Metadata, citation and similar papers at core.ac.uk

Provided by University of Birmingham Research Portal

UNIVERSITYOF
BIRMINGHAM

Research at Birmingham

What happened and why? A mixed architecture for
planning and explanation generation in robotics

Colaco, Zenon; Sridharan, Mohan

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):

Colaco, Z & Sridharan, M 2015, What happened and why? A mixed architecture for planning and explanation
generation in robotics. in Australasian Conference on Robotics and Automation 2015 (ACRA)., 111, Australasian
Conference on Robotics and Automation (ACRA), Australian Robotics and Automation Association (ARAA),
Sydney, Australasian Conference on Robotics and Automation 2015 (ACRA), Canberra, Australia, 2/12/15.

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 05/10/2018

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

» Users may freely distribute the URL that is used to identify this publication.

» Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

» User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
« Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

https://core.ac.uk/display/185508465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.birmingham.ac.uk/portal/en/publications/what-happened-and-why-a-mixed-architecture-for-planning-and-explanation-generation-in-robotics(db83bcf9-7fcf-4837-a524-94ce0455961c).html

What Happened and Why?
A Mixed Architecture for Planning and Explanation Generation in Robotics

Zenon Colaco and Mohan Sridharan
Department of Electrical and Computer Engineering

The University of Auckland, NZ
zncolaco@gmail.com; m.sridharan@auckland.ac.nz

Abstract

This paper describes a mixed architecture that cou-
ples the non-monotonic logical reasoning capabili-
ties of a declarative language with probabilistic be-
lief revision, enabling robots to represent and rea-
son with qualitative and quantitative descriptions
of knowledge and uncertainty. Incomplete domain
knowledge, including information that holds in all
but a few exceptional situations, is represented as
a Answer Set Prolog (ASP) program. The answer
set obtained by solving this program is used for
inference, planning, and for jointly explaining (a)
unexpected action outcomes; and (b) partial scene
descriptions extracted from sensor input. For any
given task, each action in the plan contained in
the answer set is executed probabilistically. For
each such action, observations extracted from sen-
sor inputs perform incremental Bayesian updates to
a probabilistic (belief) distribution over a relevant
subset of the domain, committing high probability
beliefs as statements to the ASP program. The ar-
chitecture’s capabilities are evaluated in simulation
and on a mobile robot in scenarios that mimic a
robot waiter assisting in a restaurant.

1 Introduction

Robots collaborating with humans in complex domains may
receive raw data from different sensors. The information ex-
tracted from these sensor inputs can be represented proba-
bilistically to quantitatively model the associated uncertainty
(e.g., “T am 90% certain I saw a book on the table”). Robots
also receive useful commonsense knowledge about the do-
main that is difficult to represent quantitatively, e.g., “Books
are usually in the library”. In addition, the human partici-
pants may not be able to provide elaborate and accurate feed-
back. To collaborate with humans, robots thus need to repre-
sent knowledge and reason at both the cognitive level and the
sensorimotor level. This objective maps to fundamental chal-
lenges in knowledge representation and reasoning. Towards

addressing these challenges, our previous architecture [Zhang
et al., 2014] coupled the non-monotonic logical reasoning
capabilities of Answer Set Prolog (ASP), a declarative lan-
guage, with the probabilistic planning and uncertainty model-
ing capabilities of partially observable Markov decision pro-
cesses (POMDPs). For any given task, incomplete domain
knowledge was represented as an ASP program, which was
solved to obtain a plan of abstract actions. Each action in this
plan was executed probabilistically using POMDPs, commit-
ting high probability beliefs as statements to the ASP pro-
gram. While retaining the basic principle of coupling be-
tween logic programming and probabilistic reasoning, this
paper expands the capabilities as follows:

e In addition to providing a plan for any given task, the
answer set obtained by solving the ASP program is used
for jointly (a) explaining unexpected action outcomes
by reasoning about exogenous actions; and (b) identi-
fying object occurrences that best explain partial scene
descriptions extracted from sensor inputs.

e Representation and reasoning at a finer resolution in
the ASP program improves the efficiency of probabilis-
tic reasoning while still providing high reliability. In-
stead of using a POMDP to execute each action in the
ASP-based plan, sensor observations perform incremen-
tal Bayesian updates to a probability distribution over a
subset of the domain relevant to this action.

These capabilities are evaluated in simulation and on a mobile
robot, in scenarios that mimic a robot waiter seating people
and delivering orders in a restaurant.

The remainder of this paper is organized as follows. The
proposed architecture is motivated by reviewing some related
work in Section 2, followed by a description of the architec-
ture in Section 3. Section 4 describes the result of experimen-
tal evaluation, followed by the conclusions in Section 5.

2 Related Work

Knowledge representation, planning and explanation gen-
eration are well-researched areas in robotics and artificial
intelligence. Logic-based representations and probabilistic
graphical models have been used to control sensing, naviga-

tion and interaction for robots and agents [Bai er al., 2014;
Galindo et al., 2008]. Formulations based on probabilis-
tic representations (by themselves) make it difficult to per-
form commonsense reasoning, while classical planning al-
gorithms and logic programming tend to require consider-
able prior knowledge of the domain and the agent’s capa-
bilities, and make it difficult to merge new, unreliable infor-
mation with an existing knowledge base. For instance, the
non-monotonic logical reasoning capabilities of ASP [Gel-
fond and Kahl, 2014] have been used by an international re-
search community for tasks such as reasoning by simulated
robot housekeepers [Erdem er al., 2012] and coordination of
robot teams [Saribatur et al., 2014]. However, ASP does not
support probabilistic representation of uncertainty, whereas
a lot of information extracted from sensors and actuators on
robots is represented probabilistically.

