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Abbreviations 1 

AGEs = advanced glycated end-products; ALEs = advanced lipoxidation end-products; 2 

VAP-1= vascular adhesion protein-1; SSAO = semicarbazide-sensitive amine oxidase; 3 

CAD = coronary artery disease; ApoE = apolipoprotein E; SMC = smooth muscle 4 

cells; ROS = reactive oxygen species; LDL = low-density lipoprotein; H2O2 = 5 

hydrogen peroxide; advanced glycation end-products; LOX = lysyl oxidase; S1P = 6 

sphingosine-1-phosphate; OGTT = oral 75-g glucose tolerance test; LDL-C = 7 

low-density lipoprotein cholesterol; HDL-C = high-density lipoprotein cholesterol; 8 

ALT = alanine transaminase; AST = aspartate aminotransferase; MCP-1 = monocyte 9 

chemoattractant protein-1; TLR-4 = Toll-like receptor-4; RAGE = receptor for 10 

advanced glycation end-products; MMP-9 = matrix metalloproteinase-9; VCAM-1 = 11 

vascular cell adhesion molecule-1; ICAM-1 = intercellular adhesion molecule-1; 12 

PCNA = proliferating cell nuclear antigen; TNF-α = tumor necrosis factor alpha; 13 

LOX-1 = lectin-like oxidized low-density lipoprotein receptor-1; HUVEC = human 14 

umbilical vein endothelial cells; ECM = endothelial Cell Medium; HUVEC 15 

hSSAO/VAP-1 cells = HUVEC overexpressing VAP-1/SSAO; A7r5 hSSAO/VAP-1 16 

cells = A7r5 cells overexpressing VAP-1/SSAO; LPS = lipopolysaccharide; 17 

H2DCF-DA = dichlorofluorescein diacetate; PDGF = platelet-derived growth factor; 18 

BMI = body mass index   19 
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Background 1 

Vascular adhesion protein-1 (VAP-1) participates in inflammation and has 2 

semicarbazide-sensitive amine oxidase (SSAO) activity. However, the effect of 3 

VAP-1/SSAO inhibition on atherosclerosis remains controversial. 4 

 5 

Translational Significance 6 

 Plasma VAP-1/SSAO concentrations are positively associated the presence 7 

and the extent of coronary artery disease in humans.  8 

 PXS-4728A, a specific VAP-1/SSAO inhibitor, can reduce atherosclerosis in 9 

cholesterol-fed ApoE-deficient mice, through suppression of many key steps 10 

for atherosclerosis, including reactive oxygen species generation, endothelial 11 

dysfunction, adhesion and transmigration of monocytes, recruitment and 12 

activation of macrophages, as well as migration and proliferation of SMC.  13 

 VAP-1/SSAO inhibition is a potential treatment for atherosclerotic 14 

cardiovascular disease. 15 

 16 

Abstract 17 

Inflammation, oxidative stress and formation of advanced glycated/lipoxidation 18 

end-products (AGEs/ALEs) are important for atherosclerosis. Vascular adhesion 19 
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protein-1 (VAP-1) participates in inflammation and has semicarbazide-sensitive amine 1 

oxidase (SSAO) activity, which catalyzes oxidative deamination to produce hydrogen 2 

peroxide and aldehydes, leading to generation of AGEs/ALEs. However, the effect of 3 

VAP-1/SSAO inhibition on atherosclerosis remains controversial, and no studies used 4 

coronary angiography to evaluate if plasma VAP-1/SSAO is a biomarker for coronary 5 

artery disease (CAD). Here, we examined if plasma VAP-1/SSAO is a biomarker for 6 

CAD diagnosed by coronary angiography in humans and investigated the effect of 7 

VAP-1/SSAO inhibition by a specific inhibitor PXS-4728A on atherosclerosis in cell 8 

and animal models. In the study, VAP-1/SSAO expression was increased in plaques in 9 

humans and apolipoprotein E (ApoE)-deficient mice, and colocalized with vascular 10 

endothelial cells and smooth muscle cells (SMC). Patients with CAD had higher 11 

plasma VAP-1/SSAO than those without CAD. Plasma VAP-1/SSAO was positively 12 

associated with the extent of CAD. In ApoE-deficient mice, VAP-1/SSAO inhibition 13 

reduced atheroma and decreased oxidative stress. VAP-1/SSAO inhibition attenuated 14 

the expression of adhesion molecules, chemoattractant proteins, and pro-inflammatory 15 

cytokines in aorta, and suppressed monocyte adhesion and transmigration across 16 

human umbilical vein endothelial cells. Consequently, the expression of markers for 17 

macrophage recruitment and activation in plaques was decreased by VAP-1/SSAO 18 

inhibition. Besides, VAP-1/SSAO inhibition suppressed proliferation and migration of 19 
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A7r5 SMC. Our data suggest plasma VAP-1/SSAO is a novel biomarker for the 1 

presence and extent of CAD in humans. VAP-1/SSAO inhibition by PXS-4728A is a 2 

potential treatment for atherosclerosis. 3 

  4 
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Introduction 1 

Atherosclerosis is the leading cause of death in developed countries.
1,2

 The 2 

World Health Organization (WHO) estimated that 17.5 million people died from 3 

cardiovascular diseases, representing 31% of all global deaths.
3
 Inflammation has 4 

been shown to be another important mechanism for the progression of 5 

atherosclerosis.
4,5

 Circulating leukocytes, especially monocytes, transmigrate from the 6 

vasculature to the inflammation site and are activated. Various chemokines, cytokines, 7 

enzymes, and reactive oxygen species (ROS) are produced and secreted, which may 8 

modify low-density lipoprotein (LDL), propagate inflammation, and result in 9 

atherosclerosis. Therefore, therapeutic agents able to suppress inflammation and 10 

reduce ROS in the arterial wall are of great potential as new anti-atherosclerotic 11 

drugs. 12 

Vascular adhesion protein-1 (VAP-1) is an endothelial adhesion molecule 13 

involved in leukocyte rolling, adhesion and transmigration into inflammatory sites.
6
 14 

VAP-1 is expressed in endothelial cells, smooth muscle cells (SMC), and 15 

adipocytes.
7,8

 Different from other adhesion molecules, VAP-1 has an enzymatic 16 

function, called semicarbazide-sensitive amine oxidase (SSAO) [EC 1.4.3.21], which 17 

catalyzes the oxidative deamination of primary amines into aldehydes (e.g., 18 

formaldehyde, methylglyoxal), hydrogen peroxide (H2O2), and ammonia.
9,10

 Under 19 
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enhanced oxidative stress, aldehydes can cross-link proteins and result in the 1 

generation of advanced glycation/lipoxidation end-products (AGEs/ALEs), both of 2 

which can induce endothelial injury and promote monocyte activation.
11-14

 H2O2 is a 3 

source of ROS, which can modify LDL in the arterial wall. Besides, both hydrogen 4 

peroxide and ammonia are cytotoxic to vascular cells at high concentrations. In other 5 

words, all these end-products of VAP-1/SSAO can result in the development of 6 

atherosclerosis. Indeed, chronic administration of methylamine, a substrate of SSAO, 7 

resulted in increased atheroma area in mice.
15

  8 

On the other hand, there is a soluble form of VAP-1 that can be measured in 9 

plasma. Soluble VAP-1 is derived from the transmembranous form of VAP-1 by 10 

proteolytic cleavage.
16-19

 Soluble VAP-1 is upregulated and released in certain 11 

inflammatory disorders, such as diabetes
20,21

 and hepatitis
16

 among others. In humans, 12 

serum VAP-1 is associated with atherosclerosis in carotid arteries
22,23

 and the 13 

incidence of major cardiovascular events
24

. Moreover, serum VAP-1 can predict 14 

cardiovascular mortality in both type 2 diabetic subjects
25

 and general population
24

. 15 

Taken together, findings from these reports suggest that VAP-1/SSAO is involved in 16 

atherogenesis and can be a novel target for the treatment of atherosclerosis.  17 

So far, there are limited studies that investigate the effects of VAP-1/SSAO 18 

inhibition on atherosclerosis.
26-28

 Two of them used semicarbazide to inhibit 19 
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VAP-1/SSAO activity in LDL receptor knock-out mice, with conflicting results. In 1 

one report, semicarbazide aggravated atherosclerotic lesions.
27

 However, 2 

semicarbazide could stabilize the established atherosclerotic lesions in another 3 

report.
26

 Off-target effects of semicarbazide may be one of the reasons for the 4 

inconsistent findings, since semicarbazide is not a specific inhibitor for VAP-1/SSAO 5 

and also inhibits enzymes which are involved in atherogenesis, such as lysyl oxidase 6 

(LOX) and sphingosine-1-phosphate (S1P) lyase.
29-34

 Besides, another study using a 7 

small molecule VAP-1 inhibitor (LJP1586) for 4 weeks did not find a significant 8 

regression of atherosclerosis.
28

 However, a 4-week treatment length may not be long 9 

enough so that it may underestimate the treatment efficacy.  10 

PXS-4728A is a highly specific inhibitor of VAP-1/SSAO, and does not have any 11 

significant off-target effects when tested against other amine oxidases or over 100 12 

different macromolecular targets.
35

 In this study, we investigated whether 13 

VAP-1/SSAO inhibition reduced atherosclerosis using this specific inhibitor in 14 

apolipoprotein E (ApoE)-deficient mice for 15 weeks. Then, we explored the potential 15 

mechanisms in cell models. Although there were some studies which investigated the 16 

role of plasma VAP-1/SSAO as a biomarker for atherosclerosis,
21,22,24,36-38

 none of 17 

them used coronary angiography to confirm the presence and the extent of coronary 18 

artery disease (CAD). Therefore, we conducted a human study, which examined the 19 
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association of plasma VAP-1/SSAO to the presence and the extent of CAD diagnosed 1 

by coronary angiography. 2 

 3 

Materials and methods  4 

 Human study 5 

Patients 6 

    From 2008 to 2009, we conducted a cross-sectional study at National Taiwan 7 

University Hospital.
39

 Subjects who were suspected to have CAD based on positive 8 

results of noninvasive stress tests and who received selective coronary angiography 9 

were invited to participate in this study. All subjects were evaluated by cardiologists. 10 

