

Should I do that? Using relational reinforcement
learning and declarative programming to discover
domain axioms
Sridharan, Mohan; Meadows, Ben

DOI:
10.1109/DEVLRN.2016.7846827

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Sridharan, M & Meadows, B 2016, Should I do that? Using relational reinforcement learning and declarative
programming to discover domain axioms. in 2016 Joint IEEE International Conference on Development and
Learning and Epigenetic Robotics (ICDL-EpiRob) . IEEE Computer Society Press, pp. 252-259, 2016 Joint IEEE
International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), 19/09/16.
https://doi.org/10.1109/DEVLRN.2016.7846827

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
M. Sridharan and B. Meadows, "Should I do that? using relational reinforcement learning and declarative programming to discover domain
axioms," 2016 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), Cergy-Pontoise,
2016, pp. 252-259. (© 2016 IEEE)
doi: 10.1109/DEVLRN.2016.7846827

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/185508462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/DEVLRN.2016.7846827
https://research.birmingham.ac.uk/portal/en/publications/should-i-do-that-using-relational-reinforcement-learning-and-declarative-programming-to-discover-domain-axioms(de2f16b9-e2c1-4e86-9d8c-b8486ef8cfb2).html

In the International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), Paris, France,
September 19-22, 2016.

Should I do that? Using Relational Reinforcement Learning and
Declarative Programming to Discover Domain Axioms

Mohan Sridharan
Electrical and Computer Engineering

The University of Auckland, NZ
m.sridharan@auckland.ac.nz

Ben Meadows
Department of Computer Science
The University of Auckland, NZ

bmea011@aucklanduni.ac.nz

Abstract— Robots assisting humans in complex domains need
the ability to represent, reason with, and learn from, different
descriptions of incomplete domain knowledge and uncertainty.
This paper focuses on the challenge of incrementally and
interactively discovering previously unknown axioms governing
domain dynamics, and describes an architecture that integrates
declarative programming and relational reinforcement learn-
ing to address this challenge. Answer Set Prolog (ASP), a
declarative programming paradigm, is used to represent and
reason with incomplete domain knowledge for planning and
diagnostics. For any given goal, unexplained failure of plans
created by ASP-based inference is taken to indicate the existence
of unknown domain axioms. The task of discovering these
axioms is formulated as a reinforcement learning problem, and
a relational representation is used to incrementally generalize
from specific axioms identified over time. These generic axioms
are then added to the ASP-based representation for subsequent
inference. The architecture’s capabilities are demonstrated and
evaluated in two domains, Blocks World and Robot Butler.

I. INTRODUCTION

Robots1 assisting humans in complex domains such as
health care and disaster rescue find it difficult to operate
without considerable domain knowledge. At the same time,
humans interacting with these robots may not have the
expertise or time to provide elaborate and accurate domain
knowledge. Robots are likely to receive some commonsense
domain knowledge, including default knowledge that holds
in all but a few exceptional situations, e.g., “books are
typically in the library, but cookbooks may be in the kitchen”.
Robots also obtain information by processing sensor inputs—
the uncertainty associated with this information is typically
represented probabilistically, e.g., “I am 95% sure the cook-
book is in the kitchen”. Furthermore, some of the the axioms
governing domain dynamics may not be known or may
change over time. For instance, if the floor of the room
the robot is moving in has just been polished, and the
robot does not have an accurate model of moving on this
surface, executing plans that require the robot to move on
this surface may not produce the desired outcomes. To truly
assist humans in such domains, robots thus need the ability to
represent, reason with, and learn from, different descriptions
of incomplete domain knowledge and uncertainty.

This paper focuses on the incremental and interactive
discovery of previously unknown domain axioms. We build

1Terms “robot”, “agent” and “learner” are used interchangeably.

on prior work that combined declarative programming with
probabilistic graphical models to address planning and diag-
nostics challenges in robotics [1], [2], [3], and some initial
work in combining declarative programming with relational
reinforcement learning for discovering domain axioms [4].
Our approach has the following features:
• An action language is used to describe the known

(incomplete) knowledge about the domain’s dynamics,
translating this description and initial state defaults to
an Answer Set Prolog (ASP) program that is solved for
planning and diagnostics.
• The uncertainty in perception is abstracted away (for

simplicity), and unexplained plan failures for any given
goal are considered to be due to previously unknown
domain axioms. The discovery of these axioms is for-
mulated as a reinforcement learning problem.
• ASP-based reasoning, a relational representation, and

a sampling-based approach are used for efficiently
identifying candidate axioms and generalizing across
candidate axioms. These generic axioms are included
in the ASP program for subsequent reasoning.

We use two simulated domains, Blocks World and Robot
Butler, to demonstrate the incremental and interactive dis-
covery of axioms. Section II discusses some related work to
motivate the proposed approach described in Section III. The
experimental results are discussed in Section IV, followed by
conclusions in Section V.

