in the range of materials studied here, 479 

suitable calibration standards unique to each type of polymer (ABS, HIPS, PUF, etc.) would 480 

initially be required to ensure reliable compensation for matrix effects. Application of 481 

correction factors to XRF measurements discerned following MS analysis was successful in 482 

correcting the overall accuracy of the instrument for all measured concentrations, with little 483 

effect on the deviations for individual measurements. 484 

These corrections had little effect on the deviations for individual measurements however; 485 

therefore, the estimated precision of the instrument still requires further refinement. In all but 486 

one of the sample groups studied, the deviation of XRF analysis from the MS-determined 487 

bromine content of the samples significantly exceeded a 95 % confidence interval. These 488 

variations may be due to the elemental and chemical composition of individual samples 489 

interfering with XRF analyses in ways unique to each sample. Additionally, as shown by the 490 

occurrence of background interference in WEEE samples (S4), the penetration-depth of x-491 

rays is not finite as they permeate through thin plastic items to the substrate material thereby 492 

skewing estimations of the sample’s density by the instrument (Section 3.2.1). 493 

As shown earlier, further uncertainties may be attributable in some cases to the presence in 494 

samples of BFRs not targeted herein. The presence of these other BFRs (or other bromine-495 

based compounds) also acts as an obstacle to the more effective use of XRF an accurate 496 

metric of POP-BFR concentrations (Figure 1). This is mainly due to the inherent lack of 497 

selectivity of XRF, which renders it incapable of distinguishing between POP-BFRs and 498 

other bromine-containing compounds contributing to the total Br concentration. The precise 499 
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detection of POP-BFRs by XRF will be exacerbated further by the presence of multiple BFRs 500 

within the same sample-groups by the further-use of nBFRs. 501 

Based on the present study, EPS and XPS constitute the groups which could most reliably 502 

utilise XRF-quantified bromine as a surrogate for POP-BFRs in situ at recycling sites, 503 

showing the highest number of samples with the lowest deviations from true bromine content. 504 

Both groups would require specific calibration to compensate for matrix effects and improve 505 

the overall accuracy of analyses. In its current state, XRF-determined bromine measurements 506 

are unsuitable as a surrogate for POP-BFR determination in the remaining sample groups 507 

investigated herein. Refinements to measurement protocols (e.g. material separation to avoid 508 

background interference in WEEE) and the inclusion of reference standards specific to each 509 

type of plastic could improve the accuracy of the XRF instrument. However, specific matrix 510 

effects inherent in low density materials, varying chemical composition of the analyte 511 

materials, and the presence of non-POP-BFRs, and the lack of specificity of XRF in 512 

determining bromine species constitute substantial obstacles to the standalone use of XRF for 513 

the accurate quantification of POP-BFRs in plastic media. 514 

 515 

5. Conclusions 516 

Our study clearly shows that portable XRF cannot be used to accurately determine absolute 517 

concentrations of POP-BFRs. However, its use as a screening tool for LPCL compliance 518 

appears to be viable, provided sufficient prior knowledge of typical BFR-treatment in 519 

different plastics is available and the number of samples misclassified as exceeding LPCLs is 520 

deemed acceptable or can be reduced. Of particular note is the applicability of XRF for 521 

screening EPS and XPS materials above the proposed LPCL threshold (710 mg kg
-1

) due to 522 

the observed high precision shown for quantifying POP-BFRs in these materials. However, 523 
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the results obtained from the standalone use of XRF measurements as a surrogate for POP-524 

BFR determination in the other plastic types investigated agree with conclusions previously 525 

reached by Gallen et al. (2014) and Petreas et al. (2016), namely that significant 526 

inconsistencies between measurement techniques result in XRF alone being insufficient to 527 

precisely determine BFRs, furthermore requiring MS to identify concentrations of specific 528 

BFRs. Application of reference standards such as those utilized by Guzzonato et al. (2016) 529 

can further enhance the accuracy of XRF as a surrogate measure of BFR concentrations. 530 

Restricting screening solely to non-WEEE items further reduces the frequency of false 531 

positives to 2.5 %.  To ensure that waste plastics are being recycled effectively and safely, the 532 

validity of XRF screening for compliance with LPCLs for POP-BFRs should remain an 533 

ongoing field of investigation, in particular with respect to matrix effects and the need for 534 

calibration standards, and the expected further use of NBFRs in recyclable plastics. 535 

In summary, our study shows that while portable XRF may be used as a reliable (though not 536 

infallible) “pass-fail” indicator of compliance with LPCLs for POP-BFRs. We also show that 537 

refinements to measurement protocols (e.g. material separation to avoid background 538 

interference in WEEE) and the inclusion of reference standards specific to each type of 539 

plastic could potentially reduce the incidence of “false positives” resulting from use of 540 

portable XRF, thereby diminishing the number of waste items incorrectly identified as 541 

requiring special treatment.  542 
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Abstract 13 

The purpose of this study was to establish the efficacy of portable x-ray fluorescence (XRF) 14 

instrumentation as a screening tool for a variety of end of life plastics which may contain 15 

excess amounts of brominated flame retardants (BFRs), in compliance with European Union 16 

(EU) and United Nations Environment Programme (UNEP) legislative limits (low POP 17 

concentration limits – LPCLs).  555 samples of waste plastics were collected from eight 18 

waste and recycling sites in Ireland, including waste electrical and electronic equipment 19 

(WEEE), textiles, polyurethane foams (PUFs), and expanded polystyrene foams. Samples 20 

were screened for bromine content, in situ using a Niton™ XL3T GOLDD XRF analyser, the 21 

results of which were statistically compared to mass spectrometry (MS)-based measurements 22 

of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDD) and 23 

tetrabromobisphenol-A (TBBP-A) concentrations in the same samples. 24 

Regression between XRF and MS for WEEE samples show that, despite an overall 25 

favourable trend, large deviations occur for a cluster of samples indicative of other bromine-26 

based compounds in some samples; even compensating for false-positives due to background 27 

interference from electronic components, XRF tends to over-estimate MS-determined BFR 28 

concentrations in the 100 to 10,000 mg kg
-1

 range. Substantial deviations were additionally 29 

found between results for PUFs, textiles and polystyrene samples, with the XRF over-30 

estimating BFR concentrations by a factor of up to 1.9; this is likely due to matrix effects 31 

influencing XRF measurements. However, expanded (EPS) and extruded polystyrene (XPS) 32 

yielded much more reliable estimations of BFR-content due to a dominance of HBCDD in 33 

these materials.  34 

XRF proved much more reliable as a “pass/fail” screening tool for LPCL compliance 35 

(including a prospective LPCL on Deca-BDE based on REACH). Using a conservative 36 

threshold of BFR content exceeding legislative limits (710 mg kg
-1

 bromine attributed to 37 
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penta-BDE), XRF mistakenly identifies only 6 % of samples (34/555) as exceeding 38 

legislative limits. 39 

 40 

Keywords 41 

Waste Plastics; LPCL Screening; Quantification; PBDEs; HBCDD. 42 

43 
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1. Introduction 44 

Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD) are two 45 

groups of brominated flame retardants (BFRs) which have been extensively applied to 46 

various commercial and consumer products to meet flammability standards.  HBCDD has 47 

been used as a flame retardant additive in expanded (EPS) and extruded (XPS) polystyrene 48 

insulation foams as well as in high impact polystyrene (HIPS) for electrical housing and 49 

junction boxes, as well as a textile coating agent for furniture and furnishings (Marvin et al., 50 