They were asked to answer questionnaires and receive physical examinations and 11 

blood tests, with the aid of trained nurses. The choice of noninvasive stress tests was 12 

determined by the attending physician, such as treadmill electrocardiography and 13 

thallium perfusion scanning. None of the study subjects took medications which may 14 

affect the activity of serum SSAO or VAP-1.
40

 Written informed consent was obtained 15 

from each participant. The study protocol was approved by the institutional review 16 

board and the study was performed in accordance with the Declaration of Helsinki of 17 

Human Research.  18 

Measurements and assays 19 
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    Plasma samples were collected from each participant after overnight fasting and 1 

then stored at -80℃ before the measurement of VAP-1/ SSAO concentration. A 2 

standard oral 75-g glucose tolerance test (OGTT) was performed to measure 2-h 3 

postprandial plasma glucose. Plasma glucose and lipid profiles were measured with an 4 

automatic analyzer (Toshiba TBA 120FR, Toshiba Medical Systems Co., Ltd., Tokyo, 5 

Japan). Plasma VAP-1/SSAO concentration was measured by a quantitative sandwich 6 

enzyme immunoassay (R&D Systems, Minneapolis, USA). The assay utilized a 7 

specific monoclonal antibody against VAP-1 as a capturer on a microplate. Detection 8 

of bound VAP-1 was performed using a different polyclonal antibody specific for 9 

VAP-1 conjugated to horseradish peroxidase. A substrate solution was added and the 10 

intensity of the color was measured, which was in proportion to the amount of plasma 11 

VAP-1 bound in the initial step. Plasma VAP-1/SSAO concentration was quantified on 12 

the basis of a reference sample of highly purified recombinant human plasma 13 

VAP-1/SSAO. The intra-assay and inter-assay coefficients of variation were 1.90% 14 

and 3.58%, respectively.  15 

Definition 16 

    CAD was determined by coronary angiography and defined as the presence of at 17 

least one stenosis of ≥50% diameter in any of the major epicardial coronary arteries. 
41

 18 

The extent of CAD was assessed based on the number of atherosclerotic segments and 19 
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the number of major epicardial coronary arteries with ≥50% stenosis. Diabetes was 1 

diagnosed if fasting plasma glucose ≥126 mg/dL, 2-h postprandial plasma glucose 2 

≥200 mg/dL, hemoglobin A1c ≥6.5% or the patient used pharmacological treatment 3 

for diabetes.
42

 Hypertension was defined if systolic blood pressure ≥140 mmHg, 4 

diastolic blood pressure ≥90 mmHg, or the patient used antihypertensive drugs.
43

 5 

 6 

 In vivo and in vitro study 7 

Animal groups and treatment 8 

Male 8-week ApoE-deficient mice were purchased from Animal Resources 9 

Centre (Canning Vale, WA, Australia) and kept under a C57/BL6 background. All 10 

procedures were performed in accordance with the local institutional guidelines for 11 

animal care of the National Taiwan University and complied with the “Guide for the 12 

Care and Use of Laboratory Animals” NIH publication No. 86-23, revised 2011. The 13 

protocol was approved by the National Taiwan University College of Medicine and 14 

College of Public Health Institutional Animal Care and Use Committee (IACUC NO: 15 

20130274). Animals were randomly distributed into five groups: Group I (Control), 16 

fed with standard chow diet (n=12); Group II (Cholesterol Diet), fed with 17 

cholesterol-enriched diet (Purina Mills, Inc., USA) containing 21% fat (12% 18 

saturated fat) and 0.15% cholesterol for 15 weeks (n=12); Group III (Cholesterol 19 
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Diet/PXS-4728A, the prevention group), fed with cholesterol-enriched diet and 1 

PXS-4728A (10 mg/kg/day in 50 µl of 5 mM Na2HPO4 solution, Pharmaxis, 2 

Australia) orally for 15 weeks (n=12); Group IV (Cholesterol Diet/PXS-4728A 7W, 3 

the treatment group), fed with cholesterol-enriched diet for 15 weeks and PXS-4728A 4 

(10 mg/kg/day) orally from 9-15 weeks (n=12); Group V (Cholesterol 5 

Diet/atorvastatin, the positive therapeutic control group), fed with 6 

cholesterol-enriched diet and atorvastatin (2.5 mg/kg/day, Pfizer, USA) orally for 15 7 

weeks (n=12). Fasting blood samples were collected one day before the experiment 8 

commencement (0 time) and at the end of the experiment (after 15 weeks) for 9 

measurement of plasma triglycerides, total cholesterol, low-density lipoprotein 10 

cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), glucose, 11 

creatinine, alanine transaminase (ALT), and aspartate aminotransferase (AST) 12 

(Randox Laboratories. Ltd., UK). After 15 weeks, mice were anaesthetized with 13 

pentobarbital (150mg/kg i.p.). The aortic sinus and thoracic aorta were gently 14 

removed and the adipose tissue peeled off the aortic wall. Subsequently, the aortic 15 

sinus and thoracic aorta were fixed with 4% paraformaldehyde solution before 16 

cryosection. 17 

SSAO activity analysis 18 

SSAO activity was determined as a result of the turnover of hydrogen peroxide, 19 
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which was measured by Amplex Red Monoamine Oxidase Assay Kit (A12214, 1 

Molecular Probes, Eugene, OR, USA). Briefly, 100μg of protein was incubated at 2 

room temperature with clorgyline 1 μM (monoamine oxidase-A inhibitor), pargyline 3 3 

μM (monoamine oxidase-B inhibitor), benzylamine 2 mM (substrate of SSAO), 100 4 

μM Amplex Red reagent, and 1 U/ml HRP, with or without semicarbazide 1mM. 5 

Absorbance at 570 nm was measured every 5 minutes for 30 minutes. A standard 6 

curve was plotted using different solutions with known hydrogen peroxide 7 

concentrations. Production rate of hydrogen peroxide is calculated and expressed as 8 

[H2O2]/min/μg protein. SSAO activity was determined by the difference between the 9 

production rates of hydrogen peroxide with and without semicarbazide. The linearity 10 

(R2) of this assay is 0.9989~1.0000 and the intra- or inter-assay CV is 0.5~3.8% in 11 

our lab. 12 

Oil Red O staining 13 

Atherosclerotic plaque development was quantified by histomorphometry of Oil 14 

Red O-stained aortic sinus and thoracic aorta. Aortic sinus and thoracic aorta stained 15 

with Oil Red O were performed according to a standard protocol. Briefly, after being 16 

rinsed with water, the aorta was exposed to isopropanol (60%) for 2 min, followed by 17 

1 h of staining with a solution of Oil Red O dissolved in 60% isopropanol. The excess 18 

stain was removed with isopropanol and water, and the aorta was photographed using 19 
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a microscope equipped with a digital camera (Leica). The Oil Red-stained areas 1 

representing atherosclerotic plaques were measured using Image Pro Plus. The results 2 

were expressed as the ratio of total plaque area over total vessel area. The aortic sinus 3 

and thoracic aorta were fixed in 4% paraformaldehyde, embedded in OCT, and 4 

cross-sectioned for morphometric analysis and immunohistochemistry. The aortic 5 

sinus and thoracic aorta were cut serially into 8 µm frozen sections, and every tenth 6 

section was stained with Oil Red O for lesion area calculation. The analyses were 7 

performed microscopically; the images were analyzed with Image Pro Plus. 8 

Evaluation of atherosclerotic lesions and immunohistochemical staining 9 

    For the pathomorphological examination, 8 μm-thick serial sections were 10 

collected throughout the length of each segment. All sections were 11 

immunohistochemically stained with CD31 (1:200, endothelial marker, Abcam, 12 

Cambridge, UK), α-actin (1:200, SMC marker, GeneTex, Irvine, California), Iba-1 13 

(1:500, macrophage marker, Wako, Richmond, VA), monocyte chemoattractant 14 

protein-1 (MCP-1) (1:100, Pepotech, Rocky. Hill, NJ), Toll-like receptor-4 (TLR-4) 15 

(1:100, Proteintech, Chicago, IL, USA), CD36 (1:100, Abcam, Cambridge, UK), 16 

receptor for advanced glycation end-products (RAGE) (1:100, Abbiotec, San Diego, 17 

CA), matrix metalloproteinase-9 (MMP-9), VAP-1, vascular cell adhesion molecule-1 18 

(VCAM-1), intercellular adhesion molecule-1 (ICAM-1), E-selectin, proliferating cell 19 
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nuclear antigen (PCNA) (1:100, all from Santa Cruz, Delaware Avenue, CA), tumor 1 

necrosis factor alpha (TNF-α), lectin-like oxidized low-density lipoprotein receptor-1 2 

(LOX-1) (1:100, all from GeneTex, Irvine, California), nitrotyrosine (1:100, upstate 3 

Biotechnology, Charlottesville, VA) and then reacted with rhodamine- and 4 

FITC-conjugated secondary antibodies (1:200; Jackson ImmunoResearch, USA), and 5 

observed by fluorescence microscopy. 6 

Western blot detection 7 

The cells were lysed with RIPA lysis buffer (Cell Signaling, Beverly, MA, USA). 8 

A total of 20 µg of protein was separated by 10-12% SDS–PAGE and transferred onto 9 

PVDF membranes (Millipore, Bedford, MA, USA). After blocking with 5% BSA at 10 

room temperature for 1 h, the membranes were incubated with primary antibodies (all 11 

1:1000 in 1.5% BSA in TBST) at 4°C overnight. The membranes were then incubated 12 

with HRP-conjugated secondary antibodies (1:6000 in 1.5% BSA in TBST) at room 13 

temperature for 1 h. Immunoreactivity was detected with ECL (GE Healthcare 14 

Bioscience, Piscataway, NJ, USA).The intensities of the bands were quantified using 15 