Explanation generation systems (e.g., through abductive
inference or plan diagnosis) use the system description and
observations of system behavior to explain unexpected symp-
toms [Balduccini and Gelfond, 2003; Reiter, 1987], or use
weaker system descriptions and depend on heuristic represen-
tation of intuition and past experience [Meadows et al., 2013;
Ng and Mooney, 1992]. Probabilistic and first-order logic
representations have also been combined for abductive infer-
ence [Sindhu Raghavan and Raymond J. Mooney, 2011]. Re-
searchers have also designed architectures that combine de-
terministic and probabilistic algorithms for task and motion
planning [Kaelbling and Lozano-Perez, 2013], couple declar-
ative programming and continuous-time planners for path
planning in robot teams [Saribatur er al., 2014], or combine
a probabilistic extension of ASP with POMDPs for human-
robot dialog [Zhang and Stone, 2015]. Recent work used
a three-layered organization of knowledge (instance, default
and diagnostic), and a three-layered architecture (compe-
tence, belief, and deliberative layers), which combines first-
order logic and probabilistic reasoning for open world plan-
ning on robots [Hanheide ef al., 2015]. Some popular for-
mulations that combine logical and probabilistic reasoning
include Markov logic network [Richardson and Domingos,
2006], Bayesian logic [Milch er al., 2006], and probabilis-
tic extensions to ASP [Baral et al., 2009; Lee and Wang,
2015]. However, algorithms based on first-order logic do
not provide the desired expressiveness, e.g., it is not always
possible to express degrees of belief quantitatively. Algo-
rithms based on logic programming do not support one or
more of the desired capabilities such as incremental revi-
sion of (probabilistic) information; reasoning as in causal
Bayesian networks; and reasoning with large probabilistic
components. Our prior work developed architectures that
couple declarative programming and probabilistic graphical
models for logical inference, deterministic and probabilistic
planning on robots [Sridharan et al., 2015; Zhang et al., 2014;
2015]. This paper retains the coupling between logical and
probabilistic reasoning but expands the existing capabilities

Symbolic

(general) Knowledge
Representation representation
1 Logic_al
reasoning Non-monotonic
logical inference
action, high-certainty beliefs
fluents (object observations + Probabilistic
action outcomes) planning
v Plan diagnosis
ilisti Scene
chs,s:l:ilflilz;lc interpretation
Representation
Probabilistic
reasoning

Figure 1: Overview of the mixed architecture that combines
the strengths of declarative programming and Bayesian up-
dates for inference, planning, and diagnosis.

to support: (1) joint explanation of unexpected action out-
comes and partial descriptions extracted from sensor inputs;
and (2) reasoning at a finer resolution using ASP, making the
probabilistic reasoning more computationally efficient while
still providing high reliability of task completion.

3 Proposed Architecture

Figure 1 is an overview of the mixed architecture. The sym-
bolic (domain) representation is translated to an Answer Set
Prolog (ASP) program used for non-monotonic logical infer-
ence and planning a sequence of actions for any given task,
as described in Section 3.1. For each action in a plan cre-
ated by inference in the ASP program, the relevant subset of
the domain is identified [Sridharan et al., 2015]. Sensor ob-
servations perform incremental Bayesian updates to a prob-
ability distribution over this domain subset, committing high
probability beliefs (regarding action outcomes and observa-
tions of object attributes) as statements to the ASP program,
as described in Section 3.2. Unexpected action outcomes
are explained by reasoning about exogenous actions, and ob-
jects are identified to explain the partial descriptions extracted
from visual cues. Representation and reasoning in ASP is per-
formed at a resolution that provides high reliability, simplifies
the (coupled) probabilistic reasoning and adapts it to the ac-
tions at hand. The individual components of the architecture
are described below.

The syntax, semantics and representation of the transition
diagram of the architecture’s domain representation are de-
scribed in an action language AL [Gelfond and Kahl, 2014].
AL has a sorted signature containing three sorts: statics,
fluents and actions. Statics are domain properties whose
truth values cannot be changed by actions, fluents are prop-
erties whose values are changed by actions, and actions are
elementary actions that can be executed in parallel. AL al-

lows three types of statements:

a causes [, if po,....pm (Causal law)
Lif po,...,pm

impossible ay,...,a; if po,..., p, (Executability condition)

(State constraint)

where a is an action, [is a literal, [, is a basic fluent (also
called inertial fluent) literal, and po, ..., p;, are domain liter-
als (any domain property or negation). A collection of state-
ments of AL forms a system description.

Example domain: As an illustrative example used through-
out this paper, consider a robot that seats people at tables, and
delivers orders, in a restaurant. The domain’s sorts are ar-
ranged hierarchically, e.g., location and thing are subsorts of
entity; animate and inanimate are subsorts of thing; person
and robot are subsorts of animate; object is a subsort of
inanimate; and room, area, door, and floor are subsorts of
location. We consider specific rooms in the domain, such
as kitchen and dining; objects of sorts such as table, chair
and plate, characterized by attributes size, color, shape, and
location; and dishes of sorts such as pasta, noodles and
pizza. We also include the sort step for temporal reasoning.