2011, UNEP, 2017b). Of the three commercial PBDE formulations, Penta-BDE is reportedly 51 

almost exclusively used in polyurethane foams (PUFs) for domestic, office and automotive 52 

applications, along with minor applications in printed circuit boards and microprocessors in 53 

electrical and electronic equipment (EEE) (UNEP, 2010). Octa-BDE has been applied to 54 

acrylonitrile butadiene styrene (ABS) and HIPS, largely used as casings for EEE (EC, 2011). 55 

Deca-BDE was commonly used in coating agents applied to the surfaces of textiles and 56 

upholstery as well as applied to HIPS for EEE as an additive compound (Weil and Levchik, 57 

2009, IPCS, 1997).  Over the last two decades however, concerns about their toxicity, 58 

persistence and ability to bioaccumulate has led to their listing as persistent organic 59 

Pollutants (POPs) under the Stockholm Convention. The commercial mixtures of Penta- and 60 

Octa-BDE were listed in 2009 (UNEP, 2009), whilst HBCDD was listed in 2013 (UNEP, 61 

2013), and the Deca-BDE commercial mixture listed in 2017 (UNEP, 2017a). Another 62 

common legacy BFR, tetrabromobisphenol-A (TBBP-A), is also extensively used in as an 63 

additive in HIPS and ABS and also reactively added to printed circuit boards for EEE (Morf 64 

et al., 2003, IPCS, 1997). Though not currently under consideration for listing as a POP, 65 

TBBP-A has been recently classified as H410 (very toxic to aquatic species), and listed as a 66 

Class 2A carcinogen (Grosse et al., 2016, Malkoske et al., 2016). Additionally, waste articles 67 
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containing TBBP-A at concentrations in excess of 0.1 % is to be classified as “hazardous 68 

waste” (EU, 2017b). 69 

In the light of growing environmental concern, measures are being adopted in order to 70 

prevent further environmental contamination from goods which were treated with POP-BFRs 71 

(UNEP, 2009, EC, 2004). One such measure is the modification of recycling systems to 72 

include screening procedures for goods suspected to contain high concentrations of POPs, 73 

including POP-BFRs. Low POP concentration limits (LPCLs) of 1000 mg kg
-1

 have been 74 

established for each of the HBCDD, Penta-BDE and Octa-BDE commercial mixtures (EC, 75 

2010, EC, 2016, EU, 2017a), in addition to a limit on Deca-BDE to come into force in 2019 76 

(EU, 2017). However, a fast and cost-effective method of identifying products exceeding 77 

these limits has not yet been identified, with industry standards (such as conventional 78 

chromatographic-mass spectrometric techniques) being impractical for this purpose due to 79 

their high running costs and low throughput. 80 

Recently the use of portable x-ray fluorescence (XRF) measurements of elemental Br has 81 

been suggested as a surrogate measure of POP-BFR concentrations. Several studies have 82 

been performed to investigate the efficacy of portable XRF for the measurements of BFRs in 83 

various plastic products, including EEE (Gallen et al., 2014, Aldrian et al., 2015, Guzzonato 84 

et al., 2016) and furniture fabrics, foams and textiles (Petreas et al., 2016). Whilst these 85 

studies have had varying degrees of success, they have all concluded that XRF-based 86 

measurements are not capable of accurately quantifying concentrations of specific BFRs as 87 

XRF measures elemental bromine only. However, Aldrian et al. (2015) and Petreas et al. 88 

(2016) suggested that the use of XRF may be an effective screening tool for bromine content 89 

in WEEE and furniture, as well as Schlummer et al. (2015) concluding effective screening 90 

potential of HBCDD with the inclusion of an extraction process to distinguish the Br species. 91 

Furthermore, Guzzonato et al. (2016) demonstrated that the accuracy of XRF measurements 92 
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of Br in ABS and HIPS may be improved by use of custom-made solid reference standards 93 

containing Deca-BDE, and concluded that use of XRF to screen waste electrical and 94 

electronic equipment (WEEE) for compliance with LPCLs was feasible. The largest recent 95 

study (Sindiku et al., 2015) includes XRF screening in their methodology using varying 96 

ranges of Br content, proving relatively successful in screening for BFR-content (with an 97 

instrumental precision of ±20 %) but does highlight limitations in discerning the species of 98 

bromine. 99 

While the suitability of the XRF as a tool for predicting BFR concentrations has been 100 

evaluated previously, many of the studies hitherto have been on a relatively small scale (<50 101 

samples). Moreover, the range of plastics previously studied is limited to a few types and 102 

applications or do not show in-depth comparisons of the accuracy and precision of XRF with 103 

respect to MS analysis. In light of the introduction of LPCLs and the substantial mass of 104 

waste polymers that will require screening for compliance with LPCLs (e.g. 42,628 tonnes of 105 

WEEE collected in Ireland in 2013 (EPA, 2016)), it is vital that a rapid screening method is 106 

developed to enable fast and reliable identification of waste items exceeding LPCLs. 107 

Therefore the aims of this study are to (i) examine the efficacy of portable XRF 108 

measurements as a predictor of BFR concentrations in a wide range of plastics in the waste 109 

stream; and (ii) to determine whether portable XRF can be used as a “pass/fail” screening 110 

tool for the interception of waste products exceeding LPCLs. These aims were achieved by a 111 

large scale sampling campaign of recyclable plastics at waste and recycling sites in Ireland. 112 

XRF measurements of bromine in a variety of waste articles (including WEEE plastics, 113 

domestic and end of live vehicle (ELV) soft furnishings (PUF and upholstery fabrics) and 114 

EPS/XPS insulation) were taken prior to quantitative analysis of selected BFRs via either 115 

GC/MS or LC-MS/MS. To our knowledge, this is the first assessment of XRF as a tool for 116 

monitoring compliance with LPCL legislation. Moreover, it represents the most 117 
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comprehensive assessment to date of the accuracy and suitability of hand-held XRF analysis 118 

for quantification of BFR levels in waste articles. 119 

 120 

2. Materials and Methods 121 

2.1 Materials 122 

Chemical standards for native BDEs -28, -47, -77, -99, -100, -128, -153, -154, -183, -196, -123 

197, -203, -209, native α-HBCDD, β-HBCDD, γ-HBCDD, 
13

C12-BDE-209, 
13

C12-α-HBCDD, 124 

13
C12-β-HBCDD, 

13
C12-γ-HBCDD, d18-γ-HBCDD and 

13
C12-TBBP-A were purchased from 125 

Wellington Laboratories (Guelph, ON, Canada). PCB-129 was purchased from Accustandard 126 

(New Haven, CT, USA). All solvents (HPLC grade hexane, dichloromethane (DCM), iso-127 

octane and methanol) and sulfuric acid (>95 %) were purchased from Fisher Scientific 128 