Gel-Pro software (Media Cybernetics, Rockville, MD, USA). β-actin or GAPDH was 16 

used as an internal control (1:6000 in 1.5% BSA in TBST; GeneTex, Irvine, 17 

California). The intensities of the target proteins were normalized by the intensities of 18 

the internal control bands. 19 
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Tissue adhesion assay 1 

The cultured U937 cells were stained with the BCECF-AM. The stained U937 2 

cells were added to the artery for 30 min at 37 °C. They were then washed and 3 

observed by fluorescence microscopy. 4 

Cell cultures 5 

A7r5, purchased as cryopreserved tertiary cultures (Cascade Biologics Inc., Portland, 6 

OR, USA), were grown in DMEM containing 10% FBS and 1% antibiotic/antimycotic 7 

solution at 37°C in a 5% CO2 atmosphere. The growth medium was changed every other 8 

day until confluence, and then the cells were passaged every 3-5 days. Cells between 9 

passages 3 and 8 were used for the subsequent experiments. Before conducting 10 

experiments, A7r5 were pre-cultured in serum-starved medium for 24 h. Human umbilical 11 

vein endothelial cells (HUVEC) were obtained from the Bioresource Collection and 12 

Research Center (BCRC). The cells were grown in Endothelial Cell Medium (ECM) 13 

(Lonza, Walkersville, MD, USA) containing penicillin-streptomycin (1%) and endothelial 14 

cell growth supplements at 37°C in a humidified atmosphere of 95% air and 5% CO2 and 15 

were used between passages 2 and 5. HUVEC overexpressing VAP-1/SSAO (HUVEC 16 

hSSAO/VAP-1 cells) and A7r5 cells overexpressing VAP-1/SSAO (A7r5 hSSAO/VAP-1 17 

cells) were developed by Dr. Mercedes Unzeta and Dr. Montse Solé (Universitat 18 

Autònoma de Barcelona (UAB), Barcelona, Spain). The details were described in previous 19 
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publications.
44,45

 HUVEC hSSAO/VAP-1 and A7r5 hSSAO/VAP-1 cells were cultured 1 

similarly ways as described for HUVEC and A7r5 cells. U937 cells were obtained from 2 

ATCC (American Type Culture Collection). Cells were grown in RPMI-1640 medium 3 

(GIBCO) supplemented with 10% fetal bovine serum, 100 units/ml penicillin and 100 4 

Ag/ml streptomycin at 37℃ in an incubator containing 5% CO2.  5 

ROS detection 6 

Cells were grown in 6 cm culture dishes. After the cells were pre-treated with 7 

300 nM PXS-4728A for 1 h, and 1 µg/mL of lipopolysaccharide (LPS) or 10 ng/mL 8 

TNF-α for another 1 h, the cells were stained with dichlorofluorescein diacetate 9 

(H2DCF-DA) and then were trypsinized for FACScan cytometer analysis. 10 

Monocyte adhesion assay 11 

HUVEC hSSAO/VAP-1 cells were grown in 24-well culture plates. After reaching 12 

confluence, cells were pre-treated with 300 nM PXS-4728A or 13 

N-acetyl-L-cysteine (NAC) (5, 10 mM) for 1 h, and 10 ng/mL TNF-α treatment for 14 

another 24 h. After treatment, the U937 cells were added to treated cells for 60 min at 15 

37 °C. They were then washed and observed under an inverted phase-contrast 16 

microscope. 17 

Monocyte transmigration assay 18 

HUVEC hSSAO/VAP-1 cells were grown in transwells. After reaching 19 
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confluence, cells were pre-treated with 300 nM PXS-4728A for 1 h, and 10 ng/mL 1 

TNF-α treatment for another 24 h. After treatment, the U937 cells were added into 2 

transwells for another 6 h. The transmigrated cells were determined after 6 h by 3 

Coomassie blue staining and count. 4 

Cell cycle analysis 5 

A7r5 hSSAO/VAP-1 cells were grown in 6-well culture plates and then 6 

serum-starved as described above. After pretreatment with 300 nM PXS-4728A or NAC 7 

(1, 2 mM) for 1 h and 20 ng/mL platelet-derived growth factor (PDGF)-BB for another 24 8 

h, the cells were trypsinized and stained with propidium iodide (PI). The cell-cycle 9 

progression was detected on a FACScan cytometer (BD Biosciences, San Jose, CA) and 10 

was analyzed by ModFit software. 11 

Wound-healing assay 12 

A7r5 hSSAO/VAP-1 cells were grown in 6 cm culture dishes. After the cells 13 

were pre-treated with 300 nM PXS-4728A or NAC (1, 2 mM) for 1 h, wounds were 14 

inflicted by dragging a sterile pipette tip across the monolayer, creating a 250 μm 15 

cell-free path after which 20 ng/mL PDGF-BB (Peprotech, Rocky Hill, NJ, USA) was 16 

added. After 24 h, the migration rate of the cells and the wound closure area/original 17 

wound area ratio were calculated using a real-time cultured cell monitoring system 18 

(ASTEC, Japan) and Metamorph and Image-Pro Plus 4.5 software. 19 
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Statistical analyses 1 

    Continuous variables with normal distribution were presented as means ± SD or 2 

means ± SEM. Variables with skewed distribution were presented as medians 3 

(interquartile ranges) and were analyzed after logarithmic transformation. The 4 

statistical significance of the differences in different subgroups was tested with 5 

Student's t test or χ
2
 test. Unadjusted Pearson's correlation coefficients and partial 6 

correlation coefficients adjusting for age and gender were used to determine the 7 

relationship of plasma VAP-1/SSAO with cardiovascular risk factors, the number of 8 

vessels with stenosis and the number of segments with stenosis. The association 9 

between CAD and plasma VAP-1/SSAO was evaluated by logistic regression; 10 

whereas the association between the number of vessels with stenosis, the number of 11 

segments with stenosis, and plasma VAP-1/SSAO was evaluated by linear regression 12 

analyses. Clinically important variables associated with CAD were included in 13 

multivariate analyses, including age, gender, hypertension, diabetes, smoking and 14 

LDL-C. A two-tailed p-value below 0.05 was considered significant. Stata/SE 14.0 for 15 

Windows (StataCorp LP, College Station, TX) was used for statistical analyses. 16 

 17 

Results 18 

Expression of VAP-1/SSAO in atherosclerotic lesions in human and ApoE-deficient 19 
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mice  1 

To examine VAP-1/SSAO expression during atherosclerosis in humans and mice, 2 

immunohistochemical staining was performed with antibodies against VAP-1/SSAO. 3 

In the human normal coronary artery, little VAP-1/SSAO expression was seen (Figure 4 

1A). Compared to normal artery, VAP-1/SSAO expression was significantly stronger 5 

in the atherosclerotic plaques. To examine the cellular localization of VAP-1/SSAO 6 

during the formation of atherosclerosis in humans and ApoE-deficient mice, 7 

immunohistochemical staining with antibodies against VAP-1/SSAO, endothelial 8 

cells, or SMC was carried out in human coronary artery and the mice aorta sections 9 

(Figure 1A and 1B). VAP-1/SSAO staining overlaid with markers staining for 10 

endothelial cells and SMC (Figure 1A and 1B), thus confirming that endothelial cells 11 

and SMC in atherosclerotic plaques express VAP-1/SSAO. In Supplemental Figure 1, 12 

VAP-1/SSAO expression in thoracic aorta increased by time after 13 

cholesterol-enriched diet was given. However, there was no significant difference in 14 

plasma VAP-1/SSAO concentrations at different time after cholesterol-enriched diet 15 

was given (means ± standard deviations, at day 0, 1.007 ± 0.7418 ng/ml; at the 9
th

 16 

week, 1.972 ± 1.726 ng/ml; at the 12
th

 week, 3.276 ± 2.330 ng/ml; at the 15
th

 week, 17 

1.639 ± 0.613 ng/ml, p>0.05). 18 

 19 
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Plasma VAP-1/SSAO concentrations are positively associated with the presence and 1 

the extent of CAD in humans 2 

Baseline characteristics of the subjects enrolled in the human study are shown in 3 

Table 1. A total of 127 (70%) subjects were diagnosed with CAD. Compared to those 4 

without CAD, subjects with CAD were more likely to be male, had a higher 5 

prevalence to use statins, and had lower plasma HDL-C. There were no significant 6 

differences between the two groups regarding age, smoking, body mass index (BMI), 7 

blood pressure, history of hypertension or diabetes, plasma concentrations of fasting 8 

and 2-h postprandial glucose, hemoglobin A1c, total cholesterol, triglyceride, and 9 

LDL-C. Notably, plasma VAP-1/SSAO concentrations were significantly higher in 10 

subjects with CAD than in the control group (median 579 [interquartile range 490-710] 11 

ng/ml vs. 544 [460-644] ng/ml, p=0.003, Table 1 and Figure 2A). There was a 12 

positive association between plasma VAP-1/SSAO concentrations, the number of 13 

coronary arteries with stenosis (p for trend<0.001, Figure 2B), and the number of 14 

coronary arterial segments with stenosis (p for trend=0.001, Figure 2C). 15 

Table 2 showed the relationships between plasma VAP-1/SSAO concentrations 16 

and clinical characteristics. In univariate analysis, plasma VAP-1/SSAO positively 17 

correlated with age (r=0.1485, p=0.047), fasting plasma glucose (r=0.2349, 18 

p=0.0015), 2-h postprandial plasma glucose (r=0.3435, p<0.0001), the number of 19 
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coronary arteries with stenosis (r=0.2569, p=0.0005), and the number of coronary 1 

arterial segments with stenosis (r=0.2505, p=0.0007). The relationships remained 2 

significant after controlling for age and gender. There was a significant correlation 3 

between plasma VAP-1/SSAO and plasma triglyceride concentrations (r=0.1731, 4 

p=0.021), adjusted for age and gender. Besides, plasma VAP-1/SSAO concentrations 5 

were similar between subjects receiving statins and subjects who did not receive 6 

statins (median 570 [interquartile range 475-674] ng/ml vs. 578 [489-652] ng/ml, 7 

p=0.99). 8 

To determine whether plasma VAP-1/SSAO was an independent predictor of the 9 

presence and the extent of CAD, we performed logistic and linear regression analyses 10 