3.1 ASP Domain Representation

The ASP program is based on a domain representation that
includes a system description g and a history with defaults
J€. Dy has a sorted signature that defines the names of ob-
jects, functions, and predicates available for use, and axioms
that describe a transition diagram 7y. Fluents are defined in
terms of the sorts of their arguments, e.g.:

has_location(thing,location) (1)
in_hand (robot,ob ject)

is_open(door)

can_move(robot,location)

has_state(thing, state)

The first three are basic fluents that obey the laws
of inertia and can be changed directly by actions;
the last one is a defined fluent that is not subject
to inertia and cannot be changed directly by an ac-
tion. Statics such as connected(location,location) and
belongs(location,location) specify connections between lo-
cations, relation holds(fluent,step) implies that a specific
fluent holds at a specific timestep, and occurs(action,step)
(hypothesizes) that a specific action occurs at a specific
timestep. We then include actions such as:

move(robot,location))
seat_person(robot, person,table)
search_person(robot ,area)

pickup(robot ,ob ject)

putdown(robot ,ob ject)

and define domain dynamics using causal laws such as:

move(R,L
pickup(R, 0
open(R,D
seat_person(R,P,T

causes has_location(R,L) (3)
causes in_hand(R,0)

causes is_open(D)

—_ — — —

causes has_location(P,L)
if has_location(T,L)

state constraints such as:

has_location(O,L) if has_location(R,L), in_hand(R,O)
—has_location(Th,Ly) if has_location(Th,L;), Ly # Ly
has_location(Th,Ly) if has_location(Th,Ly),
belongs(Ly,Ly)
can_move(R,Ly) if has_location(R,L;),
connected(Ly,Ly) 4)

and executability conditions such as:

impossible move(R,L) if has_location(R,L) %)

impossible pickup(R,0) if has_location(R,L;),
has_location(0,Ly),L; # Ly

impossible open(R,D) if is_open(D)

Since robots frequently receive default domain knowledge
that is true in all but a few exceptional situations, the
domain history 57, in addition to hpd(action,step) and
obs(fluent ,boolean, step), the occurrence of specific actions
and the observation of specific fluents at specific time steps,
contains prioritized defaults describing the values of fluents
in their initial states. For instance, it may be initially believed
that, unless told otherwise, dishes to be delivered are on a
table in a specific area in the kitchen—if they are not there,
they are in another area in the kitchen. This information can
be represented as:

init default has_location(X ,a12) if dish(X), (6)
not—has_location(X ,al2)

init default has_location(X,all) if dish(X),
—has_location(X,al2),

not—has_location(X ,all)

where “not” denotes default negation (details below). ASP
allows us to encode weak exceptions that make defaults inap-
plicable, or strong exceptions that falsify defaults. Existing
definitions of entailment are used to reason with such histo-
ries, and any observed exceptions [Zhang er al., 2014].

The domain representation is translated into a pro-
gram I1(Zy,5¢) in CR-Prolog that incorporates consistency
restoring rules in ASP [Gelfond and Kahl, 2014]. II in-
cludes the causal laws of 9y, inertia axioms, closed world
assumption for actions and defined fluents, reality checks,

and records of observations, actions and defaults from .77.
Every default is turned into an ASP rule and a consistency-
restoring (CR) rule that allows us to assume the default’s con-
clusion is false to restore IT’s consistency. ASP is based on
stable model semantics, and represents recursive definitions,
defaults, causal relations, and language constructs that occur
frequently in non-mathematical domains and are difficult to
express in classical logic formalisms. ASP introduces con-
cepts such as default negation (i.e., negation by failure) and
epistemic disjunction, e.g., unlike “-a”, which implies that “a
is believed to be false”, “not a” only implies that “a is not be-
lieved to be true’; and unlike “p Vv —p” in propositional logic,
“p or —p’” is not a tautology. It supports non-monotonic rea-
soning (i.e., adding a statement can reduce the set of inferred
consequences), reasoning in large knowledge bases, and rea-
soning with quantifiers. The ground literals in an answer set
obtained by solving IT represent beliefs of an agent associated
with IT—statements that hold in all such answer sets are pro-
gram consequences. Inference and planning can be reduced
to computing answer sets of program IT by adding a goal, a
constraint stating that the goal must be achieved, and a rule
generating possible future actions.

In addition to the basic planning capabilities used in
the previous architecture, our architecture supports reason-
ing about exogenous actions to explain the unexpected (ob-
served) outcomes of actions [Balduccini and Gelfond, 2003].
For instance, to reason about a door between the kitchen
and the dining room being locked by a human, and to
reason about a person moving away from a known lo-
cation, we introduce exogenous actions locked(door) and
moved_from(person,location) respectively, and add (or re-
vise) axioms:

is.open(D) < open(R,D), —ab(D) @)
ab(D) <« locked(D)

—has_location(P,L) < moved_from(P,L), has_location(P,L)

where a door is considered abnormal (i.e., ab(D)) if it has
been locked, say by a human. Actions and suitable axioms
are included for other situations in a similar manner, e.g., for
a dish being identified incorrectly, we include exogenous ac-
tion: mixed_up(dish,state), which implies the dish’s actual
state has been mixed up. We also introduce an explanation
generation rule and a new relation expl:

occurs(A,I) | = occurs(A,I) < exogenous_action(A) (8)
I <n
expl(A,I) « action(exogenous,A),
occurs(A,I), not hpd(A,I)

where expl holds if an exogenous action is hypothesized but
there is no matching record in the history. We also include

awareness axioms and reality check axioms:

% awareness axiom 9
holds(F,0) or — holds(F,0) < fluent(basic,F)
occurs(A,I) < hpd(A,I)

% reality checks

<+ obs(fluent,true,I), — holds(fluent,I)

< obs(fluent, false,I), holds(fluent,I)

The awareness axioms guarantee that an inertial fluent’s
value is always known, and that reasoning takes into ac-
count actions that actually happened. Similarly, the reality
check axioms cause a contradiction when observations do
not match expectations, and the explanation for such unex-
pected symptoms can be reduced to finding (and extracting
suitable statements from) the answer set of the correspond-
ing program [Gelfond and Kahl, 2014]. The new knowledge
is included in the ASP program and used for planning and
explanation generation. This approach provides all explana-
tions of an unexpected symptom—using a CR rule instead
of the explanation generation rule (first rule in Statement 8)
provides the minimal explanation:

occurs(A,I) < exogenous_action(A), I < n (10)

where, the robot is allowed to assume the occurrence of an
exogenous action to restore consistency.

A robot processing sensor inputs (e.g., camera images) is
able to extract useful partial descriptions of objects even when
the entire object is not visible. To make use of this informa-
tion, the proposed architecture identifies object occurrences
that best explain these partial descriptions. In our illustrative
example, we introduce static relations to establish object class
membership! and introduce relations to capture ideal defini-
tions of object attributes, e.g., for a table:

has_color(O,white) <+ member(O,table) (11)
has_size(O,medium) <— member(O,table)
has_wheels(4) < member(O,table),
= has_location(O, kitchen)

where, tables are white and medium-sized, and have wheels
except when they are in the kitchen. Similarly, for a chair:

has_color(O,white) < member(O, chair) (12)
has_size(O,medium) <+ member(O, chair)
—has_wheels(O) < member(O,chair)

Other objects and object attributes are encoded similarly. As
before, a reality check axiom causes an inconsistency when

IRelation member(ob ject, class) is applied recursively in a class
hierarchy to establish class membership; is_a(object,class) denotes
an instance of a specific class; and class_known(ob ject) holds for
any object whose class label is known.

an object does not have a class label due to incomplete infor-
mation, and a CR rule restores consistency by allowing the
robot to assume the assignment of class labels:

< object(0), not class_known(O)

is.a(0,C) & object(O)

% reality check
% CR rule (13)

This assignment of a class label to an object is based on the
smallest number of rules that need to be relaxed to support the
assignment. This information is also added to the ASP pro-
gram and be used for subsequent reasoning. However, both
planning and object recognition are based on processing sen-
sor inputs and moving to specific locations—these tasks are
accomplished probabilistically, as described below.

3.2 Probabilistic Domain Representation

In our recent work, ASP-based reasoning for any specific task
was at a coarse resolution (e.g., rooms). For each action in the
corresponding plan, the relevant subset of the sorted signature
was identified and refined by including new sorts (e.g., cells
in rooms), fluents and actions, to define a fine-resolution tran-
sition diagram. A probabilistic version of this fine-resolution
transition diagram was used to construct a POMDP for plan-
ning a sequence of primitive actions to implement the ab-
stract action in the ASP-based plan [Sridharan et al., 2015;
Zhang et al., 2014]. For instance, to move between two
rooms, probabilistic reasoning with a POMDP only consid-
ered the cells in these rooms.

Constructing and solving a POMDP becomes computa-
tionally intractable, even with state of the art approximate
solvers, as the state space increases, e.g., large rooms with
many cells, connected to other rooms and corridors. The pro-
posed architecture seeks to address this problem by incorpo-
rating three key revisions that modify the resolution at which
the robot reasons using ASP and thus probabilistically.

1. First, representation and reasoning in ASP is at a finer
resolution (e.g., areas in rooms). As a result, the plans
obtained by ASP-based inference consist of less abstract
actions, and consider a smaller subset of the domain at
any time, e.g., move actions cause the robot to move be-
tween contiguous areas in rooms.

2. Second, to make this planning tractable, we do selec-
tive grounding, i.e., the values that variables in the ASP
program can take is based on the task, e.g., to locate a
dish known to be in the kitchen, we only consider this
dish and areas in the kitchen during planning.

3. Third, with ASP being used to plan at finer resolu-
tion, we do not use (or need) the POMDP for probabilis-
tic reasoning. Instead, the robot maintains a probabilistic
belief distribution over the relevant subset of the domain.
For instance, to move between two contiguous areas, the
robot maintains a probability distribution that represents
the likelihood that it is in each of these areas—other ar-
eas, or beliefs regarding other objects in the domain, are
not related to this action.

Such a representation simplifies the computational require-
ments of probabilistic reasoning. These revisions are moti-
vated by the observation that, for any given task, the robot
typically needs to reason at fine resolution, and thus proba-
bilistically, over only a very small subset of the domain. Even
for tasks requiring accurate positioning, e.g., picking up or
placing a dish, the robot needs to initiate routines for accurate
positioning (or control) only after it is in a suitable location.