II. RELATED WORK

This section motivates the proposed approach by reviewing
related work in logic programming, probabilistic planning,
reinforcement learning, and relational representations, in the
context of robotics.

Probabilistic graphical models are used widely for plan-
ning sensing, navigation, and interaction, on robots [5], but
these formulations, by themselves, make it difficult to reason
with commonsense knowledge. Research in planning has
provided many algorithms for knowledge representation and
reasoning on robots, but these algorithms require consider-
able prior knowledge about the domain. Algorithms based
on first-order logic do not support non-monotonic logical
reasoning, default reasoning, and the ability to merge new,
unreliable information with the current beliefs. Other logic-
based formalisms address some of these limitations, e.g.,

In the International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), Paris, France,
September 19-22, 2016.

Answer Set Prolog (ASP), a declarative language designed
for representing and reasoning with commonsense knowl-
edge [6], has been used by an international research com-
munity for cognitive robotics [7], [8]. However, ASP does
not inherently support probabilistic models of uncertainty, or
incremental and interactive acquisition of knowledge.

Many domains require robots to reason with logic-based
and probabilistic representations—supporting this ability is
a fundamental problem in robotics and artificial intelligence.
Architectures have been developed for hierarchical repre-
sentation of knowledge in first-order logic, and probabilis-
tic processing of perceptual information [9], [10]. Existing
approaches have combined deterministic and probabilistic
algorithms for task and motion planning [11], [12], and
used a three-layered organization of knowledge with first-
order logic and probabilistic reasoning for open world
planning [13]. Other approaches for combining logical and
probabilistic reasoning include Markov logic networks [14],
Bayesian Logic [15], relational partially observable Markov
decision processes (POMDPs) [16], and probabilistic exten-
sions to ASP [17], [18]. However, algorithms based on first-
order logic do not provide the desired expressiveness for
capabilities such as default reasoning, e.g., they model un-
certainty by attaching probabilities to logic statements, which
is not always meaningful. Other algorithms based on logic
programming do not support one or more of the capabilities
such as reasoning with large probabilistic components; rea-
soning about open worlds; and incremental and interactive
learning of previously unknown domain knowledge.

In complex domains, agents (and humans) often have
to start with an incomplete domain model and learn from
repeated interactions with the environment. Researchers have
used inductive logic with ASP to monotonically learn causal
rules [19], and used a maximum satisfiability framework
with plan traces for refining incomplete domain models [20].
Interactive learning can also be posed as an Reinforcement
Learning (RL) problem with an underlying Markov decision
process (MDP) [21]. Approaches for efficient RL in dynamic
domains include sample-based planning algorithms [22],
and Relational Reinforcement Learning (RRL), which com-
bines relational representations of states and actions with
regression for Q-function generalization and reuse of ex-
perience [23], [24]. However, existing algorithms focus on
planning, limit generalization (e.g., using function approxi-
mation [25], [26] or explanation-based RL [27] for RRL) to
a single MDP for a given planning task, or do not support
the desired commonsense reasoning capabilities for robots.

This paper builds on prior work in (a) combining declar-
ative programming and probabilistic graphical models for
planning and diagnostics in robotics [1], [2], [3]; (b) combin-
ing declarative programming with RL for heuristic discovery
of axioms in simplistic domains [28]; and (c) introduc-
ing relational representations for more efficient discovery
of axioms [4], [29]. Here, we use ASP-based reasoning,
a modified relational representation, and a sampling-based
algorithm for efficiently identifying candidate axioms and
generalizing across axiom instances.

 Learning
Axioms

Formulation

Learning
Reinforcement

Coarse−resolution

Representation

actions,

fluents

Fine−resolution

Representation

probabilities

action outcomes
observations,

ASP

Non−monotonic

logical reasoning

POMDP

Probabilistic

decision−making

Fig. 1. Architecture combines complementary strengths of declarative
programming, probabilistic graphical models, and reinforcement learning.

Fig. 2. A scenario in the Blocks World domain with four blocks.

III. PROPOSED ARCHITECTURE

This section describes the incremental and interactive dis-
covery of domain axioms. The overall architecture is shown
in Figure 1. For any given goal, ASP-based non-monotonic
reasoning with a coarse-resolution domain description pro-
vides a sequence of abstract actions. Each abstract action
is implemented as a sequence of concrete actions, using a
POMDP to probabilistically model the relevant part of the
fine-resolution description obtained by refining the coarse-
resolution description. In this paper, we abstract away the
uncertainty in perception for simplicity, and do not discuss
probabilistic planning. Instead, we use ASP for reason-
ing with commonsense knowledge at a single resolution
(for planning and diagnostics), and focus on RRL-based
interactive discovery of domain axioms. We illustrate the
capabilities of this architecture using two simulated domains.
• Blocks World (BW): a tabletop domain where the
objective is to stack blocks of different colors, shapes,
and sizes, in specific configurations. Figure 2 illustrates
a scenario with four blocks, which corresponds to ≈ 70
states under a standard RL/MDP formulation [23]. The
robot may not know, for instance, that a block should
not be placed on a prism-shaped block, and thus the
corresponding action should not be attempted.
• Robot Butler (RB): a simulation of a “robot butler”
that has to navigate between two rooms of various
types in an office building to serve a beverage/drink
to two people with various roles. Figure 3 is a partial
illustration of a scenario in this domain. This domain
has only 40 permutations of its physical object proper-
ties and four parametrized actions in a standard MDP
formulation, but has ≈ 1150 static configurations that
may be considered by the domain axioms. The robot
butler may not know, for instance, that drinks should
not be served to a person operating machinery.