(Loughborough, UK). 129 

 130 

2.2 Sample Collection and Field Measurement 131 

Samples were obtained from eight waste and recycling sites in Ireland and their bromine 132 

concentrations measured in situ using a hand-held XRF device. Samples from a range of 133 

different waste categories were collected: HIPS and ABS hard plastic casings from WEEE; 134 

soft furnishings and textiles typical in both domestic and vehicular environments; and 135 

polystyrene foams from building insulation and packaging materials. Following collection 136 

and XRF analysis, destructive chemical analysis via GC-MS and LC-MS/MS was carried-out 137 

on small sub-samples taken from the same parent product, within the immediate vicinity of 138 

the area subjected to XRF analysis. This was performed to evaluate the accuracy with which 139 
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the XRF-determined bromine concentrations correlated with those of GC/MS or LC-MS/MS 140 

measurements of selected BFRs. 141 

In total, matched Br and BFR measurements were obtained for 555 samples; Table 1 provides 142 

an overview of the number of samples collected from each “waste type”. Following on-site 143 

use of the XRF instrument, small sections of the scanned areas (~1-2 cm
2
 for HIPS/ABS, 144 

upholstery and textiles, or ~ 1-2 cm
3
 for polystyrene and PUF) were subsequently removed 145 

and individually stored in labelled polyethylene bags. These collected samples were then 146 

shipped to the University of Birmingham where concentrations of POP-BFRs and TBBP-A 147 

were determined. 148 

 149 

2.3 XRF Analysis 150 

Each measurement involved placing the XRF instrument directly on to the measurement 151 

surface, with the operator standing directly behind the instrument for the duration of the 152 

measurement. As per Niton UK guidelines on the use of the device, secondary x-rays 153 

projected from the specimen deviate at angles around the device (mostly laterally) as well as 154 

at much lower intensities than primary x-rays, thus attenuating rapidly. Using the secondary 155 

dose rates produced during plastics mode of operation, on plastic materials, and with varying 156 

substrates (air, concrete, wood, etc.), the maximum dose for the user (at the device’s trigger) 157 

was calculated for the sum of all measurements carried out and found to be well-below the 158 

annual dose for a category B radiation worker (i.e. <20 mSv in any single year). 159 

Determination of total bromine content in the samples was carried out in situ using a Niton 160 

XLt3-900 GOLDD X-Ray Fluorescence Analyser.  Calibration was performed by Niton UK 161 

using proprietary standards containing varying concentrations of relevant inorganic 162 

compounds in a polymer matrix. Quantification and qualification of bromine for the Niton 163 
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XL3t model are achieved using the K α1 line (11.9242 eV) and K α2 line (11.8776 eV) 164 

respectively. The instrument was operated in the “plastics” mode of operation, which 165 

optimises the instrument’s settings for interaction of x-rays with low density polymer 166 

materials and quantification of specific elements in their matrices. Standard analyses using 167 

the XRF instrument in this mode gives a 95 % confidence interval (CI = ± 2σ) with each 168 

measurement taken. The duration of analysis ranged from 30 to 105 seconds with longer 169 

iterations required to improve instrumental uncertainty in samples with high bromine content 170 

and for samples comprising of low density materials (Zawisza, 2012). 171 

For HIPS, ABS and insulation foam samples, the surface of the material was wiped with a 172 

clean non-fibrillating tissue prior to analysis, in order to remove sediment and dust which 173 

could interfere with the instrument’s primary x-rays or may contain traces of bromine. A 174 

thickness correction of 2 mm was additionally applied to the HIPS and ABS samples to help 175 

account for the finite thickness of the samples (per manufacturer guidelines); this reduces the 176 

risk of interference from substrate materials as the instrument internally estimates the density 177 

of an analyte based on Compton scattering of primary x-rays. The instrument window was 178 

then placed flat against the sample surface and a measurement of bromine content carried out 179 

(with a minimum thickness of 10 cm for insulation samples and as presented at 180 

approximately 2 mm for HIPS and ABS samples). Upholstery and other soft furnishings were 181 

manually folded, compressed to a thickness of approximately 3 cm (to achieve the thickness 182 

required for said materials for full attenuation of primary x-rays, per instrument manufacturer 183 

guidelines) and held in place by placing the instrument over the sample, in order to increase 184 

the density of the active analysis zone. Three repeat measurements were carried out on each 185 

sample, several centimetres apart from each scanning point and at varying orientations. These 186 

repeat measurements were required to be carried out on the same plastic panel/area and under 187 
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the same experimental conditions in order to detect instances of heterogeneous distribution of 188 

BFRs within the body of sample. 189 

Additional XRF measurements of bromine concentrations on available sub-samples of WEEE 190 

HIPS and ABS samples (i.e. those aliquots removed for BFR determination) were carried out 191 

in a controlled laboratory setting. These measurements were made in order to determine the 192 

instances where bromine detected during field measurements were due to background 193 

interference, being attributed to the presence of bromine in underlying electronic components 194 

rather than from the polymeric casing itself. 195 

 196 

2.4 Extraction and Clean-Up 197 

For quantitative analysis of BFRs, samples were extracted and cleaned according to methods 198 

previously described (Abdallah et al., 2017). Briefly, aliquots of samples (20-100 mg) were 199 

cut with a retractable blade and weighed directly into a 15 mL glass centrifuge tube and 200 

spiked with 20 ng of BDEs -77 and -128, 
13

C12- α-, -β, and γ-HBCDD, 
13

C12-TBBP-A, and 40 201 

ng 
13

C12-BDE-209 as internal standards. Approximately 3 mL of dichloromethane (DCM) 202 

was added to the aliquot and vortexed for 2 minutes, followed by 30 minutes sonication. The 203 

extraction process was repeated three times with the combined extracts collected in a separate 204 

glass centrifuge tube. Crude extracts were concentrated under a gentle stream of N2 to near-205 

dryness and reconstituted in 2 mL hexane. Extracts were washed with >95 % sulfuric acid 206 

and supernatant organic layer was collected and concentrated to near-dryness under a gentle 207 

N2 stream. Samples were reconstituted in 200 μL of iso-octane containing 0.2 ng µL
-1

 PCB-208 

129 as a recovery standard. After determination of PBDEs via GC-MS, extracts were 209 

reconstituted in methanol containing 0.2 ng µL
-1

 d18-γ-HBCDD for determination of 210 

HBCDDs and TBBP-A via LC-MS/MS analysis. 211 
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 212 

2.5 Mass Spectrometric Analysis 213 

Quantitative analysis of PBDEs was performed in a single injection on a ThermoFisher Trace 214 

1310 gas chromatograph coupled to a ThermoFisher ISQ mass spectrometer (MS). The MS 215 

was operated in electron ionisation mode using selective ion monitoring (SIM). One µL of 216 

the purified extract was injected for analysis using a programmable temperature vapouriser 217 

(PTV) onto a Restek Rxi-5Sil MS column (15m x 0.25 mm x 0.25 µm film thickness). 218 

Helium was used as the carrier gas at a flow rate of 1.5 mL min
-1

. Full GC/MS parameters 219 

have been reported previously (Abdallah et al., 2017).  220 

HBCDDs were measured using a Shimadzu LC-20AB Prominence binary pump liquid 221 

chromatograph equipped with a Sil-20A auto sampler and a DGU-20A3 vacuum degasser 222 

coupled to an AB Sciex API 2000 triple quadrupole MS. Chromatographic separation was 223 

achieved using Agilent Pursuit XRS3 C18 column (150 mm x 2 mm, I.D., 3 µm particle size) 224 

and a mobile phase of (a) 1:1 methanol/water and (b) methanol at a flow rate of 180 µL min
-1

. 225 

Molecular ionisation was achieved using an electrospray ionisation (ESI) source operated in 226 

negative ion mode. The MS/MS was operated in the multiple reaction monitoring (MRM) 227 

mode. The MRMs transitions monitored were on m/z 640.6 → 79, m/z 652.4 → 79 and m/z 228 

657.7 → 79 for the native and the 
13

C12-labelled HBCDD diastereomers respectively and 229 

540.8 → 79, m/z 552.8 → 79 were used to monitor native and 
13

C12-labelled TBBP-A. Full 230 

LC-MS/MS parameters have been reported previously (Abdallah et al., 2008). 231 

 232 

2.6 Quality Assurance/Quality Control 233 

For BFR analysis, a reagent blank consisting of 100 mg of anhydrous sodium sulfate was 234 

analysed with every batch of 11 samples. “Control” samples were created using plastics and 235 
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textiles that contain no BFRs and were also analysed throughout the study; three Controls 236 

were assessed for each matrix. None of the target compounds were found above the limits of 237 

detection in the blanks. Therefore results were not corrected for blank residues and method 238 

limits of detection (LOD) and quantification (LOQ) were estimated based on a signal to noise 239 

ratio (S/N) of 3:1 and 10:1 respectively. 240 

Method accuracy and precision was assessed via repeated analysis of certified reference 241 

materials (CRMs) ERM-EC591 (polypropylene), ERM-EC590 (polyethylene) in addition to 242 

textiles (polyester fabrics), extruded polystyrene and expanded polystyrene that have been 243 

previously measured by this laboratory and another. All values were found to be close to 244 

certified or indicative levels, with a relative standard deviation of <15 % (Abdallah et al., 245 

