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Summary (200 words) 37 

• Dissecting the genetic architecture of quantitative traits is a crucial goal for efficient 38 

breeding of polyploid plants, including autotetraploid crop species, such as potato and coffee, 39 

and ornamentals such as rose. To meet this goal, a quantitative genetic model is needed to 40 

link the genetic effects of genes or genotypes at quantitative trait loci to the phenotype of 41 

quantitative traits.  42 

• We present a statistically tractable quantitative genetic model for autotetraploids based on 43 

orthogonal contrast comparisons in the general linear model. The new methods are suitable 44 

for autotetraploid species with any population genetic structure and take full account of the 45 

essential features of autotetrasomic inheritance. The statistical properties of the new 46 

methods are explored and compared to an alternative method in the literature by simulation 47 

studies.  48 

• We have shown how these methods can be applied for quantitative genetic analysis in 49 

autotetraploids by analysing trait phenotype data from an autotetraploid potato segregating 50 

population. Using trait segregation analysis, we showed that both highly heritable traits of 51 

flowering time and plant height were under the control of major QTL. 52 

• The orthogonal model directly dissects genetic variance into independent components and 53 

gives consistent estimates of genetic effects provided that tetrasomic gene segregation is 54 

considered.  55 

 56 

Key words: autotetraploids, double reduction, orthogonal, polyploid, potato, quantitative genetic 57 

model 58 

59 
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Introduction 60 

Polyploidy plays an important role in the evolution of eukaryotes, especially for flowering plants, 61 

all of which have undergone at least one round of polyploidization in their evolutionary history 62 

(Otto & Whitton, 2000; Jiao et al., 2011). Between 30-80% of species are currently polyploids, 63 

while the rest exist as paleopolyploids (Wolfe, 2001), having undergone a gradual process of 64 

“diploidization” over evolutionary time. Many of the world’s most important crop species are either 65 

autopolyploid, for example, the autotetraploid potato, coffee, and alfalfa, or allopolyploid, including 66 

wheat, oats and canola. Several economically important aquaculture animals are also autotetraloids, 67 

including Atlantic salmon and trout (Danzmann & Garbi, 2001; Vaughn et al., 2007). Therefore, in 68 

order to address the global food security crisis, rigorous genetic analysis of autopolyploid species 69 

becomes a timely task. 70 

 71 

Most biological characters important in organismal evolution and relevant to plant and animal 72 

breeding, such as reproductive isolation, yield, quality and resistance to biotic and abiotic stresses, 73 

are quantitative traits affected by genes at more than a single locus, as well as by environmental 74 

factors. Understanding the polygenic architecture underlying such quantitative traits is essential to 75 

enable their genetic improvement as part of effective plant or animal breeding programs. However, 76 

progress in quantitative genetic analysis in polyploid species lags far behind compared to that 77 

achieved in diploids for several major reasons.  78 

 79 

Firstly, polyploids display a much more complicated pattern of gene segregation and recombination 80 

than diploids. For example, multiple alleles at individual loci of polyploids cause a substantially 81 

wider spectrum of genotypic segregation. In autopolyploids, multivalent pairing of homologous 82 

chromosomes during meiosis may result in the phenomenon of double reduction, in which identical 83 

alleles carried on sister chromatids enter into the same gamete, resulting in systematic allelic 84 

segregation distortion. Our studies (Luo et al., 2006a) show that recombination frequency between a 85 

pair of loci can be as high as 75% under a tetrasomic model (compared to 50% in diploids) and that 86 

double reduction can occur at a frequency of 25%, showing the remarkable difference in the pattern 87 

of gene segregation and recombination between diploid and autopolyploid species. These factors 88 

have made polysomic genetic analysis one of the most challenging topics in theoretical and applied 89 

genetics since the pioneering works of quantitative geneticists such as Haldane, Mather and Fisher 90 

(Haldane, 1930; Mather, 1936; Fisher, 1947).  91 

 92 

Secondly, the evolution of polyploid genomes is an extremely dynamic process compared to that of 93 

diploids, characterized by extensive genetic and epigenetic changes occurring in the nuclear 94 
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genome following polyploidization (Soltis & Soltis, 1995; Song et al., 1995; Comai et al., 2000; 95 