In the International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), Paris, France,
September 19-22, 2016.

Fig. 3. A scenario in the Robot Butler domain. Physical configuration of
objects, and static attributes room type and person role are depicted—p1
and p2 represent people, and rob1 is the robot.

A. Knowledge Representation

The transition diagrams of our illustrative domains are
described in an action language ALd [6]. Action languages
are formal models of parts of natural language used for
describing transition diagrams. ALd has a sorted signature
containing three sorts: statics, fluents and actions. Statics are
domain properties whose truth values cannot be changed by
actions, whereas fluents are domain properties whose truth
values can be changed by actions. Fluents are of two types:
inertial fluents obey the laws of inertia and are changed
directly by actions, whereas defined fluents do not obey the
laws of inertia and cannot be changed directly by actions—
they are changed based on other fluents. Actions are defined
as a set of elementary actions that can be executed in parallel.
A domain property p or its negation ¬p is a domain literal.
The action language allows three types of statements:

a causes lin if p0, . . . , pm (Causal law)
l if p0, . . . , pm (State constraint)
impossible a0, . . . ,ak if p0, . . . , pm (Executability condition)

where a is an action, l is a literal, lin is an inertial fluent
literal, and p0, . . . , pm are domain literals. A collection of
statements of ALd forms a system description.

The domain representation consists of a system description
D and history H . D has a sorted signature Σ and axioms
used to describe the transition diagram τ . The signature
Σ is a tuple that defines the names of objects, functions,
and predicates available for use in the domain. The sorts
of the BW domain include elements such as block, place,
color, shape, size, and robot, whereas the sorts of the RB
domain include elements such as location, robot, people,
roomtype and role—when some sorts are subsorts of other
sorts, e.g., robot and people may be subsorts of thing, they
can be arranged hierarchically. Furthermore, the signature
includes specific instances of sorts, e.g., rob1 of sort robot,

{o f f ice,con f erence,kitchen,workshop} of sort roomtype,
and {engineer,salesperson,manager} of sort role.

We describe the fluents and actions of the domain in terms
of the sorts of their arguments. The BW domain’s fluent
on(block, place) describes the place location of each block—
this is an inertial fluent that obeys the laws of inertia. There
are some statics for block attributes has color(block,color),
has shape(block,shape) and has size(block,size). The ac-
tion move(block, place) moves a block to a specific place
(table or another block). In the RB domain, the fluents
are the location of the robot and the people—we reason
about the former (at(robot, location)) and assume the latter
are defined fluents (at(person, location)) known at all times.
The robot can move between locations, represented as an
action move(robot, location), and serve a person at a loca-
tion with serve(robot, person, location). We also introduce
relations for people’s roles, and for specific types of rooms.
Additionally, the scenario has attributes describing whether
it is early or late in the day.

For the BW domain, the dynamics are defined in terms of
causal laws such as:

move(B,L) causes on(B,L)

state constraints such as:

¬on(B,L2) if on(B,L1), L1 6= L2

and executability conditions such as:

impossible move(B2,L) if on(B1,L), B1 6= B2

In a similar manner, the RB domain’s dynamics are defined
using causal laws such as:

serve(rob1,P,L) causes has(P,drink)

state constraints such as:

¬at(T h,L2) if at(T h,L1), L1 6= L2

and executability constraints such as:

impossible serve(rob1,P,L) if has(P,drink)

The recorded history of a dynamic domain is usually a record
of fluents observed to be true at a time step, and the occur-
rence of an action at a time step. Our prior work introduced a
new type of record to encode (prioritized) defaults describing
the values of fluents in their initial states [2], [30]. For
instance, we can encode a default statement such as “blocks
are usually on the table or on another block”, and encode
exceptions to such default statements.

The domain representation is translated into a CR-Prolog2

program Π(D ,H), i.e., a collection of statements describing
domain objects and relations between them. CR-Prolog is a
variant of Answer Set Prolog (ASP) that supports representa-
tion and reasoning with defaults and their direct and indirect
exceptions, and incorporates consistency restoring (CR) rules
in ASP [31]. ASP is based on stable model semantics and

2We use the terms “ASP” and “CR-Prolog” interchangeably.