2017). 246 

 247 

2.7 Exclusion Criteria for Regression Analysis 248 

The regression analysis comprised a comparison between XRF-determined bromine, and the 249 

equivalent bromine concentrations attributed to quantified BFRs (see supporting information, 250 

S2). However, the accuracy of the XRF instrument must be taken into consideration for the 251 

regression between its results of bromine concentrations and those from the mass 252 

spectrometric analyses. The XRF instrument displays as a 95 % confidence interval or ± 2 253 

standard deviations (± 2σ) for each analysis carried out; although this value can be altered, it 254 

provides a sufficiently concise confidence interval to establish the stability of analyses. 255 

During the analysis of EPS and XPS foam samples using the XRF device, a ± 2σ interval as 256 

high as 16 mg kg
-1

 bromine occurred with a “null” reading (i.e. the value determined by the 257 

XRF instrument was 0 ± 16 mg kg
-1

), thus a conservative 20 mg kg
-1

 value was chosen as the 258 

XRF analyser’s limit of detection (LODX). For the remaining polymeric materials – PUF, 259 
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HIPS, ABS, upholstery, textiles – a LODX of 10 mg kg
-1

 was chosen using the same criteria 260 

as established for XPS and EPS samples (with a max ± 2σ interval of 8 mg kg
-1

 for these 261 

sample groups). Therefore, in instances where each of the triplicate XRF measurements 262 

conducted on each sample fell below the LODX, that sample was not considered for the 263 

regression analysis. If, however, one of the triplicate measurements was above the LODX 264 

(and even if the average was below), the sample was included, in consideration of possible 265 

non-uniform BFR distribution throughout the body of the sample.  266 

 267 

3. Results 268 

3.1 Total Bromine Concentrations Determined by XRF Analyses 269 

Table 1 shows a summary of the bromine concentrations quantified using the XRF during in 270 

situ analyses. Highest bromine concentrations were detected in the WEEE waste category at 271 

110,000 mg kg
-1

 and 150,000 mg kg
-1

 in IT & Telecoms and Display samples respectively. 272 

Very high concentrations (exceeding 10,000 mg kg
-1

) were also detected in the Furniture 273 

Upholstery, ELV Upholstery, and ELV (other) sample groups. The Fridge/Freezer, Curtain, 274 

C&D XPS, Mattress Foam and Mattress Upholstery sample groups showed very low 275 

maximum Br concentrations (< 1,000 mg kg
-1

) along with low median and mean values. This 276 

indicates that these sample groups underwent low levels of treatment with bromine-277 

containing compounds, and/or experienced transfer of bromine-containing compounds while 278 

in use or during storage for recycling/transfer (Rauert et al., 2014). The remaining sample 279 

groups showed maximum bromine content between 1,000 and 10,000 mg kg
-1

 which, along 280 

with the aforementioned groups with concentrations in samples reaching roughly 150,000 mg 281 

kg
-1

 Br, demonstrates potential from some articles in these groups to exceed LPCLs. 282 

However, as is evidenced by the low median concentrations for the sample groups relative to 283 
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the maximum values, samples with excessively high concentrations of bromine make up a 284 

minority of each remaining sample group. This indicates a relatively low proportion of waste 285 

articles potentially treated with POP-BFRs in these sample groups (with the possible 286 

exception of Display, Furniture Foam, Furniture Upholstery, and Vehicle Foam samples 287 

groups).  288 

We have additionally observed so-called “false-positives” in different waste categories. A 289 

“false positive” corresponds to a situation where the XRF measurement of Br indicates the 290 

LPCL for a POP-BFR to be exceeded, but the POP-BFR concentration is below the LPCL. 291 

By comparison, a “false negative” would occur where the POP-BFR concentration is above 292 

the LPCL, but this is not indicated by the XRF measurement of Br. These occurrences will be 293 

reported by waste category in the following sections. 294 

 295 

3.2 XRF – MS Total Bromine Measurement Comparison  296 

Concentrations of BFRs in the samples included in this study have been previously reported 297 

by Drage et al. (2018). For comparison with XRF measurements they have been briefly 298 

outlined in Table 1. Additionally, following MS-analysis of the collected samples, some 299 

sample groups including the Mattress, Curtain, Carpet, ELV (other), Fridge/Freezer, and ELV 300 

(other) sample groups showed either no excessive concentrations of BFRs or very few 301 

samples with excess concentrations. These groups were therefore considered unsuitable to act 302 

as comparative metrics for regressions between MS and XRF analyses.  303 

3.2.1 – WEEE Hard Plastics 304 

In addition to the 65 WEEE samples excluded based on Br<LODX (Section 2.7), a further 15 305 

samples were omitted from the regression analysis due to laboratory confirmation of a 306 

background interference during in situ measurements of the samples (Section 2.3). Table 2 307 
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shows the results obtained for these 15 samples, comparing the average of the on-site 308 

triplicate XRF measurements to lab-based duplicate XRF measurements, the latter more 309 

accurately equating to the actual concentrations of bromine in the samples. 310 

Application of this additional exclusion criterion yielded a final data set of 70 ABS/HIPS 311 

samples remaining for regression analysis, the result of which is shown in Figure 1. The 312 

linear regression coefficient (slope, m) is 0.98 and the coefficient of determination (R
2
) is 313 

0.614. However, a notable cluster of samples (n = 10) show much higher concentrations of 314 

bromine as determined by XRF analysis compared to the concentrations determined by 315 

GC/MS / LC-MS/MS analysis (defined here as “true” Br content). Figure 2 (a) is a Bland-316 

Altman plot showing the variation in the Br content determined via XRF analysis as a 317 

percentage of true Br content [((XRF-MS)/MS) x 100], where it can be seen that these 318 

outliers show at least a 4.9-fold overestimation of “true” Br content (z-test, p < 0.001) 319 

compared to a maximum of 2.4-fold overestimation in the remainder. It is likely therefore 320 

that these samples contained bromine in BFR-type chemicals other than those analysed for by 321 

the MS methods used herein, such as BTBPE, tetrabromophtalic acid, and DPDPE (Al-322 

Omran and Harrad, 2016, Petty et al., 2016, IPCS, 1997).  323 

Figure 2 (b) highlights large variations still exist between Br concentrations obtained for the 324 

same samples via the two measurement techniques. Samples with similar concentrations of 325 