For a given probabilistic representation, belief revision is
performed incrementally based on sensor observations using
Bayesian updates. For instance, to update the belief about the
location of a specific dish in the dining room:

p(Oi|Ei)p(E:)
(p(Oi|E;) p(E;i) + p(Oi|=E;) p(—E;))

where O; is the event the dish was observed in area i, E; is the
event the dish exists in area i, making p(O;|E;) and p(E;|O;)
are the observation likelihood and the posterior probability
of existence of the dish in each area in the dining room.
The initial knowledge, i.e., prior: p(E;), is based on domain
knowledge or statistics collected in an initial training phase
(see Section 4). Note that this representation eliminates the
need to construct and solve an appropriate POMDP during
execution time, significantly improving the computational ef-
ficiency of the probabilistic component. Although not de-
scribed here in detail, a Bayesian state estimation approach
is used by the robot to estimate its own position (e.g., parti-
cle filters), navigate, and to process sensor inputs to extract
information about objects being observed.

In summary, for any given task, ASP planning provides a
plan with deterministic effects. The first action in the plan and
relevant information (from ASP inference) identify the subset
of the domain to be represented probabilistically, and set the
initial (probabilistic) belief distribution. The action is exe-
cuted probabilistically, updating the belief distribution based
on observations until a high belief indicates action completion
or a time limit is exceeded, and adding relevant statements
to the ASP program. Any unexpected action outcomes and
partial scene descriptions are explained by reasoning about
exogenous actions and possible objects. Once these explana-
tions restore consistency, either the next action (in the plan)
is selected for execution or a new plan is created. In what
follows, we refer to the proposed architecture as the “mixed
architecture”, and compare it with two algorithms: (1) ASP-
based reasoning for completing the assigned tasks; and (2) a
(greedy) probabilistic approach that maintains a probabilis-
tic belief distribution and heuristically selects actions (and
makes decisions) based on the most likely state.

The mixed architecture raises some subtle issues. First,
committing probabilistic beliefs above a specific threshold
(e.g., 0.85) as fully certain statements to the ASP program
may introduce errors, but the non-monotonic reasoning ca-
pability of ASP helps the robot recover. Second, with pre-
vious work that reasoned at a coarser resolution with ASP

p(Ei|O;) =

(14)

and used POMDPs for probabilistic planning (a) computing
POMDP policies for each ASP action is computationally ex-
pensive; and (b) there may be improper reuse of informa-
tion if the probabilistic belief distribution is not reset be-
tween trials [Zhang ef al., 2015]. Third, the mixed architec-
ture presents an interesting trade-off between the resolution
of symbolic representation and probabilistic representation.
Moving most of the reasoning to a symbolic representation
can have a negative impact on accuracy and also be compu-
tationally expensive—the mixed architecture thus also repre-
sents a trade-off between accuracy and efficiency.

4 Experimental Setup and Results

Experiments were conducted in simulation and on a mobile
robot in scenarios that mimic a robot waiter in a restaurant.
The robot’s tasks include finding, greeting and seating people
at tables, and delivering orders appropriately.

4.1 Experimental Setup and Hypotheses

The experimental trials used existing implementations of rel-
evant algorithms for control, sensor input processing (includ-
ing basic speech processing), and simultaneous localization
and mapping. In an initial training phase, the robot collected
statistics of executing these algorithms to compute: (a) mo-
tion error models that estimate errors likely to occur when
specific motion commands are executed; and (b) observation
likelihood models that provide probability of different obser-
vations when specific sensor input processing algorithms are
executed. These models were also used to make the simula-
tion trials more realistic.

The experimental trials considered three hypotheses, eval-
uating whether the mixed architecture: (H1) generates plans
for different tasks, and explains unexpected outcomes and
partial descriptions extracted from sensor inputs; (H2) sig-
nificantly improves the task completion accuracy in compar-
ison with just ASP-based reasoning; and (H3) significantly
improves task completion time and provides similar accu-
racy in comparison with a purely probabilistic approach (i.e.,
with no ASP-based reasoning). To evaluate H1, we primarily
used execution traces—some examples are provided in Sec-
tion 4.2. To evaluate H2 and H3, we conducted experimental
trials comparing the mixed architecture with two baseline ap-
proaches. The first baseline approach used only ASP-based
reasoning. It assumes deterministic action outcomes and gen-
erates explanations for the failure of specific plan steps, fol-
lowed by re-planning to achieve the desired goal. The second
baseline approach does not use ASP. Instead, it maintains a
probability distribution over the relevant state space, which
has been identified in advance for different actions, i.e., be-
fore experimental trials are conducted. Observations are used
to perform probabilistic belief updates, and a greedy policy
is used for action selection, e.g., if a target object is to be
found, the robot will look in an area that currently has the

largest probability of containing the target. In the results de-
scribed in Section 4.3, we use “ASP only” and “Probabilistic”
(respectively) to refer to these two baseline approaches.

4.2 Execution Traces

We first illustrate the planning and diagnosis capabilities of
the architecture by discussing the execution traces for the fol-
lowing example scenarios.