In the International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), Paris, France,
September 19-22, 2016.

non-monotonic logics, and includes default negation and
epistemic disjunction, e.g., unlike ¬a that states a is believed
to be false, not a only implies a is not believed to be true,
and unlike “p ∨ ¬p” in propositional logic, “p or ¬p” is
not a tautology [6]. ASP can represent recursive definitions,
defaults, causal relations, and constructs that are difficult to
express in classical logic formalisms. The ground literals in
an answer set obtained by solving Π represent beliefs of
an agent associated with Π. Algorithms for computing the
entailment, and for planning and diagnostics, reduce these
tasks to computing answer sets of CR-Prolog programs. Π

consists of causal laws of D , inertia axioms, closed world
assumption for defined fluents, reality checks, and records of
observations, actions, and defaults, from H . Every default is
turned into an ASP rule and a CR rule that allows the robot to
assume, under exceptional circumstances, that the default’s
conclusion is false, so as to restore program consistency—
see [30] for details. Although not discussed here, the program
representing the current beliefs of the robot also supports ca-
pabilities such as explaining unexpected action outcomes and
partial descriptions extracted from sensor inputs—see [1].

In complex domains, it is difficult for human partici-
pants to equip robots with complete and accurate domain
knowledge. This is especially true of domain axioms—some
of these axioms may not be known or may change over
time. The plans created using this incomplete knowledge
may result in unintended consequences. Consider a scenario
in the BW domain in which the goal is to stack three
of four blocks placed on the table. Figure 4(a) shows a
possible goal configuration that could be generated based on
the available domain knowledge. The corresponding plan,
with all four block being on the table in the initial state,
has two steps: move(b1,b0) followed by move(b2,b1). The
robot expects this plan to succeed in achieving the desired
goal state. However, unknown to the robot, no block can
be stacked on top of a prism-shaped block in this domain.
As a result, execution of this plan results in failure that
cannot be explained—specifically, action move(b1,b0) does
not result in the expected configuration shown in Figure 4(b).
In this paper, we focus on discovering previously unknown
executability conditions, which can prevent such actions from
being included in a plan for any given goal.

B. Relational RL for Discovering Axioms

Our approach for incremental and interactive discovery of
previously unknown domain axioms differs from previous
work by us and other researchers. The proposed approach:
• Explores the existence of previously unknown axioms
only when unexpected action outcomes cannot be ex-
plained by reasoning about exogenous actions.
• Uses ASP-based reasoning, RRL, and inductive and in-
cremental decision tree regression, for efficiently identi-
fying candidate axioms and generalizing across specific
candidate axioms.
• Uses an efficient sampling-based approach to construct
and consider multiple MDPs for discovering domain

axioms, instead of using RRL for planning, which limits
generalization to a specific MDP.

Generalization and computational efficiency are core con-
siderations for incremental and interactive learning. For
instance, in the RB domain, discovery of the axiom “person
p1 operating machinery should not be served drinks” does
not help with person p2 operating machinery in the office,
unless the robot realizes, over time, that this axiom is a
specific instance of the generic axiom “drinks should not
be served to any person operating machinery”.

A sequence of steps is used to identify candidate axioms
and to generalize across these candidates to obtain the
generic axioms. First, when a specific plan step fails, the
corresponding state is considered the goal state in an RL
problem, with the objective of finding state-action pairs that
are most likely to lead to this error state. The RL problem
uses an underlying MDP formulation defined by the tuple
〈S,A,T,R〉, where:
• S: set of states.
• A: set of actions.
• T : S×A×S′→ [0,1] is the state transition function.
• R : S×A×S′→ℜ is the reward function

The transition function and reward function (T and R) are not
known in an RL problem. Each state, i.e., each element of S,
is the assignment of specific (ground) values to the domain
fluents and statics, and a boolean fluent describing whether
the most recent action resulted in failure. For instance, if we
were to consider two blocks with known color and shape
in the BW domain, each state would consider a possible
physical configuration of the blocks. Similarly, each element
of A is a valid action for the domain, e.g., serving drinks
to person p1 who is a manager located in room2 in the RB
domain. Next, the known axioms in the ASP-based domain
description are used to eliminate invalid combinations of
states and actions in the domain. For instance, no two people
can be in the same location in the RB domain. Also, it is not
possible to move a block that is under another block in the
BW domain. Inconsistent state transitions are identified by
constructing and computing answer sets of ASP programs
with the specific state-action combinations and the axioms
in D . This “filtering” significantly reduces the size of the
problem because only valid state-action combinations are
included as elements of T and R. Furthermore, the MDP is
constructed automatically from the ASP system description,
for any given goal state.