(Table 3). Plasma VAP-1/SSAO concentrations were associated with the presence of 11 

CAD (odds ratio=2.09, 95% CI 1.29-3.38, p=0.003, adjusted for age and gender). 12 

There was a positive association between plasma VAP-1/SSAO concentrations and the 13 

extent of CAD, as measured by the number of coronary arteries with stenosis (β=0.32, 14 

p<0.001) and the number of coronary arterial segments with stenosis (β=0.62, 15 

p<0.001). The relationship of plasma VAP-1/SSAO concentrations to the presence and 16 

the extent of CAD remained significant after further adjustment for history of 17 

hypertension, diabetes, plasma LDL-C and smoking. 18 

 19 
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PXS-4728A inhibits VAP-1/SSAO activity and the consequent H2O2 generation and 1 

oxidative stress in cholesterol-fed ApoE-deficient mice 2 

To detect the effects of PXS-4728A treatment on VAP-1/SSAO activity, we 3 

measured SSAO-specific H2O2 production rate in cholesterol-fed ApoE-deficient 4 

mice.PXS-4728A significantly inhibited VAP-1/SSAO activity and SSAO-specific 5 

H2O2 production in thoracic aortic tissues, lung, and epididymal fat (Figure 3A-C). 6 

The oxidative stress expression was determined by nitrotyrosine staining. The result 7 

showed that the oxidative stress expression was decreased significantly by 8 

PXS-4728A treatment (Figure 3D). 9 

 10 

SSAO inhibition by PXS-4728A reduces atherosclerosis in cholesterol-fed 11 

ApoE-deficient mice 12 

The effects of PXS-4728A on the atherosclerotic plaque area were quantified by 13 

histomorphometric analysis of the aortic sinus and thoracic aortic sections in 14 

ApoE-deficient mice 15 weeks after cholesterol-enriched diet. The atherosclerotic 15 

plaque area was determined by Oil Red O staining analysis (Figure 3E-F). The ratios 16 

of atherosclerotic plaque area to total area of the aortic sinus and thoracic aorta were 17 

significantly higher in the cholesterol-fed group than in the control group. Compared 18 

with the cholesterol-fed group, PXS-4728A significantly reduced the ratio of 19 
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atherosclerotic plaque area to total area, both in the prevention group and in the 1 

treatment group (51.69% ± 2.27% in the cholesterol-fed group; 36.05% ± 3.93% in 2 

the prevention group [PXS-4728A given along with cholesterol-enriched diet for 15 3 

weeks], p<0.05 vs. cholesterol-fed group; 36.65% ± 4.29% in the treatment group 4 

[cholesterol-enriched diet was given for 8 weeks followed by cholesterol-enriched 5 

diet plus PXS-4728A for another 7 weeks] , p<0.05 vs. cholesterol-fed group). Similar 6 

data were observed in the ratios of atherosclerotic plaque area to total area of thoracic 7 

aorta. Importantly, the effect of VAP-1/SSAO inhibition in the prevention group was 8 

similar to the effect of atorvastatin (2.5 mg/kg/day for 15 weeks), the treatment of 9 

choice for primary and secondary prevention for cardiovascular diseases in humans.  10 

 11 

Effects of VAP-1/SSAO inhibition by PXS-4728A on serum biochemical parameters 12 

of cholesterol-fed ApoE-deficient mice 13 

As shown in Table 4, plasma total cholesterol, LDL-C, triglyceride and glucose 14 

concentrations were significantly increased in the cholesterol-fed group, compared 15 

with the control group (p<0.05). The elevation of plasma total cholesterol, LDL-C, 16 

and glucose concentrations were significantly reduced by PXS-4728A (the prevention 17 

group) or atorvastatin (all p<0.05). In the PXS-4728A 7W group (the treatment group), 18 

plasma glucose concentrations decreased significantly, but plasma total cholesterol 19 
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and LDL-C were not significantly different from that in the cholesterol-fed group. In 1 

all groups, there was no significant difference in plasma creatinine, AST and ALT. 2 

 3 

SSAO inhibition by PXS-4728A reduces the expression of adhesion molecules and 4 

inflammatory cytokines in atherosclerotic plaques 5 

To test the effects of PXS-4728A on inflammation, immunohistochemical 6 

staining and western blot with antibodies against adhesion molecules and 7 

inflammatory cytokines were carried out on thoracic aorta sections. The expression of 8 

adhesion molecules, including VAP-1, vascular cell adhesion molecule-1 (VCAM-1), 9 

intercellular adhesion molecule-1 (ICAM-1) and E-selectin, were higher in thoracic 10 

aorta of ApoE-deficient mice in the cholesterol-fed group than that in the control 11 

group (Figure 4A and Supplemental Figure 2). VAP-1/SSAO inhibition by 12 

PXS-4728A (both the prevention and the treatment group) significantly decreased the 13 

expression of these adhesion molecules, compared with the cholesterol-fed group 14 

(Figure 4A and Supplemental Figure 2).  15 

Since leukocyte recruitment plays an important role in the initiation and 16 

progression of atherosclerosis,
4,5

 we used labeled-U937 cells to directly test whether 17 

VAP-1/SSAO inhibition can inhibit early monocyte recruitment into atherosclerotic 18 

lesions. In Figure 4B-C, the number of labeled-U937 cells on artery was higher in the 19 
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cholesterol-fed group than that in the control group (Figure 4B-C). PXS-4728A (both 1 

in the prevention and the treatment groups) significantly decreased the number of 2 

monocytes adhered to the arteries, compared with the number in the cholesterol-fed 3 

group. In Figure 4D and Supplemental Figure 2, the expression of pro-inflammatory 4 

molecules TNF-α and MCP-1 were higher in the cholesterol-fed group and were 5 

reduced by PXS-4728A (both in the prevention and the treatment groups). All 6 

together, the results suggest that, VAP-1/SSAO inhibition by PXS-4728A reduce 7 

inflammation and leukocyte recruitment to atherosclerotic lesions in cholesterol-fed 8 

ApoE-deficient mice. 9 

 10 

SSAO inhibition by PXS-4728A reduces the expression of markers for macrophage 11 

recruitment and activation in atherosclerotic plaques 12 

TLR-4, CD36 and LOX-1 activation by oxidized LDL (oxLDL) contribute to the 13 

pathogenesis of atherosclerosis.
46

 During the development of atherosclerosis, 14 

macrophages are recruited to plaques, where they are activated by AGEs and 15 

oxLDL.
47

 Activated macrophages form foam cells, which consequently propagate 16 

inflammation and progresses to atherosclerosis.
48,49

 To test the effect of VAP-1/SSAO 17 

inhibition by PXS-4728A on AGEs-LDL-activated macrophages in the atherosclerotic 18 

plaques, immunohistochemical staining and western blot with antibodies against Iba-1 19 
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(a macrophage marker), TLR-4, CD36, RAGE and LOX-1 were performed in 1 

ApoE-deficient mice thoracic aorta sections. As shown in Figure 4E and 2 

Supplemental Figure 2, the cholesterol-enriched diet resulted in a significant increase 3 

in the recruitment of macrophages and the expression of TLR-4, CD36, RAGE and 4 

LOX-1 in the atherosclerotic plaques. These effects were markedly decreased by 5 

PXS-4728A, except CD36 and LOX-1 expression in the cholesterol-fed/PXS7W 6 

group. All together, these data showed that VAP-1/SSAO inhibition by PXS-4728A 7 

reduces the expression of markers for macrophage recruitment and activation in 8 

atherosclerotic plaques. 9 

 10 

SSAO inhibition by PXS-4728A reduces the adhesion and the transmigration of 11 

monocytes in TNF-α-treated HUVEC overexpressing hSSAO/VAP-1 by inhibiting 12 

ROS production 13 

In order to elucidate the role of VAP-1/SSAO in endothelial cells on 14 

atherosclerosis, HUVEC hSSAO/VAP-1 cells were used. In Figure 5A-B, HUVEC 15 

hSSAO/VAP-1 cells expressed more VAP-1/SSAO protein than HUVEC, as 16 

determined by western blot and immunofluorescence analysis. The VAP-1/SSAO 17 

activity of HUVEC hSSAO/VAP-1 cells was inhibited completely by PXS-4728A 18 

treatment (Figure 5C).  19 
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Since TNF-α-induced endothelial dysfunction and ROS production play a pivotal 1 

role in the pathogenesis of atherosclerosis,
50

 the effect of VAP-1/SSAO inhibition was 2 

also tested in the presence of TNF-α stimulation. As shown in Figure 5D, the 3 

accumulation of intracellular ROS was increased by TNF-α treatment, and the 4 

increased effect was significantly inhibited by PXS-4728A treatment, suggesting that 5 

VAP-1/SSAO inhibition can reduce TNF-α-induced ROS production. During 6 

inflammation, monocytes are adhered in the vascular wall and then transmigrate into 7 

subendothelial space.
51

 Therefore, we evaluated the effect of VAP-1/SSAO inhibition 8 

on the adhesion and transmigration of monocytes. As shown in Figure 5E and F, the 9 

number of adhered and transmigrated monocytes were increased by TNF-α treatment. 10 

PXS-4728A pre-treatment significantly reduced the number of monocytes adhered to 11 

and transmigrated across TNF-α-treated HUVEC hSSAO/VAP-1 cells. Besides, 12 

pretreatment with NAC, a ROS scavenger, also reduced the number of adhered and 13 

transmigrated monocytes. Taken together, these findings suggest that VAP-1/SSAO 14 

inhibition by PXS-4728A reduced the adhesion and transmigration of monocytes in 15 