Execution Example 1 [Unexpected action outcome]

The task is to return dish dsl to the kitchen from the dining
room, e.g., from a table in area a7 to the kitchen counter in
al2 in Figure 3(a). Unknown to the robot, the door din_kit
between the dining room and kitchen has been locked.

e Some statements describing initial state:

holds(has_location(robot1,dining),0)
hold(has_location(robot1,a7),0)
holds(in_hand(robot1,ds1),0)

The following plan is computed:
occurs(move(robot1,a8),1)
occurs(move(robot1,din_kit),2)

(

(
(
occurs(open(robot1,din_kit),3)
occurs(move(robot1,al2),4),

(

occurs(putdown(robot1,ds1),5).

e Each step in this plan is executed probabilistically.

e The attempt to open door din_kit produces an unex-
pected observation—obs(is_open(din_kit), false,3) is
added to history.

e An explanation expl(locked(din_kit),3) obtained by
diagnosis invokes Statement 7 to restore consistency.

e The robot solicits human help to unlock the door, and
replans to successfully return dsl to the kitchen.

Execution Example 2 [Observation error]
The task is to deliver dish pasta to personl seated at a table
in area a5 in Figure 3(a). Unknown to the robot, it picks up
the incorrect dish due to an observation error.

e Some statements describing the initial state:

holds(has_location(personl,a5),0)
holds(has_location(robot1,al2),0)
holds(has_state(ds1, pasta),0)
holds(has_state(ds2, pasta),0)

The following plan is computed; for simplicity, we omit
intermediate steps through some doors and areas:

occurs(pickup(robot1,ds1),1)
occurs(move(robot1,a5),2)

occurs(putdown(robot1,ds1),3).

e Each step in this plan is executed probabilistically.

e After the dish is placed on the table, the robot observes
(from human or camera) that the dish is noodles, and
obs(has_state(ds1,noodles),true,3) is added to history.

e An explanation expl(mixed_up(dsl,noodles), 1) is ob-
tained through diagnosis to restore consistency.

e The robot then creates a new plan (some steps omitted,
once again, for simplicity):

occurs(move(robot1,al2),4)

(
occurs(pickup(robot1,ds2),5)
occurs(move(robot1,a5),6)

(

occurs(putdown(robot1,ds2),7)

This time the robot delivers the dish ordered.

Execution Example 3 [Partial scene description]
The robot delivering a dish sees a medium-sized white object
from a distance, but is unable to assign a class label in the
absence of any further information.

e The initial knowledge consists of:

has_size(oby, medium)

has_color(oby,white)

e The search for explanations generates two possible in-
terpretations using the rules in Statements 11-13:

(1) is_a(oby,table)
(2) is_a(oby,chair)

e As the robot gets closer, it observes:
has_wheel(oby,4), has_location(ob,dining), i.e.,
the object has wheels and is in the dining room.

e Statements 11,12 provide the (correct) interpretation:
is_a(oby,table).

Execution Example 4 [Inconsistencies due to defaults]

The robot has delivered an order to a8 and is asked to pickup a

dish ds1 whose location is not provided. The primary default

is that dishes as usually on the table in a12, while the sec-

ondary default is that it is in @11, another area in the kitchen.
e The initial knowledge consists of:

holds(has_location(robot1,a8),0)
holds(has_location(ds1,al2),0) %defaultknowledge

e The plan steps consist of (some steps involving the door
are omitted):

occurs(move(robot1,al2, 1))

occurs(pickup(robot1,ds1),2)

It is assumed that the dish is on the kitchen counter and
will be found once the robot reaches al?2.

e However, when the robot reaches al12, it does not ob-
serve dsl there. It explains this observation by assuming
that the initial state default’s conclusion was false.

e After including this knowledge, a plan is obtained
based on the secondary default:

occurs(move(robot1,all, 1))

occurs(pickup(robot1,ds1),2)

e This time, the robot finds and picks up ds1.
This example illustrates that inconsistencies that occur when
initial state defaults do not hold true, can also be explained by
appropriate CR rules.

4.3 Experimental Results

Although experimental trials considered many scenarios, the
results reported below are based on scenarios that build on
Examples 2 and 4 above. These scenarios are generated by
varying the initial location of the robot, the destination, the
target object(s), and the locations of objects in the domain.
The task completion time and accuracy were used as the eval-
uation metrics. As stated earlier, we compared the mixed
architecture with two baselines: (1) using only ASP-based
reasoning; and (2) using a probabilistic approach that selects
actions greedily.

Since the positions of the robot and the objects can vary
between trials, we cannot compute the average task com-
pletion time across different trials. We therefore conducted
paired trials—in each paired trial, for each approach being
compared, the initial location of the robot and the location of
domain objects are the same. In each paired trial, the task
completion time using each baseline is then expressed as a
ratio of the time taken by the mixed architecture. The results
obtained over many such trials are evaluated for statistical sig-
nificance using the Mann-Whitney test.

Simulation Experiments: For running the simulated ex-
periments, we designed a simulated environment that used
the error models and observation models developed by col-
lecting statistics from the robot (Section 4.1). It uses a
graph-based representation for the physical locations (Fig-
ure 2 shows an example), with nodes representing areas with
“properties”—this representation supports graphical visual-
ization of the plan steps for debugging.

First, Tables 1-2 summarize the results obtained by con-
sidering scenarios based on Examples 2 and 4 respectively—
each entry is the average of 500 trials. In Table 1, the ac-
curacy of the probabilistic approach is much lower than that
of the mixed architecture or a purely ASP-based approach.
This is because the probabilistic approach does not include
ASP-based reasoning and thus does not support the diagno-
sis and replanning capabilities needed to recover from obser-
vation failures. In Table 2, the task completion time of the
probabilistic approach is much higher than the other two ap-
proaches because it does not use the default information. In

din_wai
door

WAITING
ROOM

Figure 2: Graph-based representation of the domain’s locations in the simulator. Figure shows connections between specific
areas, doors, and one possible initial location (green) and final location (blue) for a task to be completed by the robot.