Adams & Wendel, 2005). Genome structure and function of polyploids may therefore differ 96 

markedly from that of their diploid relatives. This necessitates that breeding programs targeted at 97 

improving genetic performance of an autopolyploid species should ideally be conducted at the 98 

polyploid level rather than with its diploid counterparts. 99 

 100 

The quantitative genetic model which links genetic effects of genes or genotypes at quantitative trait 101 

loci to the phenotype of quantitative traits is an essential basis for any quantitative genetic analysis. 102 

The theory and methods for modelling and analysing quantitative genetic effects have been well 103 

established and routinely practised in diploid species (Mather & Jinks, 1971; Falconer, 1989; Lynch 104 

& Walsh, 1998). In contrast, there are no methods currently available for modelling quantitative 105 

genetic effects in autotetraploids that take proper account of the complex features of autotetrasomic 106 

inheritance.  107 

 108 

Early models for the quantitative genotypic effects at a single locus in randomly mating 109 

autotetraploid populations (Kempthorne, 1955; Kempthorne, 1957) were intractable for real data 110 

analysis because they involve a large number of genetic parameters. Li (1957) developed a 111 

simplified two-allele version of Kempthorne’s model and proposed successive linear regression of 112 

genetic values of genotypes onto the corresponding frequencies in a tetraploid population under 113 

Hardy-Weinberg equilibrium (HWE). This model allowed genetic variance at a single locus to be 114 

represented by only four major components. 115 

 116 

Mather and Jinks (1971) extended their concept of additive and dominance effects for quantitative 117 

genetic analysis in diploids to define these effects in tetraploids (Mather & Jinks, 1971). Analysis 118 

with any quantitative genetic model involves the distribution of genotypes at quantitative trait loci 119 

(QTL) in the population under study. In autotetraploids, this distribution depends on the coefficient 120 

of double reduction (Luo et al., 2004). Killick (1971) therefore explored the influence of double 121 

reduction on Mather and Jink’s additive-dominance model for autotetraploids. Nevertheless, all of 122 

the classical additive-dominance models developed either for diploids, autotetraploids, or more 123 

recently autohexaploids (van Geest et al., 2017), share the undesirable property of correlation 124 

between estimates of different types of effects in the model (Li, 1957; Killick, 1971; Wright, 1979; 125 

Li et al., 2010; van Geest et al., 2017). This correlation structure may bias estimation of the model 126 

parameters and variance components of the genetic effects. Addressing this limitation, Cockerham 127 

(1954) pioneered in developing a quantitative genetic model for diploids based on the principle of 128 

orthogonal linear comparison, which enables phenotypic variation of a quantitative trait to be 129 
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partitioned in a way that ensures independence between different model effects, enabling direct 130 

dissection of genetic variance into independent components (Cockerham, 1954).  131 

  132 

This paper presents a novel and statistically tractable tetrasomic quantitative genetic model based 133 

on orthogonal contrasts that are suitable for use with either natural or artificially created populations 134 

of autotetraploid species. The model represents the first example of quantitative genetic models for 135 

autotetraploids that take account of the essential features of tetrasomic inheritance, including double 136 

reduction, while retaining computational feasibility. The statistical properties of these new models 137 

are explored and compared with another method in the literature by computer simulation analyses. 138 

We have demonstrated their utility in quantitative genetic analyses of autotetraploid species by 139 

analysing trait phenotype data from an outbred segregating population of autotetraploid potato.  140 

 141 

Materials and Methods 142 

General one locus model  143 

We first consider segregation of two alleles (A and a) at a single locus in an autotetraploid 144 

population. There are a total of 5 possible genotypes at the biallelic locus, namely AAAA 145 

(quadruplex), AAAa (triplex), AAaa (duplex), Aaaa (simplex) and aaaa (nulliplex). The ith 146 

genotype Aia4-i, is defined with a genotypic value of Gi and its frequency in the population is 147 

denoted by fi , with i = 0, 1, …, 4 indicating the number of A alleles involved in the genotype, as 148 

shown in Table 1. In practice, there may be more than two QTL alleles. However, these may be 149 

grouped into the two classes of either increasing alleles or decreasing alleles, based on their effects 150 

on the trait phenotype. This effectively reduces the maximum number of possible genotypes at a 151 

locus down to 5 (++++, +++-,++--,+---,----) in any population, creating a tractable model. 152 

 153 

We define here the genotypic effect for an individual through a regression model of allelic effects  154 