BFRs show varying deviations between the techniques such that even employment of a 326 

correction factor would have limited success in improving the regression, across all 327 

concentrations shown herein. For example, samples with total Br concentrations ranging 328 

between 100 and 1,000 mg kg
-1

  show deviations from -3 % to +250 % between the analysis 329 

techniques for approximately 60 % of all WEEE samples therein. These variations may in 330 

part be due to the presence of NBFRs alongside TBBP-A, HBCDD and PBDEs, reflecting the 331 
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XRF instrument’s inability to specify the precise chemical form of bromine present in 332 

samples.  333 

3.2.2 – Furniture and Vehicle Foam 334 

The XRF and MS derived concentrations of Br in 43 PUF samples are compared (Figure 3) 335 

showing a slope of 1.70 and a R
2
 value of 0.98. The high regression coefficient for these 336 

samples is likely the result of interferences with primary and secondary x-rays in the high 337 

thickness and low density of the PUF samples examined. Internal XRF approximations of the 338 

sample’s density using Compton scattering can be heavily influenced due to the presence of 339 

air pockets in the samples, leading to a significant bias in the accurate quantification of 340 

elemental bromine (and other elements) (Zawisza, 2012). However, assuming these biases are 341 

relatively consistent throughout different PUF samples, measured results can be subsequently 342 

multiplied by a correction factor derived from the inverted slope of linear regression to 343 

correct this bias.  344 

Although this correction factor (μpuf = 1.70
-1

 = 0.59) can improve the accuracy of the XRF-345 

measurements, its precision in the analysis of PUF samples remains unreliable, with relative 346 

standard deviation (RSD) for individual measurements ranging from 1 % to 172 % (RSDavg = 347 

39 %). In addition, repeated XRF analyses of PUF samples on a dedicated test stand in a 348 

controlled laboratory setting showed high variability in Br content depending on the 349 

orientation of the sample and the surface facing the analyser window. It was observed upon 350 

repeated laboratory measurements of eight furniture foam samples whose XRF results 351 

deviated by >250 % from the corresponding MS-concentrations, that five of the samples had 352 

shown substantial differences (z-test, p < 0.001) in the detected concentration of bromine on 353 

surfaces which were cut away from the body of the PUF item compared to the surface 354 

adjacent to the upholstery (S1 (a), S4). This – akin to previous observations of BFR migration 355 
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from fabric to dust via direct contact (Rauert et al., 2016) is consistent with migration of 356 

BFRs from overlying upholstery fabric into underlying PUF, resulting in higher 357 

concentrations of BFRs in PUF near contact surfaces and spatially declining concentrations 358 

deeper within the material. 359 

3.2.3 – Furniture and Vehicle Upholstery 360 

For the regression of the 66 upholstery samples included a slope of 1.38 and a R
2
 of 0.86 361 

were determined (S5 (a)), indicating a strong correlation between the analytical techniques. 362 

Similar to the PUF samples, the upholstery samples also appear to require a correction factor 363 

(µupholstery = 1.38
-1

 = 0.72) in order to account for the relatively low density of the material and 364 

the resultant matrix effects. However, a Bland-Altman plot similar to Figure 2 (a) 365 

demonstrated the XRF’s overestimation of bromine concentrations by up to 180 % for 366 

concentrations exceeding 100 mg kg
-1

 and several thousand percent for lower concentrations. 367 

This phenomenon may simply be more obscured at larger concentrations due to the 368 

magnitude of concentrations involved and also possibly due to a “screening-effect” within the 369 

matrix of the material during XRF analysis, whereby multiple bromine atoms are in a linear 370 

formation with respect to the analyser resulting in only the first and none of the subsequent 371 

bromine atoms being detected (Zawisza, 2012). 372 

The relative homogeneity of repeated XRF measurements and the high discrepancies between 373 

Br concentrations obtained via the two measurement techniques revealed in the Bland-374 

Altman plot (S1 (b)), are – as for PUF materials – likely attributable to the presence of BFRs 375 

not measured in this study or, in the case of some ELV samples containing green upholstery, 376 

the use of green pigment containing bromine. In similar fashion to WEEE samples (Section 377 

3.2.1), only 25 % of samples yielded  Br concentrations derived by XRF that agreed within 378 

±25 % of those obtained via MS (following application of the correction factor). However, 379 
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given the high treatment concentrations with HBCDD and Deca-BDE, the XRF could still be 380 

successfully applied to the screening of upholstery for excess POP-BFRs as false-positives 381 

(instances where XRF analysis indicates exceedance of an LPCL where none actually 382 

occurred) at such elevated bromine concentrations were rare in this study. 383 

3.2.4 –Insulation Foams - Expanded Polystyrene (EPS) 384 

Of the 47 original EPS samples, 17 were excluded from the analysis due to determination of 385 

Br concentrations below LODX. Br concentrations obtained for the remaining samples via 386 

XRF and MS underwent regression analysis (Figure 4) showing a linear slope of 1.20 and R
2
 387 

of 0.98. The XRF measurements again appear to require a calibration factor in order to 388 

correct the regression for offsets caused by matrix effects. Implementing this, XRF 389 

measurements of 16 out of 30 samples correlate to within 25 % of MS results with 12 of these 390 

16 (for which Br >1000 mg kg
-1

) agreeing to within 10 % of MS-determined bromine 391 

content. 392 

Despite this favourable agreement for samples containing higher Br concentrations (i.e. 393 

>1000 mg kg
-1

) analysis of the data using a Bland-Altman plot (S1 (c)) reveal potentially 394 

significant outliers in this sample group most notably in the 0-10 mg kg
-1

 Br concentration 395 

range (z-test, p < 0.05), as determined by MS analysis, despite exclusion of samples <LODX. 396 

Additionally, the relative standard deviations (RSDs) of the triplicate XRF measurements 397 

indicate that the samples showing poor agreement between XRF and MS have large RSDs 398 

(>25 %) between the individual XRF measurements, the largest RSDs (173 % each) being 399 

attributed to the significant outliers highlighted in S1 (c). Selection criteria for more accurate 400 

categorisation of Br concentrations can potentially be established from these observations; 401 

specifically, omission of samples with 0-10 mg kg
-1

 Br-content (from MS analysis) and those 402 



19 
 

with RSDs over 25 % (from triplicate XRF analysis, results in over 80 % of samples being 403 

categorised as accurate to within 10 % of the true HBCDD concentration. 404 

One noteworthy EPS sample showed a much larger discrepancy between XRF-determined 405 

bromine (average bromine = 3354 mg kg
-1

; RSD = 12 %) and LC-MS/MS (total bromine = 406 

1030 mg kg
-1

) analyses. Repeat XRF measurements of the same sample in-lab yielded an 407 

average for four measurements of 4275 mg kg
-1

 bromine with a RSD of 19 % – the higher 408 

RSD being attributable to the small sample size relative to the XRF measurement window, 409 

such that primary x-rays are not interacting with the target sample. Such a variation between 410 

XRF-determined- and LC-MS/MS-determined bromine did not occur in any other samples 411 

within this group, potentially indicating another bromine-based compound in this particular 412 

sample, such as tribromoallylether or PolyFR (Schlummer et al., 2015, IPCS, 1997). 413 

3.2.5 –Insulation Foams - Extruded Polystyrene (XPS) 414 

The linear regression for the 20 XPS samples for which XRF- and MS-derived Br 415 

measurements were compared (S5 (b)) shows a linear slope of 1.93 with a R
2
 of 0.97. This 416 

sample group shows the largest deviation from a unity regression. Following correction, a 417 

Bland-Altman plot (S1 (d)) shows an even distribution for samples for containing >200 mg 418 

kg
-1

 bromine. However, the variation between the two Br metrics at concentrations up to 200 419 

mg kg
-1

 remains high (±100 %).  420 

This sampling, however, contained only a few with excessive concentrations of BFRs, and 421 

too few overall for a more definitive linear regression. Relatively few samples have been 422 

treated with BFRs and generally at much lower concentrations and other waste categories 423 

based on this sampling. However, a more statistically significant sample size may reveal as 424 

yet unseen nuances to this plastic. 425 

 426 
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4. Discussion 427 

4.1 Utility of XRF Instrumentation as a Pass/Fail Screening Tool for LPCL Compliance 428 

In the context of portable XRF’s potential use as a tool for testing compliance with POP-BFR 429 