Table 1: Task completion accuracy and time for scenarios
based on Example 2. In paired trials, task completion times
using only ASP, or a probabilistic approach, are expressed
as a factor of the values provided by the mixed architecture.
Values that are statistically significantly in comparison with
the mixed architecture, are indicated in bold font.

Algorithms Evaluation metrics
Accuracy Time
ASP only 0.82 1.06£0.6
Probabilistic 0.78 1.1£0.36
Mixed approach 0.97 1

both tables, values that are statistically significant in com-
parison with the mixed architecture are indicated using bold
font. Overall, the results indicate that the mixed architec-
ture (a) improves the accuracy in comparison with ASP-based
reasoning; and (b) improves the task completion time and
provides similar accuracy in comparison with the probabilis-
tic approach. Furthermore, the planning and execution time
are reduced significantly, in comparison with approaches that
combined ASP with probabilistic graphical models [Zhang et
al., 2014], while providing comparable accuracy. One direc-
tion of further research is to consider other domains to better
understand the choice of resolution for symbolic and proba-
bilistic representations for a given task and domain.

Table 2: Task completion accuracy and time for scenarios
based on Example 4. In paired trials, task completion times
using only ASP, or a probabilistic approach, are expressed
as a factor of the values provided by the mixed architecture.
Values that are statistically significantly in comparison with
the mixed architecture, are indicated in bold font.

Algorithms Evaluation metrics
Accuracy Time
ASP only 0.81 1.1+05
Probabilistic 0.97 229+19
Mixed approach 0.96 1

Robot Experiments: Trials were conducted on a Turtlebot
(Figure 3(b)) equipped with a Kinect (RGB-D) sensor, range
sensors, and an on-board processor running Ubuntu Linux.
Our architecture and algorithms were implemented using the
Robot Operating System (ROS). Trials included instances of
the domain introduced in Section 3, each with one or more
tables in specific areas, people and other objects—see Fig-
ure 3(a) for an example. The robot was equipped with proba-
bilistic algorithms to determine the attribute values of objects
(e.g., color and shape) from camera images, revise the map
of the domain, determine its location in the map, and to parse
and understand verbal input from humans.

Table 3 summarizes the results of trials based on scenarios
drawn from Example 4. A purely ASP-based approach was

a0 al a2 a3
DINING
a5 a6 a7 a8
din_wai din_kit
a5
al2
WAITING ROOM a10 all
al4 KITCHEN

a13

(a) Example domain.

(b) Turtlebot robot.

Figure 3: (a) Example map of illustrative domain used for experimental evaluation, with rooms, areas and doors (people and
robot not shown); for simplicity, each area is assumed to have one table, but this assumption can be easily relaxed; and (b) the

Turtlebot mobile robot platform.

Table 3: Task completion accuracy and time for robot experi-
ments in scenarios based on Example 4. In paired trials, task
completion times of a probabilistic approach are expressed
as a factor of the values provided by the mixed architec-
ture. The proposed mixed architecture significantly reduces
the task completion time while providing high accuracy.

Algorithms Evaluation metrics
Accuracy Time
Probabilistic 0.9 23+£1.72
Mixed approach 0.9 1

not included in these experiments because the results can vary
arbitrarily based on the uncertainty in sensing and actuation.
Results indicate that the robot was able to use the mixed ar-
chitecture to successfully complete the assigned tasks in all
such scenarios, with results of paired trials being similar to
those obtained in simulation (for similar scenarios). The over-
all trend, i.e., the mixed architecture significantly reducing
task completion time while providing high accuracy, was the
same in many other scenarios as well.

Finally, we provide a video of an experimental trial il-
lustrating the planning and diagnostics capabilities. In this
video, the task is to fetch a bag of crisps for a human, and
to deal with an unexpected failure (similar to Example 2 in
Section 4.2). Since object manipulation is not a focus of this
work, it is abstracted away during trials on the physical robot
(they are included in the simulated trials)—once the robot
reaches the desired location and locates the desired object or
human, it verbally solicits human help to complete the desired
interaction, e.g., to place the object on the robot. The video
can be viewed online: https://vimeo.com/136990534

5 Conclusions

This paper described an architecture that mixes the comple-
mentary strengths of declarative programming and proba-
bilistic belief updates. Plans created using ASP-based non-
monotonic logical reasoning are implemented probabilisti-
cally, with high probability observations and action outcomes
adding statements to the ASP program. The architecture en-
ables a robot to explain unexpected action outcomes by rea-
soning about exogenous actions, and to identify objects that
best explain partial scene descriptions. These capabilities
have been demonstrated through experimental trials in sim-
ulation and on a mobile robot in scenarios that mimic a robot
waiter assisting in delivering orders in a restaurant. Future
work will further investigate the tight coupling and transfer of
control between the logical and probabilistic representations,
with the long-term objective of equipping robots with com-
monsense reasoning capabilities to collaborate with humans
in complex application domains.

Acknowledgments

The authors thank Michael Gelfond and Rashmica Gupta for
discussions related to the architecture described in this pa-
per. This work was supported in part by the US Office of
Naval Research Science of Autonomy award N00014-13-1-
0766. All opinions and conclusions described in this paper
are those of the authors.