The next step is to estimate the Q-values of the state-
action pairs Q(s,a) for particular scenarios (pairs of goal and
initial states). Basic RL algorithms for estimating Q-values,
such as Q-learning and SARSA, do not scale well with large
increases in the state space size, becoming computationally
intractable. They also do not generalize to relationally equiv-
alent states. To address these issues, we use a relational
representation: after an episode of Q-learning (one iteration
from start to end of the scenario), all state-action pairs that
have been visited, along with their estimated Q-values, are
used to update a binary (i.e., logical) decision tree (BDT).
The path from the root node to a leaf node corresponds

In the International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), Paris, France,
September 19-22, 2016.

(a) Planned goal state (b) Failure in plan execution

Fig. 4. Illustrative example of (a) a planned goal state; and (b) failure during a specific step in plan execution.

Fig. 5. Subset of the BDT for a specific scenario in the BW domain.
Numbers at the leaves reflect Q-values.

to one pair (s,a), where a is an action and s is a partial
state description. Individual nodes in the BDT correspond to
true/false tests (e.g., specific fluent terms, statics or actions)
with which the node’s two sub-branches are associated.
Figure 5 illustrates a subset of a BDT constructed for the
BW domain. This tree is used to compute the policy for the
next episode, after which the BDT will be revised further.

Instead of generating this tree from scratch after each
episode, we use RRL-TG, an incremental inductive learning
algorithm operating over a dynamic decision tree. This algo-
rithm significantly (a) reduces overhead and storage require-
ments; and (b) improves performance gain by eliminating
the need for building the tree anew after each episode [32].

The BDT is altered after every iteration, and used to provide
the policy for the next iteration. When RL is terminated, the
BDT relationally represents the robot’s experiences.

The method described above only considers generalization
within a specific MDP. To identify generic domain axioms,
the third step of our approach simulates similar errors (to
the one actually encountered due to plan step execution
failure) and considers the corresponding MDPs as well.
Specifically, it varies the underlying attribute configurations,
i.e., the set of ground statics representing object properties
that are fixed within a specific episode in a specific sce-
nario. These configurations are most relevant to the learn-
ing task because the robot is assumed to have accurate
knowledge about physical configurations, but is missing one
or more executability constraints governed by static object
properties, e.g., it is a block’s prism shape that makes it
impossible to stack another block on it. In other words,
we construct MDPs for a sample of 1% of the number of
valid attribute configurations of the domain. For each such
MDP, we perform RRL as described above, but change the
static configuration a number of times for each MDP. Each
learning instance will thus start with a randomized non-
repeated attribute configuration; run learning episodes until
convergence; revise the attribute configuration one literal at
a time until a non-repeated attribute configuration is found;
run learning episodes; and repeat this process until a certain
number of attribute configurations have been examined for
each MDP. In this manner, the robot explores permutations
that implicitly vary the goal state. Also, by making only
minor changes to the attribute configuration within each
MDP, we maximize the applicability of the current learned
policy to the new attribute configuration.

The fourth step identifies candidate domain axioms, or
more specifically, executability conditions. The head of an
axiom contains a ground action, and the body contains one
or more attributes that influence (or are influenced by) the
action. Generalization is performed by taking each leaf from
each BDT, extracting a partial state-action description using
its path to the root, and collecting the fluents from that
description. The goal state of the current scenario helps
identify candidate actions that had unexpected outcomes. The
resulting examples may be modeled as a tree whose root node
corresponds to the non-occurrence of the action, intermediate
nodes correspond to attributes of objects involved in the
action (i.e., relevant statics and fluents), and leaf nodes

In the International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), Paris, France,
September 19-22, 2016.

Fig. 6. Decision tree representing candidate axioms related to a specific
action in the blocks world domain. Numbers attached to the leaves reflect
amassed mean values.

average the values of the samples grouped under that node.
Invalid branches, e.g., corresponding to an action without
attributes, are removed. After the set of partial examples of
candidate axioms is created, examples with identical contents
are identified, and ground values in the examples are replaced
with variables to create a generalized example. Figure 6
depicts a subset of a decision tree visualizing candidate
axioms related to a particular action (i.e., move(A,D)) in
the Blocks World domain.

For some complex domains (e.g., the Robot Butler do-
main), we may still end up with multiple different axioms. If
so, the final step uses K-means algorithm to cluster axioms
based on their value. The axioms in the cluster with the
largest mean value are added to the ASP program Π(D ,H)
to be used for subsequent reasoning.

IV. EXPERIMENTAL SETUP AND RESULTS

The proposed approach, henceforth referred to as “Q-
RRL”, was grounded and evaluated in the Blocks World
domain and Robot Butler domains—see Section III for a
description of these domains. We describe the performance
in illustrative execution scenarios drawn from these domains.
We also compare the rate of convergence and the memory
requirements of Q-RRL with those of traditional Q-learning.

0 100 200 300 400
0

2

4

6

8

10

12

 Q-Learning

 Q-RRL

Episodes

M
ax

im
u

m
 Q

-V
al

u
es

Fig. 7. Comparing the rate of convergence of Q-RRL with Q-learning in
a specific scenario in the BW domain—Q-RRL converges much faster.