TNF-α-treated HUVEC hSSAO/VAP-1 cells by inhibiting the production of ROS. 16 

 17 

SSAO inhibition by PXS-4728A reduces the expression of MMP-9, SMC, and 18 

PCNA in atherosclerotic plaques 19 
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The proliferation and migration of vascular SMC play an important role in the 1 

progression of atherosclerosis. SMC migrate from the tunica media into the intima via 2 

degradation of the extracellular matrix mediated by MMP-9 and other proteinases.
52,53

 3 

In Figure 4F and Supplemental Figure 2, analysis of MMP-9 and the SMC marker, 4 

α-actin, revealed stronger MMP-9 expression and more α-actin-positive cells in the 5 

thickened intima of the cholesterol-fed group as compared to the intima of the control 6 

group. These effects were significantly reduced by PXS-4728A treatment. To detect 7 

cell proliferation in the atherosclerotic plaque, PCNA staining was used. As shown in 8 

Figure 4F and Supplemental Figure 2, the expression and the number of 9 

PCNA-positive cells in the thickened plaques were higher in the cholesterol-fed group 10 

than that in the control group and in PXS-4728A groups. Taken together, these 11 

findings suggest that VAP-1/SSAO inhibition by PXS-4728A reduces the expression 12 

of markers for SMC migration and proliferation in the development of atherosclerosis. 13 

 14 

SSAO inhibition by PXS-4728A reduces the cell proliferation and migration in 15 

A7r5 cells overexpressing hSSAO/VAP-1 by inhibiting ROS production 16 

In order to elucidate the role of VAP-1/SSAO in SMC on atherosclerosis, A7r5 17 

hSSAO/VAP-1 cells were used. In Figure 6A-C, A7r5 hSSAO/VAP-1 cells expressed 18 

more VAP-1/SSAO protein than A7r5 cells, and had VAP-1/SSAO activity. Treatment 19 

Page 30 of 75



31 

 

with PXS-4728A inhibited the VAP-1/SSAO activity of A7r5 hSSAO/VAP-1 cells 1 

completely (Figure 6C).  2 

ROS have been reported to accelerate the proliferation and migration of vascular 3 

SMC.
54

 As shown in Figure 6D, LPS treatment led to intracellular ROS accumulation 4 

in A7r5 hSSAO/VAP-1 cells, which was significantly reduced when cells were treated 5 

with PXS-4728A. The proliferation and migration of vascular SMC are important in 6 

the progression of atherosclerosis.
55

 First, we measured the effects of PXS-4728A on 7 

SMC proliferation by flow cytometry. As shown in Figure 6E, following PDGF-BB 8 

stimulation, the proportion of A7r5 hSSAO/VAP-1 cells in S phase increased from 9 

7.72 ± 0.43% to 12.79 ± 0.65% (p<0.05), which was prevented by PXS-4728A 10 

pre-treatment (12.79 ± 0.65% vs. 8.45 ± 0.25%, p<0.05) and accompanied by a 11 

significant increase in the proportion of cells in G0/G1 phase (from 73.33 ± 2.19% to 12 

78.05 ± 1.33%, p<0.05). These data indicate that PXS-4728A suppresses the 13 

proliferation of PDGF-BB-treated A7r5 hSSAO/VAP-1 cells via G0/G1 arrest. 14 

Besides, pre-treatment with ROS scavenger NAC also reduced PDGF-BB-stimulated 15 

proliferation of A7r5 hSSAO/VAP-1 cells. For SMC migration, wound-healing assays 16 

were done. As shown in Figure 6F, the migration of A7r5 hSSAO/VAP-1 cells 17 

increased significantly after stimulation with PDGF-BB. PXS-4728A or NAC 18 

treatment reduced migration rate of PDGF-BB–treated A7r5 hSSAO/VAP-1 cells 19 
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significantly. Taken together, these findings indicate that VAP-1/SSAO inhibition by 1 

PXS-4728A reduces the proliferation and migration of PDGF-BB–treated A7r5 2 

hSSAO/VAP-1 cells by inhibiting ROS production. 3 

 4 

Discussion 5 

In the present study, we have demonstrated that plasma VAP-1/SSAO 6 

concentrations were higher in subjects with CAD and were positively associated with 7 

the number of coronary arteries or coronary arterial segments with stenosis in humans. 8 

The findings are different from the results in a study by Salmi et al.,
37

 who did not 9 

found any significant association between serum VAP-1/SSAO and CAD. Since the 10 

diagnosis of CAD in the study was established by self-reporting and verified with 11 

drug reimbursement records, but not by coronary angiography as in the present study, 12 

the possible ascertainment bias may reduce the statistical power. Aside from CAD, 13 

there are several articles which report a significant relationship between serum 14 

VAP-1/SSAO and atherosclerosis in carotid arteries in humans. Serum VAP-1/SSAO 15 

activity has been reported to be associated with carotid intima-medial thickness and 16 

plaques in women
22

 and in diabetic subjects.
36

 In general population, we have 17 

demonstrated that acute change of serum VAP-1/SSAO to hyperglycemia was 18 

correlated to blood AGEs concentrations and carotid intima-medial thickness.
23

 19 
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Furthermore, we have reported that serum VAP-1/SSAO can predict cardiovascular 1 

mortality and all-cause mortality in subjects with diabetes;
25

 whereas in subjects older 2 

than 50 years, a Finnish study has shown that serum VAP-1/SSAO can predict the 3 

incidence of major cardiovascular events and cardiovascular mortality.
24

 All these 4 

results suggest that blood VAP-1/SSAO is a biomarker for atherosclerosis and can be 5 

used to predict cardiovascular events and mortality.  6 

A recent study supports our findings that endothelial cells in atherosclerotic 7 

plaques displayed increased VAP-1 expression compared to normal artery, and 8 

VAP-1/SSAO inhibition reduced the macrophage recruitment in atherosclerotic 9 

plaques.
28

 In LDL receptor-deficient mice expressing only apolipoprotein B100 10 

(LDLR
-/-

ApoB
100/100

), VAP-1 was expressed on the luminal surface of endothelial 11 

cells in atherosclerotic plaques. However, endothelial cells lining non-atherosclerotic 12 

vessel wall were VAP-1 negative. When a small molecular VAP-1 inhibitor (LJP1586) 13 

was given after introducing high-fat diet for 8 weeks, it reduced the density of 14 

macrophages in plaques. In contrast to our study, there was no significant difference 15 

in the size of plaques after LJP1586 treatment for 4 weeks. This discrepancy may be 16 

explained by a shorter treatment length (4 weeks), which may not be long enough to 17 

observe the significant regression of atherosclerosis. Besides, mice were shifted to a 18 

normal chow diet during LJP1586 treatment, which may slow down the progression 19 
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of atherosclerosis. Therefore, the effect of LJP1586 on atherosclerosis was minimized, 1 

so that no significant difference in the size of plaques was found between the 2 

treatment and control groups. 3 

RAGE is a member of immunoglobulin superfamily that is able to bind diverse 4 

molecules such as AGEs, ALEs and high mobility group box 1 (HMGB1), and 5 

function as a signaling transduction receptor.
56

 The interaction of RAGE and its 6 

ligands can induce the release of inflammatory cytokines, increase expressions of 7 

adhesion molecules, and promote SMC proliferation, thereby contributing to 8 

atherogenesis.
57

 RAGE inactivation has been shown to inhibit atherosclerosis through 9 

reducing oxLDL-induced pro-inflammatory responses and oxidative stress in LDL 10 

receptor-deficient mice.
58

 In the present study, VAP-1/SSAO inhibition decreased 11 

H2O2 production and the expression of RAGE in the vessel walls, suggesting two 12 

possible mechanisms whereby VAP-1/SSAO inhibition reduces atherosclerosis. 13 

In the present study, plasma VAP-1/SSAO concentrations correlated positively 14 

with plasma fasting glucose and 2-h postprandial glucose in humans (Table 2), and 15 

VAP-1/SSAO inhibition by PXS-4728A significantly lowered fasting plasma glucose 16 

in ApoE-deficient mice (Table 4). In the literature, serum VAP-1/SSAO activity has 17 

been reported to correlate with plasma glucose concentrations in humans.
20,21,37

 18 

Besides, a population study found an association of serum VAP-1/SSAO activity with 19 
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type 1 diabetes in both sexes and with type 2 diabetes in men.
22

 There are two 1 

possible mechanisms linking VAP-1/SSAO and glucose homeostasis. First, vascular 2 

VAP-1/SSAO participates in inflammation of adipose tissue. Adipose macrophages 3 

can secrete various cytokines, such as TNFα, IL-1β and IFNγ, which results in insulin 4 

resistance in adipose tissue and promotes lipolysis.
59

 Increased circulating fatty acids 5 

may lead to ectopic lipid accumulation and insulin resistance in liver and skeletal 6 

muscle through the generation of diacylglyceride and protein kinase C. In 7 

VAP-1/SSAO knockout mice, leukocyte infiltration in adipose tissue was reduced.
60

 8 

Besides, these mice had an increased fat mass, suggesting that their fat storage 9 

capacity was increased and may be more resistant to insulin resistance resulting from 10 

ectopic lipid accumulation. In contrast, adipose VAP-1/SSAO may play a beneficial 11 

role by enhancing glucose uptake induced by amines, which has been shown in the 12 

experiments using fat cells from VAP-1/SSAO knockout mice
44

 and in KKAy mice 13 

using another SSAO inhibitor (E)-2-(4-fluorophenethyl)-3-fluoroallylamine (FPFA)
61

. 14 

In KKAy mice, a single injection of FPFA resulted in elevation of plasma glucose. 15 