LPCL values, the incidence of “false positives” and “false negatives” is crucial. A “false 430 

positive” is defined here as a specific source misclassification scenario, i.e. a situation where 431 

the XRF measurement of Br indicates the LPCL for a POP-BFR to be exceeded, but the POP-432 

BFR concentration is below the LPCL. By comparison, a “false negative” occurs where the 433 

POP-BFR concentration is above the LPCL, but this is not indicated by the XRF 434 

measurement of Br (Section 3). For the purposes of discussion here, we have assumed a 435 

conservative Br LPCL value based on the Br detected being due to penta-BDE. Thus, any 436 

sample exceeding 710 mg Br/kg is assumed here to exceed the POP-BFR LPCL of 1,000 mg 437 

POP-BFR/kg (including 1000 mg kg
-1

 limit for Deca-BDE established by REACH). 438 

Of the 555 items we tested, there were 34 false positives and no false negatives when the 439 

current LPCLs for POP-BFRs are considered: 26 occurred in WEEE items (1 large household 440 

appliance, 12 display items, 6 small domestic appliances, and 7 IT items); the remainder, in 2 441 

vehicle fabric samples, 1 vehicle foam sample, 1 carpet sample, 1 mattress foam sample, 1 442 

furniture upholstery sample, and 2 furniture foam samples. These resulted from 443 

concentrations >1,000 mg kg
-1

 of either TBBP-A alone (n=15), as yet unidentified bromine-444 

containing compounds (n=11), and in 8 instances enhancement of measured BFR 445 

concentrations. However, 5 of the 11 samples with unidentified compounds are attributable to 446 

false-positives due to background interference (Section 3.2.1) which therefore reduces the 447 

number of false-positives to 29 of 555. Translating these incidences into percentages, our 448 

data show that use of portable XRF to monitor compliance with current LPCLs for PBDEs 449 

and HBCDD would mean that 5.2 % of articles from the waste categories studied would be 450 



21 
 

incorrectly identified as requiring special treatment. This compares to 47 (8.5 %) of articles 451 

identified as genuinely exceeding current LPCLs and REACH limits.  452 

The implications of such false positives are essentially that a small additional percentage of 453 

articles will not be available for recycling and that there will be an additional unnecessary 454 

economic cost incurred when such articles are subjected to special treatment. Balanced 455 

against these issues, it may be argued that as the cause of the false positives are likely to be 456 

either known or unidentified BFRs not targeted in our study, which may themselves become 457 

subject to future legislative restriction; false positives can potentially be viewed as an 458 

acceptable limitation of the use of XRF as a screening tool for LPCL compliance. By 459 

comparison, false negatives would exert a more detrimental impact as they would allow 460 

regulated POP-BFRs to remain in circulation. However, the absence of false negatives in our 461 

study, suggests that use of hand-held XRF will only very rarely – if ever - fail to identify 462 

articles that exceed LPCL values.  463 

Our data on false positives indicate that portable XRF could be a viable tool for testing 464 

compliance with LPCLs for EPS/XPS, as well as ELV waste and waste soft furnishings, 465 

while further underlining the potential issues with the use of hand-held XRF to test for LPCL 466 

compliance in WEEE due to the more frequent presence of TBBP-A and other as yet 467 

unidentified compounds in such items.   468 

 469 

4.2 Accuracy and Precision of XRF-Determined Bromine as a Surrogate for POP-BFRs 470 

Upon comparing the results of total Br from portable XRF analysis with compound-specific 471 

mass spectrometry, the overall accuracy of XRF strongly depends on the type of polymer 472 

under investigation. Though the regression of all sample-groups appears to follow a generally 473 

linear correlation between XRF and MS results, the deviation of the slopes from unity in most 474 
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of the plastic types indicates that matrix effects occur prominently in low-density materials. 475 

Br concentrations obtained from XRF measurements were adjusted based on subsequent 476 

mass spectrometric analyses of the same samples thus allowing for a correction factor to be 477 

inferred (Section 3.2). However, for use of this instrument as a standalone analyser for 478 

accurately quantifying total bromine concentrations in the range of materials studied here, 479 

suitable calibration standards unique to each type of polymer (ABS, HIPS, PUF, etc.) would 480 

initially be required to ensure reliable compensation for matrix effects. Application of 481 

correction factors to XRF measurements discerned following MS analysis was successful in 482 

correcting the overall accuracy of the instrument for all measured concentrations, with little 483 

effect on the deviations for individual measurements. 484 

These corrections had little effect on the deviations for individual measurements however; 485 

therefore, the estimated precision of the instrument still requires further refinement. In all but 486 

one of the sample groups studied, the deviation of XRF analysis from the MS-determined 487 

bromine content of the samples significantly exceeded a 95 % confidence interval. These 488 

variations may be due to the elemental and chemical composition of individual samples 489 

interfering with XRF analyses in ways unique to each sample. Additionally, as shown by the 490 

occurrence of background interference in WEEE samples (S4), the penetration-depth of x-491 

rays is not finite as they permeate through thin plastic items to the substrate material thereby 492 

skewing estimations of the sample’s density by the instrument (Section 3.2.1). 493 

As shown earlier, further uncertainties may be attributable in some cases to the presence in 494 

samples of BFRs not targeted herein. The presence of these other BFRs (or other bromine-495 

based compounds) also acts as an obstacle to the more effective use of XRF an accurate 496 

metric of POP-BFR concentrations (Figure 1). This is mainly due to the inherent lack of 497 

selectivity of XRF, which renders it incapable of distinguishing between POP-BFRs and 498 

other bromine-containing compounds contributing to the total Br concentration. The precise 499 
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detection of POP-BFRs by XRF will be exacerbated further by the presence of multiple BFRs 500 

within the same sample-groups by the further-use of nBFRs. 501 

Based on the present study, EPS and XPS constitute the groups which could most reliably 502 

utilise XRF-quantified bromine as a surrogate for POP-BFRs in situ at recycling sites, 503 

showing the highest number of samples with the lowest deviations from true bromine content. 504 

Both groups would require specific calibration to compensate for matrix effects and improve 505 

the overall accuracy of analyses. In its current state, XRF-determined bromine measurements 506 

are unsuitable as a surrogate for POP-BFR determination in the remaining sample groups 507 

investigated herein. Refinements to measurement protocols (e.g. material separation to avoid 508 

background interference in WEEE) and the inclusion of reference standards specific to each 509 

type of plastic could improve the accuracy of the XRF instrument. However, specific matrix 510 

effects inherent in low density materials, varying chemical composition of the analyte 511 

materials, and the presence of non-POP-BFRs, and the lack of specificity of XRF in 512 

determining bromine species constitute substantial obstacles to the standalone use of XRF for 513 

the accurate quantification of POP-BFRs in plastic media. 514 

 515 

5. Conclusions 516 

Our study clearly shows that portable XRF cannot be used to accurately determine absolute 517 

concentrations of POP-BFRs. However, its use as a screening tool for LPCL compliance 518 

appears to be viable, provided sufficient prior knowledge of typical BFR-treatment in 519 

different plastics is available and the number of samples misclassified as exceeding LPCLs is 520 

deemed acceptable or can be reduced. Of particular note is the applicability of XRF for 521 

screening EPS and XPS materials above the proposed LPCL threshold (710 mg kg
-1

) due to 522 

the observed high precision shown for quantifying POP-BFRs in these materials. However, 523 
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the results obtained from the standalone use of XRF measurements as a surrogate for POP-524 

BFR determination in the other plastic types investigated agree with conclusions previously 525 

reached by Gallen et al. (2014) and Petreas et al. (2016), namely that significant 526 

inconsistencies between measurement techniques result in XRF alone being insufficient to 527 

precisely determine BFRs, furthermore requiring MS to identify concentrations of specific 528 