A. Blocks World

The objective in the BW domain was to stack the blocks in
a particular configuration. Consider trials in which the robot
did not know it was impossible to place any block on a
prism-shaped block. Among possible scenarios, consider the
scenario with four blocks: b0 (Red Prism); b1 (Red Cube);
b2 (Blue Cuboid); and b3 (Blue Prism). The initial state was:

on(b0, table), on(b1, table), on(b2, table), on(b3, table)

and the goal state description was:

on(b0, table), on(b1,b0), on(b2,b1), on(b3, table)

The plan had actions move(b1,b0) and move(b2,b1)—action
move(b1,b0) fails. During Q-RRL and Q-learning, the agent
received a reward of +100 for reaching the goal state and a
reward of −1.5 for other actions.

As stated earlier, RRL is triggered when executing the
computed plan (to stack blocks) results in an unexpected
outcome than cannot be explained. During RRL, different re-
lated scenarios are simulated (e.g., combinations of attributes
of blocks) to generate the training samples for generalization.
Figure 7 shows the rate of convergence of the maximum Q-
value obtained using Q-RRL and Q-learning. The Q-RRL
algorithm has a much better rate of convergence, i.e., the
optimal policy is computed in significantly fewer number
of episodes. In these trials, we are concerned about the
rate of convergence—the actual Q-values do not matter. The
following are some axioms identified during the iterations:

¬occurs(move(A,D), I) ← has shape(D, prism),

has shape(A,cuboid),

has color(D,blue)

¬occurs(move(A,D), I) ← has shape(D, prism),

has shape(A,cube),

has color(D,red)

In the International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), Paris, France,
September 19-22, 2016.

¬occurs(move(A,D), I) ← has shape(D, prism),

has shape(A, prism),

has color(A,red),

has color(D,blue)

As the robot explores different scenarios, there are fewer
errors because impossible actions are no longer included in
the plans. Furthermore, the robot is able to incrementally
generalize from the different specific axioms to add the
following generic axiom to the CR-Prolog program:

¬occurs(move(A,D), I) ← has shape(D, prism)

The proposed approach resulted in a similar discovery of
unknown axioms in other experimental trials conducted in
the BW domain.

B. Robot Butler

In the RB domain, the robot has to travel to the location
of a person who has no beverage and serve her/him a
drink. As described in Section III, move actions move the
robot between rooms, while serve actions result in a person
in the same room as the robot being served a beverage.
Successfully serving the two people in any given scenario,
or failing to do so over a long period of time, terminates the
episode. Individual scenarios in the RB domain can differ
in terms of the locations and attributes of the objects. For
instance, each person has one of three different roles and
each location corresponds to one of four different roomtypes.
Any unexpected termination (e.g., the robot fails to deliver a
beverage to specific person) that cannot be explained using
existing knowledge triggers RRL for discovering axioms.
During the process, scenarios similar to the one causing the
failure are simulated, e.g., with different roles for people or
types of room—see Section III. These simulated scenarios
provide the training examples for generalizing from the
specific axioms discovered. Figure 8 compares the rate of
convergence of Q-RRL and Q-learning as a function of
the number of episodes. Q-RRL converges faster than Q-
learning, although the difference is less significant than in the
BW domain, possibly because the RB domain had multiple
axioms missing concurrently.

In the experimental trials in the RB domain, we specifi-
cally omitted some executability conditions, e.g., managers
only accept beverages early in the day; drinks cannot be
served in the workshop; or drinks can only be served in the
kitchen. We noticed that our approach was less accurate in
the RB domain than it was in the BW domain, possibly
because there were multiple concurrently missing axioms.
The sole highest-valued candidate axiom was not always
the correct executability condition, but many of the higher-
valued candidates were correct (or almost correct). The errors
mostly corresponded to the axiom being too generic or
including additional (unnecessary) attributes. We list below

0 100 200 300 400
0

2

4

6

8

10

12

14

 Q-Learning

 Q-RRL

Episodes

M
ax

im
u

m
 Q

-V
al

u
es

Fig. 8. Comparing the rate of convergence of Q-RRL with Q-learning in
a specific scenario in the RB domain—Q-RRL converges faster.

some examples of axioms generated.

(1) ¬occurs(serve(R,P,L)) ← roomtype(L,workshop)

(2) ¬occurs(serve(R,P,L)) ← earlyinday(f alse),

¬role(P,engineer)

¬role(P,salesperson)

(3) ¬occurs(serve(R,P,L)) ← roomtype(L,o f f ice),

¬roomtype(L,workshop)

The first axiom states that a beverage cannot be served in
the workshop. The second axiom is also correct, although
specifying that person P is not an engineer or salesperson is
a convoluted way of saying P is a manager. The third axiom
makes sense when the unknown axiom is that people can
only be served in the kitchen. We also observe that when
the actual generic axiom is not found, the values assigned
to the top candidate is much lower than when the generic
axiom is found.