However, chronic treatment of FPFA on glucose homeostasis was not evaluated in the 16 

study. Taken together, since inhibition of adipose inflammation may take a longer time 17 

to develop, we hypothesize that VAP-1/SSAO inhibition may increase plasma glucose 18 

concentrations through the inhibition of adipose glucose uptake in a short period of 19 
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time, but may improve glucose homeostasis through the reduction of adipose 1 

inflammation in a long period of time, as shown in the present study. Further studies 2 

are needed to prove the hypothesis in the future.  3 

Hypercholesterolemia is an important risk factor for atherosclerosis. In humans, 4 

serum VAP-1/SSAO activity has been reported to correlate with plasma LDL-C
22

 and 5 

total cholesterol.
62

 In the present study, VAP-1/SSAO inhibition by PXS-4728A for 15 6 

weeks significantly reduced plasma LDL-C levels in cholesterol-fed apolipoprotein 7 

E-deficient mice. However, plasma LDL-C levels was not significantly suppressed 8 

with PXS-4728A for 7 weeks, suggesting that treatment duration is an important 9 

factor for plasma LDL-C reduction. Indeed, inhibition of VAP-1/SSAO by another 10 

specific inhibitor LJP1586 for 4 weeks failed to show any change in plasma LDL-C in 11 

LDLR
-/-

 ApoB
100/100

 mice.
28

 The mechanism for the effect remains unknown. Several 12 

pro-inflammatory cytokines and stimulants, such as TNFα, IL-1 and 13 

lipopolysaccharide, have been reported to increase serum cholesterol levels by 14 

enhancing hepatic cholesterol synthesis and 3-hydroxy-3-methylglutaryl-CoA 15 

(HMG-CoA) reductase activity, and reducing bile acid synthesis in rodent models.
63

 16 

However, in humans, subjects with inflammatory diseases, such as rheumatoid 17 

arthritis and psoriasis, have lower levels of plasma LDL-C, which can be elevated by 18 

anti-inflammatory agents.
64,65

 In these patients, there are changes in quality of LDL-C, 19 
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such as generation of small dense LDLs and increased susceptibility toward oxidation 1 

etc.
63

 Therefore, they have an increased risk of atherosclerosis despite a lower plasma 2 

LDL-C levels. Further studies are needed to clarity the mechanisms how 3 

VAP-1/SSAO inhibition reduces plasma LDL-C, considering the treatment duration 4 

and differences in research models. Clinically, statins are the treatment of choice for 5 

primary and secondary prevention of cardiovascular events, mainly through the 6 

reduction in plasma LDL-C.
66,67

 However, concerns about the association between 7 

statins and new-onset diabetes have recently been raised. In the present study, 8 

VAP-1/SSAO inhibition has shown to successfully reduce plaque size, and the 9 

efficacy of VAP-1/SSAO inhibition for primary prevention of atherosclerosis is 10 

comparable to that of atorvastatin. Since PXS-4728A for 7 weeks reduced plaque size 11 

without a significant decrease in plasma LDL-C levels, this suggests that 12 

VAP-1/SSAO inhibition can alleviate the progression of atherosclerosis through not 13 

only lipid-dependent mechanisms but also lipid-independent mechanisms, such as 14 

decreasing ROS production, lowering plasma glucose, suppressing endothelial 15 

activation, inhibiting recruitment and activation of macrophages, and attenuating 16 

migration and proliferation of SMC. Taken together, our findings suggest that 17 

VAP-1/SSAO inhibition is a novel way with different mechanisms to statins for the 18 

treatment of atherosclerosis.  19 
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The first step to initiate atherosclerosis is the activation of endothelial cells, 1 

which facilitates leukocyte trafficking to inflammatory sites, thereby kicks off the 2 

downstream pathological immune response. Therefore, the role of VAP-1/SSAO on 3 

endothelial cells serves as a crucial cornerstone for the anti-atherosclerotic effects of 4 

PXS-4728A. VAP-1/SSAO on endothelial cells not only serves as an adhesion 5 

molecule
6
 but also acts as an ectoenzyme contributing to leukocyte rolling, firm 6 

adhesion and transmigration
68-71

. A working model has been proposed to explain how 7 

VAP-1/SSAO modulates the leukocyte extravasation cascade, based on study results 8 

using anti-VAP-1 antibodies and VAP-1/SSAO inhibitors and HUVEC transfected 9 

with an enzyme-inactive mutant of VAP-1.
10

 First, VAP-1 on endothelial cells serves 10 

as an adhesin to interact with leukocytes through antibody-defined epitopes. Then, the 11 

leukocyte surface molecule is used as a substrate for oxidative deamination reaction 12 

of SSAO. This leads to the formation of a transient covalent interaction (Schiff base) 13 

which brings endothelial cells and leukocytes together. Finally, after the enzyme 14 

reaction proceeds, the leukocyte surface molecule is catalyzed to aldehyde and H2O2, 15 

which can serve as a signaling molecule to regulate leukocyte emigration and modify 16 

inflammatory cascades in the local microenvironment. In the present study, 17 

VAP-1/SSAO inhibition reduced monocyte adhesion to aorta (Figure 4B and 4C), as 18 

well as adhesion to and transmigration through HUVEC hSSAO/VAP-1 monolayers 19 
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(Figure 5E and Figure 5F). Our results indicate that abrogation of VAP-1/SSAO 1 

activity inhibits a sequential process associated with endothelial activation. First, 2 

VAP-1/SSAO inhibition reduced the expressions of E-selectin, P-selectin, and 3 

ICAM-1 on aorta (Figure 4A and Supplemental Figure 2), which supports the 4 

concepts that the catalytic activity of VAP-1/SSAO can up-regulate several other 5 

endothelial adhesion molecules.
72,73

 Notably, we found that inhibition of 6 

VAP-1/SSAO activity also reduced its own protein expression on endothelial cells 7 

(Figure 4A and Supplemental Figure 2). This finding implies that there might be a 8 

positive feedback mechanism by which VAP-1/SSAO activity could regulate its own 9 

protein expression, but further studies are warranted to prove this hypothesis. 10 

Moreover, we found that VAP-1/SSAO inhibition suppressed intracellular ROS 11 

production in HUVEC hSSAO/VAP-1 cells (Figure 5D). In the literature, intracellular 12 

ROS have been shown to regulate the expression of adhesion molecules.
74,75

 In 13 

addition, we have proven that the number of adhered and transmigrated monocytes 14 

was decreased by antioxidant NAC (Figure 5E and 5F). Taken together, our results 15 

suggest that VAP-1/SSAO inhibition can reduce monocyte adhesion and 16 

transmigration, which may result from direct enzymatic effect, suppressed 17 

intracellular ROS production and reduced expression of adhesion molecules.  18 

During inflammation, chemotactic proteins such as MCP-1 are released to recruit 19 
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leukocytes, especially monocytes, into the inflammatory site.
4
 Once monocytes have 1 

migrated into the intima, they can be stimulated by various cytokines and differentiate 2 

into macrophages. In the present study, cholesterol-enriched diet resulted in the 3 

upregulation of the expression of MCP-1 and various pro-inflammatory cytokines, 4 

and more macrophages were recruited in the atherosclerotic plaques. By contrast, 5 

VAP-1/SSAO inhibition reduced the expression of MCP-1 and these cytokines, and 6 

suppressed macrophage recruitment. These findings are in agreement with previous 7 

reports.
73,76

 In a rat model, VAP-1/SSAO inhibition has been shown to suppress the 8 

expression of MCP-1 and TNF-α, resulting in reduced choroidal neovascularization.
76

 9 

Similarly, decreased expression of MCP-1 and TNF-α by VAP-1/SSAO inhibition has 10 

also been demonstrated in a mice model of intracerebral hemorrhagic stroke.
73

   11 

Proliferation and migration of vascular SMC are crucial to atherogenesis.
55

 In the 12 

present study, SMC displayed strong expression of VAP-1/SSAO, which is also found 13 

in a previous report.
77

 During differentiation of SMC, the mRNA expression, protein 14 

expression, and VAP-1/SSAO activity increase significantly.
78

 Mercier et al. have 15 

demonstrated that VAP-1/SSAO deficient mice had larger arterial diameters, 16 

suggesting a role of VAP-1/SSAO in arterial wall remodeling.
79

 MMP-9, with its 17 

proteolytic activity, is a key molecule in SMC migration and vessel remodeling.
52,53

 In 18 

the literature, intracellular ROS can also regulate the migratory and proliferative 19 
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activities of SMC, aside from various inflammatory cytokines and growth factors.
80-82

 1 

ROS participate in pro-migratory signaling pathways, such as lamellipodia formation, 2 

actin cytoskeleton remodeling, focal adhesion turnover, and contraction of cell body.
81

 3 

ROS also promote SMC proliferation and modulate the activity and gene expression 4 

of MMP.
82

 In the present study, VAP-1/SSAO inhibition decreased MMP-9 expression 5 

in aorta (Figure 4F and Supplemental Figure 2), reduced ROS production in A7r5 6 

hSSAO/VAP-1 SMC (Figure 6D), and attenuated the migratory and proliferative 7 

ability of PDGF-BB-treated A7r5 hSSAO/VAP-1 SMC (Figure 6E and 6F). Moreover, 8 

we have demonstrated that inhibition of oxidative stress by NAC suppressed the 9 

proliferation and migration of SMC (Figure 6E and 6F). Taken together, our findings 10 

indicate that VAP-1/SSAO inhibition can regulate proliferation and migration of SMC, 11 

directly or indirectly via its effect on MMP-9 expression and intracellular redox state.  12 

In the present study, we found that VAP-1/SSAO inhibition by PXS-4728A 13 

reduced atherosclerosis. However, the findings are different from the two reported 14 

studies, both used semicarbazide to inhibit VAP-1/SSAO in LDL receptor knock-out 15 

mice on western-type diet.
26,27

 When semicarbazide was given after introducing 16 

western-type diet for 6 or 9 weeks, it increased collagen content and cap thickness of 17 

the plaques, and induced phenotypic switch of SMC, but did not result in regression 18 

of the atherosclerotic lesions.
26

 By contrast, when semicarbazide was given along with 19 
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western-type diet, it resulted in an increase in the size of atherosclerotic lesions.
27