BFRs. Application of reference standards such as those utilized by Guzzonato et al. (2016) 529 

can further enhance the accuracy of XRF as a surrogate measure of BFR concentrations. 530 

Restricting screening solely to non-WEEE items further reduces the frequency of false 531 

positives to 2.5 %.  To ensure that waste plastics are being recycled effectively and safely, the 532 

validity of XRF screening for compliance with LPCLs for POP-BFRs should remain an 533 

ongoing field of investigation, in particular with respect to matrix effects and the need for 534 

calibration standards, and the expected further use of NBFRs in recyclable plastics. 535 

In summary, our study shows that while portable XRF may be used as a reliable (though not 536 

infallible) “pass-fail” indicator of compliance with LPCLs for POP-BFRs. We also show that 537 

refinements to measurement protocols (e.g. material separation to avoid background 538 

interference in WEEE) and the inclusion of reference standards specific to each type of 539 

plastic could potentially reduce the incidence of “false positives” resulting from use of 540 

portable XRF, thereby diminishing the number of waste items incorrectly identified as 541 

requiring special treatment.  542 

 543 

Acknowledgements 544 

This research was supported by the Irish Environmental Protection Agency under grant award 545 

no. 2014-RE-MS-2 (WAFER Project). We wish to thank all waste site operators for their 546 

friendly and helpful support of our field measurements. 547 



25 
 

 548 

References 549 

ABDALLAH, M. A.-E., DRAGE, D. S., SHARKEY, M., BERRESHEIM, H. & HARRAD, S. 2017. A rapid 550 
method for the determination of brominated flame retardant concentrations in plastics and 551 
textiles entering the waste stream. Journal of Separation Science, 40, 3873-3881. 552 

ABDALLAH, M. A.-E., IBARRA, C., NEELS, H., HARRAD, S. & COVACI, A. 2008. Comparative evaluation 553 
of liquid chromatography–mass spectrometry versus gas chromatography–mass 554 
spectrometry for the determination of hexabromocyclododecanes and their degradation 555 
products in indoor dust. Journal of Chromatography A, 1190, 333-341. 556 

AL-OMRAN, L. & HARRAD, S. Distribution patterns of legacy and "novel" brominated flame 557 
retardants in differnt particle size fractions of indoor dust in Burmingham, UK.  10th 558 
Network Conference on Persistent Organic Pollutants (POPs): Environmental Organic 559 
Pollutants, Metabolites and Transformation Products, 13th April 2016 2016 Winterbourne 560 
House and Garden, University of Birmingham. 10th Network Conference on POPs. 561 

ALDRIAN, A., LEDERSTEGER, A. & POMBERGER, R. 2015. Monitoring of WEEE plastics in regards to 562 
brominated flame retardants using handheld XRF. Waste Manag, 36, 297-304. 563 

DRAGE, D., SHARKEY, M., ABDALLAH, M. A., BERRESHEIM, H. & HARRAD, S. 2018. Brominated flame 564 
retardants in Irish waste polymers: Concentrations, legislative compliance, and treatment 565 
options. Science of The Total Environment, 625, 1535-1543. 566 

EC 2004. EC regulation no. 850/2004 of the European Parliament and of the Council of 29 April 2004 567 
on persistent organic pollutants and amending Directive 79/117/EEC. OJL, 158, 7. 568 

EC 2010. Commission regulation no 756/2010 of 24 August 2040 amending regulation (EC) No 569 
850/2004 of the European Parliament and of the Council on persistent organic pollutants as 570 
regards Annexes IV and V. 223, 20. 571 

EC 2011. Final Report: Study on waste related issues of newly listed POPs and candidate POPs. In: 572 
(ESWI), E. T. T. S. W. I. (ed.). Munich: European Commission. 573 

EC 2016. Commission regulation (EU) 2016/460 of 30 March 2016 amending Annexes IV and V to 574 
regulation No 850/2004 of the European Parliament and of the Council on persistent organic 575 
pollutants. Off. J. Eur. Commun. 576 

EPA. 2016. WEEE Statistics for Ireland [Online]. Environmental Protection Agency of Ireland. 577 
Available: 578 
http://www.epa.ie/pubs/reports/waste/stats/weeedata2013/EPA_WEEE_2013_data_releas579 
e_web.pdf [Accessed 07-03-18 2018]. 580 

EU 2017a. COMMISSION REGULATION (EU) 2017/227 of 9 February 2017 amending Annex XVII to 581 
Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the 582 
Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards 583 
bis(pentabromophenyl)ether Official J Eur Union, 35, 6-9. 584 

EU 2017b. COUNCIL REGULATION (EU) 2017/997 of 8 June 2017 amending Annex III to Directive 585 
2008/98/EC of the European Parliament and of the Council as regards the hazardous 586 
property HP 14 ‘Ecotoxic’. Official Journal of the European Union, 150, 1-4. 587 

GALLEN, C., BANKS, A., BRANDSMA, S., BADUEL, C., THAI, P., EAGLESHAM, G., HEFFERNAN, A., 588 
LEONARDS, P., BAINTON, P. & MUELLER, J. F. 2014. Towards development of a rapid and 589 
effective non-destructive testing strategy to identify brominated flame retardants in the 590 
plastics of consumer products. Sci Total Environ, 491-492, 255-65. 591 

GROSSE, Y., LOOMIS, D., GUYTON, K. Z., EL GHISSASSI, F., BOUVARD, V., BENBRAHIM-TALLAA, L., 592 
MATTOCK, H. & STRAIF, K. 2016. Carcinogenicity of some industrial chemicals. The Lancet 593 
Oncology, 17, 419-420. 594 

http://www.epa.ie/pubs/reports/waste/stats/weeedata2013/EPA_WEEE_2013_data_release_web.pdf
http://www.epa.ie/pubs/reports/waste/stats/weeedata2013/EPA_WEEE_2013_data_release_web.pdf


26 
 

GUZZONATO, A., PUYPE, F. & HARRAD, S. J. 2016. Improving the accuracy of hand-held X-ray 595 
fluorescence spectrometers as a tool for monitoring brominated flame retardants in waste 596 
polymers. Chemosphere, 159, 89-95. 597 

IPCS. 1997. Flame retardants (EHC 192, 1997) [Online]. World Health Organisation. Available: 598 
http://www.inchem.org/documents/ehc/ehc/ehc192.htm [Accessed March 14 2016]. 599 

MALKOSKE, T., TANG, Y., XU, W., YU, S. & WANG, H. 2016. A review of the environmental 600 
distribution, fate, and control of tetrabromobisphenol A released from sources. Science of 601 
The Total Environment, 569-570, 1608-1617. 602 

MARVIN, C. H., TOMY, G. T., ARMITAGE, J. M., ARNOT, J. A., MCCARTY, L., COVACI, A. & PALACE, V. 603 
2011. Hexabromocyclododecane: Current Understanding of Chemistry, Environmental Fate 604 
and Toxicology and Implications for Global Management. Environmental Science & 605 
Technology, 45, 8613-8623. 606 

MORF, L., TAVERNA, R., DAXBECK, Z. H. & SMUTNY, R. 2003. Selected polybrominated flame 607 
retardants PBDEs and TBBPA: Substance flow analysis. Environmental Series No 338: 608 
Environmentally Hazardous Substances. 609 

PETREAS, M., GILL, R., TAKAKU-PUGH, S., LYTLE, E., PARRY, E., WANG, M., QUINN, J. & PARK, J.-S. 610 
2016. Rapid methodology to screen flame retardants in upholstered furniture for 611 
compliance with new California labeling law (SB 1019). Chemosphere, 152, 353-359. 612 