Memory costs: For Q-learning, the data for an training
example (i.e., record), including its Q-value, is stored in
a record, whereas Q-RRL stores this data in a leaf. One
of the motivations for the RRL-TG algorithm is that it
is expensive to keep track of a monotonically increasing
number of examples, and to build trees anew from examples
after each episode [32]. Memory costs can be estimated by
counting the number of records and leaves generated over
all MDPs produced in the course of learning. We find that
Q-RRL with incremental tree learning reduces the number
of records drastically: by between 89% (for RB) and 98%
(for BW). Even if we count all the nodes in the BDTs
towards the complexity of the framework, using Q-RRL
results in a reduction in complexity of at least 75%, which
is also supported by an (experimentally) observed reduction
in processing time when we use Q-RRL.

V. CONCLUSION

Robots assisting humans in complex domains frequently
need to represent, reason with, and learn from, different

In the International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), Paris, France,
September 19-22, 2016.

descriptions of incomplete domain knowledge and uncer-
tainty. The architecture described in this paper combines
the complementary strengths of declarative programming
and relational reinforcement learning to discover previously
unknown axioms governing domain dynamics. We illustrated
the architecture’s capabilities in two simulated domains
(Blocks World and Robot Butler), with promising results.
Future work will explore the ability to discover other kinds of
axioms (e.g., state constraints and causal laws), and explore
other application domains. We will also conduct experimen-
tal trials on a mobile robot after introducing probabilistic
models of the uncertainty in perception, which will transform
the decision-making problem from an MDP to a POMDP—
this will also enable us to fully utilize the probabilistic
planning component of the overall architecture depicted in
Figure 1. Furthermore, it may be possible to use the proposed
approach for incremental and interactive (relational) learning,
and the overall architecture, to analyze and explain the
behavior of robots and humans in dynamic domains.

ACKNOWLEDGMENTS

The authors thank Prashanth Devarakonda and Rashmica
Gupta for their help in implementing an initial version of
the approach described in this paper, as documented in [4].
This work was supported in part by the US Office of Naval
Research Science of Autonomy award N00014-13-1-0766.
All opinions and conclusions expressed in this paper are
those of the authors.

REFERENCES

[1] Z. Colaco and M. Sridharan, “What Happened and Why? A Mixed
Architecture for Planning and Explanation Generation in Robotics,”
in Australasian Conference on Robotics and Automation (ACRA),
Canberra, Australia, December 2-4, 2015.

[2] S. Zhang, M. Sridharan, M. Gelfond, and J. Wyatt, “Towards An Ar-
chitecture for Knowledge Representation and Reasoning in Robotics,”
in International Conference on Social Robotics (ICSR), Sydney, Aus-
tralia, October 27-29, 2014, pp. 400–410.

[3] S. Zhang, M. Sridharan, and J. Wyatt, “Mixed Logical Inference
and Probabilistic Planning for Robots in Unreliable Worlds,” IEEE
Transactions on Robotics, vol. 31, no. 3, pp. 699–713, 2015.

[4] M. Sridharan, P. Devarakonda, and R. Gupta, “Can I Do That?
Discovering Domain Axioms Using Declarative Programming and
Relational Reinforcement Learning,” in AAMAS Workshop on Au-
tonomous Robots and Multiagent Systems (ARMS), Singapore, May
9, 2016.

[5] H. Bai, D. Hsu, and W. S. Lee, “Integrated Perception and Planning in
the Continuous Space: A POMDP Approach,” International Journal
of Robotics Research, vol. 33, no. 8, 2014.

[6] M. Gelfond and Y. Kahl, Knowledge Representation, Reasoning and
the Design of Intelligent Agents. Cambridge University Press, 2014.

[7] M. Balduccini, W. C. Regli, and D. N. Nguyen, “An ASP-Based Ar-
chitecture for Autonomous UAVs in Dynamic Environments: Progress
Report,” in International Workshop on Non-Monotonic Reasoning
(NMR), Vienna, Austria, July 17-19, 2014.

[8] E. Erdem and V. Patoglu, “Applications of Action Languages to
Cognitive Robotics,” in Correct Reasoning. Springer-Verlag, 2012.

[9] J. E. Laird, “Extending the Soar Cognitive Architecture,” in Interna-
tional Conference on Artificial General Intelligence, Memphis, USA,
March 1-3, 2008.

[10] K. Talamadupula, J. Benton, S. Kambhampati, P. Schermerhorn, and
M. Scheutz, “Planning for Human-Robot Teaming in Open Worlds,”
ACM Transactions on Intelligent Systems and Technology, vol. 1, no. 2,
pp. 14:1–14:24, 2010.

[11] L. Kaelbling and T. Lozano-Perez, “Integrated Task and Motion
Planning in Belief Space,” International Journal of Robotics Research,
vol. 32, no. 9-10, pp. 1194–1227, 2013.