 One 1 

of the potential reasons for the discrepant findings is the off-target effects of 2 

semicarbazide. Semicarbazide is not a specific inhibitor for VAP-1/SSAO and can act 3 

on other enzymes involved in atherogenesis.
29,30

 For instance, semicarbazide can 4 

inhibit LOX, another amine oxidase involved in extracellular matrix maturation and 5 

proliferation, as well as SMC migration. The disturbance of LOX expression could 6 

contribute to endothelial dysfunction and plaque progression.
31

 In addition, 7 

semicarbazide can also inhibit S1P lyase,
29

 a key regulator of S1P signaling. S1P has 8 

diverse effects on a variety of cell types in atherogenesis, including attachment and 9 

migration of monocytes, SMC proliferation, and production of pro-inflammatory 10 

cytokines.
32,33

 Thus, disturbance of S1P signaling may have pro- or anti-atherogenic 11 

effects, depend on the cell and animal model studied.
34

 By contrast, we used a potent 12 

and highly specific VAP-1/SSAO inhibitor PXS-4728A, which has more than 13 

500-fold selectivity for VAP-1/SSAO over all the related human amine oxidases 14 

(including LOX) or over 100 different macromolecular targets.
35

 Therefore, off-target 15 

effects are minimized in this study. 16 

The present study is limited in that the human study measured plasma 17 

VAP-1/SSAO protein concentrations alone, rather than plasma VAP-1/SSAO protein 18 

concentrations and VAP-1/SSAO activity. However, serum VAP-1/SSAO protein 19 
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concentrations have been shown to correlate well with serum VAP-1/SSAO 1 

activity,
22,37

 and treatment with antibody against VAP-1 can reduce more than 95% of 2 

serum VAP-1/SSAO activity.
37

 Therefore, it is reasonable to speculate that subjects 3 

with CAD in this study not only have elevated plasma VAP-1/SSAO protein 4 

concentrations but also have higher plasma VAP-1/SSAO activity. Besides, there was 5 

a marked male predominance in subjects with CAD, which may result from chance 6 

since we recruited study subjects consecutively and did not select them by gender. 7 

Since the relationship between plasma VAP-1 and the presence or the extent of CAD 8 

was similar after adjustment for gender, this limitation has limited effect on our 9 

findings. 10 

In conclusion, plasma VAP-1/SSAO concentrations are associated with CAD in 11 

humans, and can be used as a novel biomarker for assessing the presence and the 12 

extent of CAD. PXS-4728A, a specific VAP-1/SSAO inhibitor, can reduce 13 

atherosclerosis in cholesterol-fed ApoE-deficient mice, through suppression of many 14 

key steps for atherosclerosis, including ROS generation, endothelial dysfunction, 15 

adhesion and transmigration of monocytes, recruitment and activation of macrophages, 16 

as well as migration and proliferation of SMC. Our data suggest that VAP-1/SSAO 17 

inhibition is a potential treatment for atherosclerotic cardiovascular disease.  18 

 19 
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Figure legends 1 

Figure 1. Expression of vascular adhesion protein-1 (VAP-1) is increased in 2 

atherosclerotic plagues and is colocalized with endothelial cells (EC) and smooth muscle 3 

cells (SMC). Immunohistochemical staining with the antibodies against EC, SMC, and 4 

VAP-1 by double immunofluorescent staining in (A) coronary artery sections in humans (n = 5 

3-4) and in (B) aorta sections in apolipoprotein E (ApoE)-deficient mice (n = 3-4). VAP-1 6 

staining (white arrows) is stronger in atherosclerotic plaques than that in nomal parts in 7 

human aorta. VAP-1 staining is colocalized with EC and SMC. The scale bar = 100 μm in (A) 8 

and 50 μm in (B). Nuclei are stained with DAPI. Dashed white line represents internal elastic 9 

lamina.  10 

 11 

Figure 2. Plasma vascular adhesion protein-1 (VAP-1) is positively associated with the 12 

presence and extent of coronary arterial disease (CAD) in humans. (A) Subjects with 13 

CAD (n = 127) had higher plasma VAP-1 concentrations compared with those without CAD 14 

(n = 53). (B) Plasma VAP-1 concentrations was positively associated with the number of 15 

coronary arteries with clinical significant stenosis (n = 53, 38, 39, and 50, respectively). (C) 16 

Plasma VAP-1 concentrations was positively associated with the number of coronary arterial 17 

segments with clinical significant stenosis (n = 53, 26, 18, 25, 21, 18, and 19, respectively). 18 

Means and standard errors (error bars) of log-transformed (Ln) plasma VAP-1 are shown. 19 
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 1 

Figure 3. PXS-4728A inhibits semicarbazide-sensitive amine oxidase (SSAO) activity 2 

and reduces cholesterol diet-induced atherosclerosis in apolipoprotein E 3 

(ApoE)-deficient mice. Effects of PXS-4728A on SSAO activity in (A) thoracic aorta, (B) 4 

lung, and (C) epididymal fat. SSAO activity is expressed as the SSAO-specific production 5 

rate of H2O2 (n = 4-8). (D) Representative images and quantification of the intensity of 6 

nitrotyrosine staining within the thoracic aorta. The values are the mean ± SEM (n = 3-5 per 7 

group). The scale bar = 50 μm. (E) Oil Red O staining of aortic sinus and quantification of 8 

the Oil Red O positive area (n = 5-8). The scale bar = 100 μm. (F) En face Oil Red O 9 

staining of thoracic aorta, and quantification of the Oil Red O positive area represented as 10 

percentage of total aorta area (n = 6-9). The values are the mean ± SEM. *p <0.05. (CTRL, 11 

control group; cholesterol-fed, cholesterol-enriched diet for 15 weeks; cholesterol-fed/PXS, 12 

PXS-4728A (10 mg/kg/day) was given along with cholesterol-enriched diet for 15 weeks, 13 

"the prevention group"; cholesterol-fed/PXS 7W, cholesterol-enriched diet was given for 8 14 

weeks followed by cholesterol-enriched diet plus PXS-4728A (10 mg/kg/day) for another 7 15 

weeks, "the treatment group"; cholesterol-fed/atorvastatin, atorvastatin (2.5 mg/kg/day) was 16 

given along with cholesterol-enriched diet for 15 weeks, " the positive therapeutic control 17 

group".) 18 

 19 
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Figure 4. Semicarbazide-sensitive amine oxidase (SSAO) inhibition by PXS-4728A 1 

suppresses expression of adhesion molecules, inflammatory cytokines, markers for 2 

macrophage recruitment and activation, as well as markers for smooth muscle cells 3 

(SMC) migration and proliferation in apolipoprotein E (ApoE)-deficient mice. (A) 4 

Expression of adhesion molecules including vascular adhesion protein-1(VAP-1), vascular 5 

cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and 6 

E-selectin in the atherosclerotic plaques by immunohistochemical staining in different groups. 7 

The negative control containing only a rhodamine-conjugated secondary antibody without 8 

primary antibody incubation (w/o 1° primary antibody) showed the species specificity of the 9 

antibody. (B) En face microscopy images illustrate BCECFAM-labeled U937 bound to 10 

endothelium of thoracic aorta. (C) Quantification of the number of monocytes adhered to 11 

aorta in different groups, represented as the percentage of control. The values are the mean ± 12 

SEM (n = 3-5 per group). *p<0.05 (D) Expression of inflammatory cytokines including 13 

monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in the 14 

atherosclerotic plaques by immunohistochemical staining in different groups. (E) Expression 15 

of markers for macrophage recruitment and activation including Iba-1 (macrophage), 16 

Toll-like receptor-4 (TLR-4), CD36, receptor for advanced glycation end-product (RAGE), 17 

and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in the atherosclerotic 18 

plaques by immunohistochemical staining in different groups. (F) Expression of matrix 19 
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metalloproteinase-9 (MMP-9), smooth muscle cell marker α-actin (SMC), and proliferative 1 

cell nuclear antigen (PCNA) in the atherosclerotic plaques by immunohistochemical staining 2 

in different groups. The internal elastic lamina is indicated by the arrows. The negative 3 

control containing only a rhodamine- or FITC-conjugated secondary antibody without 4 

primary antibody incubation (w/o 1° primary antibody) showed the species specificity of the 5 

antibody. The scale bar = 100 μm. (CTRL, control group; cholesterol-fed, 6 

cholesterol-enriched diet for 15 weeks; cholesterol-fed/PXS, PXS-4728A was given along 7 

with cholesterol-enriched diet for 15 weeks; cholesterol-fed/PXS 7W, cholesterol-enriched 8 

diet was given for 8 weeks followed by cholesterol-enriched diet plus PXS-4728A for another 9 

7 weeks.) 10 

 11 

Figure 5. Semicarbazide-sensitive amine oxidase (SSAO) inhibition by PXS-4728A 12 

reduces reactive oxygen species (ROS) production and monocyte transmigration in 13 

tumor necrosis factor-α (TNF-α)-induced human umbilical vein endothelial cells 14 

(HUVEC) overexpressing SSAO/VAP-1 (HUVEC hSSAO/VAP-1 cells). (A-C) vascular 15 

adhesion protein-1 (VAP-1) expression and SSAO activity were determined by western blot, 16 

immunofluorescence and SSAO activity assay in HUVEC and HUVEC hSSAO/VAP-1 cells. 17 

(D) Cells were pre-treated with PXS-4728A (300 nM) for 1h and then treated with TNF-α (10 18 

ng/ml) for another 1h. After treatment, the cells were then loaded with ROS indicator 19 
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dichlorofluorescein diacetate (H2DCF-DA), and the fluorescence intensity was assessed by 1 

flow cytometry and quantified. (E) SMC were pretreated with PXS-4728A (300 nM) or 2 