PETTY, S., LINDEMAN, A. E., BLUM, A., BELLUR, S., DIAMOND, M. L., LUCAS, D., KOSHLAND, C. P. & 613 
WEBER, R. MANAGEMENT OF HALOGENATED FLAME RETARDED WASTES IN THE UNITED 614 
STATES –THE NEED FOR A CIRCULAR ECONOMY APPROACH.  36th International Symposium 615 
on Halogenated Organic Pollutants, 28th August 2016 2016 Palazzo Dei Congressi, Firenze. 616 
36th International Symposium on Halogenated Organic Pollutants. 617 

RAUERT, C., HARRAD, S., SUZUKI, G., TAKIGAMI, H., UCHIDA, N. & TAKATA, K. 2014. Test chamber 618 
and forensic microscopy investigation of the transfer of brominated flame retardants into 619 
indoor dust via abrasion of source materials. Sci Total Environ, 493, 639-48. 620 

RAUERT, C., KURIBARA, I., KATAOKA, T., WADA, T., KAJIWARA, N., SUZUKI, G., TAKIGAMI, H. & 621 
HARRAD, S. 2016. Direct contact between dust and HBCD-treated fabrics is an important 622 
pathway of source-to-dust transfer. Science of The Total Environment, 545-546, 77-83. 623 

SCHLUMMER, M., VOGELSANG, J., FIEDLER, D., GRUBER, L. & WOLZ, G. 2015. Rapid identification of 624 
polystyrene foam wastes containing hexabromocyclododecane or its alternative polymeric 625 
brominated flame retardant by X-ray fluorescence spectroscopy. Waste Manag Res, 33, 662-626 
70. 627 

SINDIKU, O., BABAYEMI, J., OSIBANJO, O., SCHLUMMER, M., SCHLUEP, M., WATSON, A. & WEBER, R. 628 
2015. Polybrominated diphenyl ethers listed as Stockholm Convention POPs, other 629 
brominated flame retardants and heavy metals in e-waste polymers in Nigeria. 630 
Environmental Science and Pollution Research, 22, 14489-14501. 631 

UNEP 2009. Stockholm Convention on Persistent Organic Pollutants (as amended 2009). In: UNEP 632 
(ed.). Stockholm, Sweden: United Nations Environment Programme. 633 

UNEP 2010. Technical review of the implications of recycling commerical pentabromodiphenyl ether 634 
and commercial octabromodiphenyl ether. In: COMMITTEE, P. O. P. R. (ed.). Geneva: United 635 
Nations Environmental Programme. 636 

UNEP 2013. An amendment to Annex A adopted by the Conference of the Parties to the Stockholm 637 
Convention on Persistent Organic Pollutants at its sixth meeting (Decicion SC-6/13). In: UNEP 638 
(ed.). Stockholm, Sweden: United Nations Environment Programme. 639 

UNEP 2017a. COP-8/32: Report on the Conference of Parties to the Stockholm Convention on 640 
persistent Organic Pollutants on the workds of its eigth meeting. In: UNEP (ed.). Geneva, 641 
Switzerland: United Nations Environment Programme. 642 

UNEP 2017b. Guidance for the inventory of Hexabromocyclododecane (HBCD). In: PROGRAMME, U. 643 
N. E. (ed.) SC-7/10. Switzerland: Secretariat of the Stockholm Convention. 644 

http://www.inchem.org/documents/ehc/ehc/ehc192.htm


27 
 

WEIL, E. D. & LEVCHIK, S. V. 2009. Flame Retardants in Commerical Use of Development for Textiles. 645 
Journal of Fire Sciences, 26, 243-281. 646 

ZAWISZA, R. S. B. 2012. Quantification in X-Ray Fluorescence Spectrometry. In: SHARMA, S. K. (ed.) 647 
X-Ray Spectroscopy. InTech. 648 

649  650 



TABLES 

Table 1 – Statistical summary of total XRF-Br and MS-BFR concentrations categorized by Waste Type.  

Waste Type Sample Group Total No. of 

Samples (N) 

XRF-Br 

Range (mg 

kg
-1

) 

XRF-Br 

Median (mg 

kg
-1

) 

MS-ΣBFRs 

Range (mg 

kg
-1

) 

MS-ΣBFRs 

Median (mg 

kg
-1

) 

Number of Samples 

for Regression 

Waste Electrical 

and Electronic 

Equipment 

(WEEE) 

IT & Telecoms * 78 0 – 110,000 18 0 – 110,000 0.5 36 

Small Domestic Appliances * 26 0 – 1,900 1 0 – 10,000 0.1 7 

Display * 43 0 – 150,000 320 0 – 270,000 58 27 

Large Household Appliances 57 0 – 2,100 0 0 – 2,000 0.04 0 

Fridge/Freezer 30 0 – 14 0 0 – 3.6 0 0 

Expanded 

Polyurethane 

Foams 

Furniture Foam * 20 0 – 12,000 110 0 – 8,500 100 17 

Mattress Foam 17 0 – 880 59 0 – 870 8.4 0 

ELV Foam * 38 0 – 780 14 0 – 740 1.6 26 

Fabrics & 

Upholstery 

Furniture Upholstery * 22 0 – 87,000 320 0 – 73,000 112 17 

Mattress Upholstery 17 0 – 240 10 0 – 58 8.7 0 

ELV Upholstery * 50 0 – 35,000 72 0 – 31,000 17 49 

Construction & 

Demolition 

C&D EPS * 40 9,200 45 0 – 10,000 83 27 

C&D XPS * 20 160 23 0 – 94 20 16 

Packaging Pack EPS * 7 0 – 5,600 18 0 – 5,900 1.1 3 

Pack XPS * 14 0 –  1,300 2 0 – 370 0.2 4 

Other Textiles & 

Plastics 

ELV (other)** 30 0 – 28,000 12 0 – 23,000 3.8 0 

Curtain 15 0 – 88 3 0 – 58 0 0 

Carpet 31 0 – 9,600 8 0 – 7,000 0.1 0 

* Sample-groups included for regression analysis (see Section 3.2). 

** Sample-group consists of plastics from roof trim, floor mats, under seat EPS padding, etc. thus making it unsuitable for regression of similar materials. 

Table
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Figure Captions 1 

Figure 1 Regression between total Br concentrations (mg kg
-1

) measured by XRF and 2 

GC/MS / LC-MS/MS for 70 WEEE samples (slope m = 0.98, R = 0.78 R
2
 = 3 

0.61). Data represented by “x” symbols (inset outlined portion) show samples 4 

suspected of having NBFRs or other bromine-containing compounds. Omitting 5 

those data yields m = 0.91, R = 0.96, R
2
 = 0.93. 6 

Figure 2 (a) Bland-Altman plot for WEEE samples showing the deviation of XRF-7 

determined Br from MS-quantified Br (%), with the latter assumed to 8 

represent true Br values (mg kg
-1

). 9 

Figure 2 (b) Exploded view of data from Figure 2 (a) highlighting samples in lower 10 

deviation bracket and omitting those outliers attributed to NBFR presence as 11 

outlined in Figure 1. 12 

Figure 3 Regression between total Br concentrations (mg kg
-1

) measure by XRF and 13 

GC/MS / LC-MS/MS for 43 PUF samples (slope m = 1.70, R = 0.99, R
2
 = 14 

0.98). 15 

Figure 4 Regression between total Br concentrations (mg kg
-1

) measure by XRF and 16 

GC/MS / LC-MS/MS for 30 EPS samples (m = 1.20, R = 0.99, R
2
 = 0.98). 17 

  18 
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Figure 120 
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Figure 2 (a)23 

 24 

 25 

Figure 2 (b) 26 
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Figure 4 33 
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