[12] Z. Saribatur, E. Erdem, and V. Patoglu, “Cognitive Factories with
Multiple Teams of Heterogeneous Robots: Hybrid Reasoning for Opti-
mal Feasible Global Plans,” in International Conference on Intelligent
Robots and Systems, Chicago, USA, 2014, pp. 2923–2930.

[13] M. Hanheide, M. Gobelbecker, G. Horn, A. Pronobis, K. Sjoo, P. Jens-
felt, C. Gretton, R. Dearden, M. Janicek, H. Zender, G.-J. Kruijff,
N. Hawes, and J. Wyatt, “Robot Task Planning and Explanation in
Open and Uncertain Worlds,” Artificial Intelligence, 2015.

[14] M. Richardson and P. Domingos, “Markov Logic Networks,” Machine
Learning, vol. 62, no. 1-2, pp. 107–136, February 2006.

[15] B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov,
“BLOG: Probabilistic Models with Unknown Objects,” in Statistical
Relational Learning. MIT Press, 2006.

[16] S. Sanner and K. Kersting, “Symbolic Dynamic Programming for
First-order POMDPs,” in AAAI Conference on Artificial Intelligence,
Atlanta, USA, July 11-15, 2010, pp. 1140–1146.

[17] C. Baral, M. Gelfond, and N. Rushton, “Probabilistic Reasoning with
Answer Sets,” Theory and Practice of Logic Programming, vol. 9,
no. 1, pp. 57–144, January 2009.

[18] J. Lee and Y. Wang, “A Probabilistic Extension of the Stable Model
Semantics,” in AAAI Spring Symposium on Logical Formalizations of
Commonsense Reasoning, March 2015.

[19] R. P. Otero, “Induction of the Effects of Actions by Monotonic Meth-
ods,” in International Conference on Inductive Logic Programming,
2003, pp. 299–310.

[20] H. H. Zhuo, T. Nguyen, and S. Kambhampati, “Refining Incomplete
Planning Domain Models Through Plan Traces,” in International Joint
Conference on Artificial Intelligence (IJCAI), Beijing, China, August
2013, pp. 2451–2457.

[21] R. L. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. MIT Press, Cambridge, MA, USA, 1998.

[22] T. J. Walsh, S. Goschin, and M. L. Littman, “Integrating Sample-
Based Planning and Model-Based Reinforcement Learning,” in AAAI
Conference on Artificial Intelligence, Atlanta, USA, July 11-15, 2010.

[23] S. Dzeroski, L. D. Raedt, and K. Driessens, “Relational Reinforcement
Learning,” Machine Learning, vol. 43, pp. 7–52, 2001.

[24] P. Tadepalli, R. Givan, and K. Driessens, “Relational Reinforcement
Learning: An Overview,” in Relational Reinforcement Learning Work-
shop at the International Conference on Machine Learning, 2004.

[25] K. Driessens and J. Ramon, “Relational Instance-Based Regression for
Relational Reinforcement Learning,” in International Conference on
Machine Learning (ICML). AAAI Press, 2003, pp. 123–130.

[26] T. Gartner, K. Driessens, and J. Ramon, “Graph Kernels and Gaussian
Processes for Relational Reinforcement Learning,” in International
Conference on Inductive Logic Programming (ILP). Springer, 2003,
pp. 140–163.

[27] C. Boutilier, R. Reiter, and B. Price, “Symbolic Dynamic Program-
ming for First-Order MDPs,” in International Joint Conference on
Artificial Intelligence (IJCAI), Seattle, USA, August 4-10, 2001, pp.
690–700.

[28] M. Sridharan and S. Rainge, “Integrating Reinforcement Learning
and Declarative Programming to Learn Causal Laws in Dynamic
Domains,” in International Conference on Social Robotics (ICSR),
Sydney, Australia, October 27-29, 2014.

[29] M. Sridharan, P. Devarakonda, and R. Gupta, “Discovering Domain
Axioms Using Relational Reinforcement Learning and Declarative
Programming,” in ICAPS Workshop on Planning and Robotics (Plan-
Rob), London, UK, June 13-14, 2016.

[30] M. Sridharan, M. Gelfond, S. Zhang, and J. Wyatt, “A Refinement-
Based Architecture for Knowledge Representation and Reasoning
in Robotics,” Unrefereed CoRR abstract: http://arxiv.org/abs/1508.
03891,” Technical Report, August 2015.

[31] M. Balduccini and M. Gelfond, “Logic Programs with Consistency-
Restoring Rules,” in AAAI Spring Symposium on Logical Formaliza-
tion of Commonsense Reasoning, 2003, pp. 9–18.

[32] Kurt Driessens and Jan Ramon and Hendrik Blockeel, “Speeding up
Relational Reinforcement Learning Through the Use of an Incremental
First Order Decision Tree Learner,” in European Conference on
Machine Learning (ECML). Springer-Verlag, 2001, pp. 97–108.