N-acetyl-L-cysteine (NAC) (5, 10 mM) for 1 h and then treated with 10 ng/ml TNF-α for 3 

another 24 h. The monocyte adhesion assay was performed to evaluate dysfunction of 4 

TNF-α-treated HUVEC hSSAO/VAP-1 cells. (F) Cells were pre-treated with PXS-4728A 5 

(300 nM) or NAC (5, 10 mM) for 1h and then treated with TNF-α (10 ng/ml) for another 24 h. 6 

After treatment, monocytes were added in the upper well. Monocytes transmigrated for 6 h 7 

onto the lower surface of the filter were stained with coomassive blue and counted. The bar 8 

graphs represent the numbers of cells transmigrated. The values are the mean ± SEM (n = 3-6 9 

per group). *p <0.05. The scale bar = 100 μm. CTRL, control; PXS, PXS-4728A. 10 

 11 

Figure 6. Semicarbazide-sensitive amine oxidase (SSAO) inhibition by PXS-4728A 12 

reduced reactive oxygen species (ROS) production, proliferation and migration in 13 

lipopolysaccharide (LPS)- or platelet-derived growth factor (PDGF)-BB-induced A7r5 14 

cells overexpressing SSAO/VAP-1 (A7r5 hSSAO/VAP-1 cells). (A-C) vascular adhesion 15 

protein-1 (VAP-1) expression and SSAO activity were determined by western blot, 16 

immunofluorescence and SSAO activity assay in A7r5 smooth muscle cells andA7r5 17 

hSSAO/VAP-1 cells. (D) Cells were pre-treated with PXS-4728A (300 nM) for 1h and then 18 

treated with LPS (1 µg/ml) for another 1h. After treatment, the cells were loaded with ROS 19 

Page 61 of 75



62 

 

indicator dichlorofluorescein diacetate (H2DCF-DA), and fluorescence intensity was assessed 1 

by flow cytometry and quantified. (E) Cells were left untreated or were treated with 300 nM 2 

PXS-4728A or N-acetyl-L-cysteine (NAC) (1, 2 mM) for 1h and then with PDGF-BB for 3 

additional 24 h. The proportion of cells in the S phase was determined by FACScan analysis. 4 

(F) Cell migration was examined via wound-healing assay. The migration rate of the cells 5 

was determined. The values are the mean ± SEM (n = 3-5 per group). *p <0.05. The scale bar 6 

= 100 μm. CTRL, control; PXS, PXS-4728A. 7 

 8 

 9 
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Table 1. Clinical characteristics of total population stratified by the presence of coronary 1 

arterial disease (CAD). 2 

Variable  CAD (-) CAD (+) p 

N 53 127  

Numbers of coronary arteries with 

stenosis (0/1/2/3, N) 

53/0/0/0 0/38/39/50 <0.001 

Numbers of coronary arterial segments 

with stenosis 

0 3.5 ± 2.0 <0.0001 

Age (years) 57.9 ± 12.2 61.5 ± 11.6 0.066 

Gender (male/female) 31/22 109/18 <0.001 

Smoking (no/yes/quit) 29/11/13 59/27/41 0.5 

BMI (kg/m
2
) 25.6 ± 3.9 26.5 ± 4.1 0.15 

Systolic blood pressure (mmHg) 135 ± 19 140 ± 23 0.3 

Diastolic blood pressure (mmHg) 74 ± 9 76 ± 12 0.2 

Use of anti-hypertensive drugs (N, %) 34 (64) 80 (63) 0.9 

Hypertension (N, %) 46 (87) 115 (91) 0.5 

Fasting plasma glucose (mg/dL) 96 ± 19 108 ± 61 0.2 

2-h postprandial plasma glucose 

(mg/dL) 

139 ± 59 157 ± 86 0.2 

Hemoglobin A1c (%) 6.3 6.2 0.7 

Diabetes (N, %) 22 (42) 51 (40) 0.9 

Total cholesterol (mg/dL) 178 ± 30 170 ± 35 0.11 

Triglyceride (mg/dL) 110 (79-151) 116 (86-179) 0.072 

LDL-C (mg/dL) 99 ± 25 94 ± 32 0.3 

HDL-C (mg/dL) 44 ± 11 40 ± 12 0.03 

Use of statin medications (N, %) 7 (13) 58 (46) <0.001 

Plasma VAP-1 (ng/ml) 544 (460-644) 579 (490-710) 0.003 

Means ± SDs or medians (interquartile ranges) are shown.  3 

Abbreviations: BMI, body mass index; LDL-C, low-density lipoprotein cholesterol; HDL-C, 4 

high-density lipoprotein cholesterol; VAP-1, vascular adhesion protein-1 5 

 6 
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Table 2. The relationship between plasma vascular adhesion protein-1 (VAP-1) and clinical 1 

characteristics. Pearson's correlation coefficients (r) and partial correlation coefficients 2 

(partial r) are shown. Plasma VAP-1 and triglyceride levels were log transformed for the 3 

analysis. 4 

Variable  r p partial r* p* 

Age (years) 0.1485 0.047   

BMI (kg/m
2
) 0.0246 0.7 0.0794 0.30 

Systolic blood pressure (mmHg) 0.1063 0.16 0.0871 0.25 

Diastolic blood pressure (mmHg) -0.0307 0.68 0.0015 0.98 

Fasting plasma glucose (mg/dL) 0.2349 0.0015 0.2524 0.0007 

2-h postprandial plasma glucose (mg/dL) 0.3435 <0.0001 0.3687 <0.0001 

Hemoglobin A1c (%) 0.0897 0.3 0.0866 0.3 

Total cholesterol (mg/dL) -0.0479 0.5 -0.0593 0.43 

Triglyceride (mg/dL) 0.1426 0.056 0.1731 0.021 

LDL-C (mg/dL) -0.1224 0.10 -0.1324 0.081 

HDL-C (mg/dL) -0.0597 0.4 -0.1150 0.13 

The number of coronary arteries with stenosis 0.2569 0.0005 0.2869 0.0001 

The number of coronary arterial segments with 

stenosis 

0.2505 0.0007 0.2717 0.0003 

* Adjust for age and gender 5 

Abbreviations: BMI, body mass index; LDL-C, low-density lipoprotein cholesterol; HDL-C, 6 

high-density lipoprotein cholesterol 7 

 8 

 9 
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Table 3. The relationship between plasma vascular adhesion protein-1 (VAP-1) and the presence or the extent of coronary arterial disease (CAD) 1 

in adjusted models. Odds ratios (OR) or regression coefficients (β) for every 1 standard deviation increase in plasma VAP-1 are shown. 2 

 The presence of CAD The number of coronary arteries with 

stenosis 

The number of coronary arterial segments 

with stenosis 

 OR (95% CI) p β p Β p 

Crude 1.81 (1.19-2.76) 0.006 0.30 <0.001 0.61 <0.001 

Model 1 2.09 (1.29-3.38) 0.003 0.32 <0.001 0.62 <0.001 

Model 2 2.27 (1.36-3.77) 0.002 0.34 <0.001 0.66 <0.001 

Model 1, adjusted for age and gender. 3 

Model 2, adjusted for age, gender, hypertension, diabetes, plasma low-density lipoprotein cholesterol and smoking. 4 

 5 

 6 
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Table 4. The clinical and biochemical characteristics of apolipoprotein E-deficient mice. 1 

 CTRL Cholesterol-fe

d 

Cholesterol-fed/  

PXS 

Cholesterol-fed/  PXS 

7W 

Cholesterol-fed/ 

atorvastatin 

Body weight (Day 0) 27.0 ± 0.6 27.8 ± 0.5 26.3 ± 0.5 26.3 ± 0.4 25.7 ± 0.4 

Body weight (Day 105) 30.2 ± 0.7 40.7 ± 1.8* 40.3 ± 2.1* 42.3 ± 1.1* 38.1 ± 1.3* 

Fasting plasma glucose 

(mg/dl) 

129 ± 8 197 ± 15* 156 ± 11† 157 ± 7† 139 ± 11† 

Total cholesterol (mg/dl) 281 ± 21 464 ± 26* 374 ± 35† 436 ± 33* 384 ± 24† 

Triglyceride (mg/dl) 116 ± 8 190 ± 13* 188 ± 15* 191 ± 12* 201 ± 24* 

LDL-C (mg/dl) 234 ± 20 415 ± 25* 324 ± 37† 383 ± 33* 338 ± 24† 

HDL-C (mg/dl) 47 ± 2 48 ± 2 51 ± 6 53 ± 6 46 ± 2 

Creatinine (mg/dl)) 0.50 ± 

0.10 

0.46 ± 0.05 0.49 ± 0.07 0.63 ± 0.09 0.67 ± 0.11 

AST (U/L) 21 ± 2 29 ± 2 29 ± 2 30 ± 2 29 ± 3 

ALT (U/L) 21 ± 5 30 ± 3 34 ± 6 34 ± 4 39 ± 6 

Means ± SEM are shown.  2 

*p <0.05 compared with control group. †p <0.05 compared with Cholesterol-fed group. 3 

Abbreviations: LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; aspartate aminotransferase, AST; 4 

alanine transaminase, ALT  5 

CTRL, control group; Cholesterol-fed, cholesterol-enriched diet for 15 weeks; cholesterol-fed/PXS, PXS-4728A was given along with 6 

cholesterol-enriched diet for 15 weeks; cholesterol-fed/PXS 7W, cholesterol-enriched diet was given for 8 weeks followed by 7 

cholesterol-enriched diet plus PXS-4728A for another 7 weeks; cholesterol-fed/atorvastatin, atorvastatin was given along with 8 

cholesterol-enriched diet for 15 weeks. 9 

 10 
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Fig 2  HUMAN.tif 2 
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FIG 3 20180110.tif 1 
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FIG 4 20180222.tif 1 
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FIG 5 20180214.tif 1 
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