References

[Bai ez al., 2014] Haoyu Bai, David Hsu, and Wee Sun Lee. In-
tegrated Perception and Planning in the Continuous Space: A
POMDP Approach. International Journal of Robotics Research,
33(8), 2014.

[Balduccini and Gelfond, 2003] Marcello Balduccini and Michael
Gelfond. Diagnostic Reasoning with A-Prolog. Theory and Prac-
tice of Logic Programming, 3(4-5):425-461, 2003.

[Baral et al., 2009] Chitta Baral, Michael Gelfond, and Nelson
Rushton. Probabilistic Reasoning with Answer Sets. Theory and
Practice of Logic Programming, 9(1):57-144, January 2009.

[Erdem et al., 2012] Esra Erdem, Erdi Aker, and Volkan Patoglu.
Answer Set Programming for Collaborative Housekeeping
Robotics: Representation, Reasoning, and Execution. Intelligent
Service Robotics, 5(4):275-291, 2012.

[Galindo er al., 2008] Cipriano Galindo, Juan-Antonio Fernandez-
Madrigal, Javier Gonzalez, and Alessandro Saffioti. Robot Task
Planning using Semantic Maps. Robotics and Autonomous Sys-
tems, 56(11):955-966, 2008.

[Gelfond and Kahl, 2014] Michael Gelfond and Yulia Kahl.
Knowledge Representation, Reasoning and the Design of
Intelligent Agents. Cambridge University Press, 2014.

[Hanheide et al., 2015] Marc Hanheide, Moritz Gobelbecker, Gra-
ham Horn, Andrzej Pronobis, Kristoffer Sjoo, Patric Jensfelt,
Charles Gretton, Richard Dearden, Miroslav Janicek, Hendrik
Zender, Geert-Jan Kruijff, Nick Hawes, and Jeremy Wyatt. Robot
Task Planning and Explanation in Open and Uncertain Worlds.
Artificial Intelligence, 2015.

[Kaelbling and Lozano-Perez, 2013] Leslie Kaelbling and Tomas
Lozano-Perez. Integrated Task and Motion Planning in Be-
lief Space. International Journal of Robotics Research, 32(9-
10):1194-1227, 2013.

[Lee and Wang, 2015] Joohyung Lee and Yi Wang. A Probabilistic
Extension of the Stable Model Semantics. In AAAI Spring Sym-
posium on Logical Formalizations of Commonsense Reasoning,

2015.

[Meadows et al., 2013] Ben Meadows, Pat Langley, and Miranda
Emery. Seeing Beyond Shadows: Incremental Abductive Rea-
soning for Plan Understanding. In AAAI Workshop on Plan,
Activity and Intent Recognition, Bellevue, USA, March 25-27,
2013.

[Milch et al., 2006] Brian Milch, Bhaskara Marthi, Stuart Russell,
David Sontag, Daniel L. Ong, and Andrey Kolobov. BLOG:
Probabilistic Models with Unknown Objects. In Statistical Re-
lational Learning. MIT Press, 2006.

[Ng and Mooney, 1992] Hwee Tou Ng and Raymond J. Mooney.
Abductive Plan Recognition and Diagnosis: A Comprehensive
Empirical Evaluation. In Third International Conference on Prin-
ciples of Knowledge Representation and Reasoning, pages 499—
508. Morgan Kaufmann, 1992.

[Reiter, 1987] Raymond Reiter. A Theory of Diagnosis from First
Principles. Artificial Intelligence, 32:57-95, 1987.

[Richardson and Domingos, 2006] Matthew Richardson and Pedro
Domingos. Markov Logic Networks. Machine Learning, 62(1-
2):107-136, February 2006.

[Saribatur et al., 2014] Zeynep Saribatur, Esra Erdem, and Volkan
Patoglu. Cognitive Factories with Multiple Teams of Heteroge-
neous Robots: Hybrid Reasoning for Optimal Feasible Global
Plans. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2014.

[Sindhu Raghavan and Raymond J. Mooney, 2011] Sindhu Ragha-
van and Raymond J. Mooney. Abductive Plan Recognition by
Extending Bayesian Logic Programs. In European Conference
on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases, pages 629-644, September 2011.

[Sridharan et al., 2015] Mohan Sridharan, Michael Gelfond, Shigi
Zhang, and Jeremy Wyatt. A Refinement-Based Architecture for
Knowledge Representation and Reasoning in Robotics. Tech-
nical report, CoRR abstract: http://arxiv.org/abs/1508.
03891, August 2015.

[Zhang and Stone, 2015] Shiqi Zhang and Peter Stone. CORPP:
Commonsense Reasoning and Probabilistic Planning, as Applied
to Dialog with a Mobile Robot. In AAAI Conference on Artificial
Intelligence, pages 1394—-1400, Austin, USA, 2015.

[Zhang et al., 2014] Shiqi Zhang, Mohan Sridharan, Michael Gel-
fond, and Jeremy Wyatt. Towards An Architecture for Knowl-
edge Representation and Reasoning in Robotics. In International
Conference on Social Robotics (ICSR), pages 400-410, Sydney,
Australia, October 27-29, 2014.

[Zhang et al., 2015] Shiqi Zhang, Mohan Sridharan, and Jeremy
Wyatt. Mixed Logical Inference and Probabilistic Planning for
Robots in Unreliable Worlds. IEEE Transactions on Robotics,
31(3):699-713, 2015.