 155 
                1 1 2 2 3 3 4 4µ θ θ θ θ= + + + +G x x x x                          Eqn 1 156 
 157 
where µ is the population mean, and iθ  (i = 1,…,4) are accordingly the monogenic, digenic, trigenic 158 

and quadrigenic genetic effects of the QTL, and xi (i = 1, …, 4) are the corresponding genetic effect 159 

design variables. The monogenic effect will always be positive and represents the average effect 160 

caused by substituting allele A for allele a at the QTL. The digenic effect represents the average 161 

interaction effect between two alleles in a tetraploid genotype, denoted AaI  in the biallelic model. 162 

The trigenic effect represents the average interaction effects among three alleles. Existence of a 163 

trigenic effect means that the interaction between two alleles differs according to the identity of the 164 
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third allele. In the model, there are two different three-way interactions, given by AAaI  and AaaI . 165 

The quadrigenic effect represents the average interaction effects among four alleles. Existence of 166 

quadrigenic effects means that the interaction between two alleles differs depending on the identity 167 

of the third and fourth alleles. In the biallelic model, there are three different four-way interactions, 168 

given by AAAaI , AAaaI  and AaaaI . If there are no two-way, (three-way, four-way) allelic interactions, 169 

then the corresponding monogenic (trigenic, quadrigenic) genetics effects will be equal to zero. A 170 

more detailed explanation of the genetic effects is given in Supporting Information Method S1, Fig. 171 

S1 and Table S1. 172 

  173 

Estimation of genetic effects in the one locus model 174 

In a natural autotetraploid population, genotypic frequencies vary across different loci in the 175 

genome and are usually not in Hardy-Weinberg equilibrium (Luo et al., 2000). Orthogonal contrasts 176 

provide a way to partition genetic variance into independent components (Zeng et al., 2005). We  177 

propose here general orthogonal scales ijw  for the genetic effects of genotype i for the jth contrast (j 178 

= 1,2,...,4), corresponding to monogenic, digenic, trigenic and quadrigenic genetic effects. The 179 

orthogonal scales are summarized in Table 1 and must satisfy a number of requirements to ensure 180 

that the comparisons are orthogonal, i.e. uncorrelated, as follows.  181 
4

0
1i

i
f

=

=∑ ; and  182 

1). For monogenic effects ( )1 0,1,..., 4iw i =  183 
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4). For quadrigenic effects, ( )4 0,1,..., 4iw i =  189 

44 34 24 14 04
4
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4
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4 20
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4 30

4 6 4 1

0

0

0

0

=

=

=

=

− + − + =
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

=


=

∑
∑
∑
∑

k kk

k k kk

k k kk

k k kk

w w w w w

w f

w w f

w w f

w w f

  190 

 191 
The above 1) - 4)  ensure the key statistical properties of the orthogonal model as shown by Eqn (1). 192 

Firstly, 4

0
0

=
=∑ ij ii

w f  for 1,..., 4=j ensures the statistical definition of wij as contrast scales, which 193 

in turn define the design variables xi in Eqn (1). Secondly, 4

0
0

=
=∑ ij ik ii

w w f  for 1 4≤ ≠ ≤j k  194 

ensures the orthogonality between the contrast scales wij and wik ( 0,..., 4 ;  1 4= ≤ ≠ ≤i j k ). The 195 

orthogonal scales calculated as above are then used to derive the genetic effect design variables in 196 

Eqn (1) as below  197 

 198 
4

3

2

1

0

j

j

jj

j

j

w if G is AAAA
w if G is AAAa
w if G is AAaax
w if G is Aaaa
w if G is aaaa



= 




  (j = 1, 2,…,4)  199 

 200 
We can then express the orthogonal model for the QTL effects at locus A in a matrix form given by 201 

 202 
4 41 42 43 44

3 31 32 33 34 1

2 21 22 23 24 2

1 11 12 13 14 3

0 01 02 03 04 4

1
1
1
1
1

A A A

G w w w w
G w w w w

G G S E w w w w
G w w w w
G w w w w

µ
θ
θ
θ
θ

     
     
     
     = = =
     
     
         

                                              Eqn 2           203 

 204 
where SA is the genetic effects design matrix and EA is the genetic effects of the QTL genotypes, 205 

which can be calculated from  206 

 207 
1

A A AE S G−=                                                                                                             Eqn 3 208 

 209 
Accordingly, the five QTL genotypic values can be specified under the orthogonal model as 210 

 211 
1 1 2 2 3 3 4 4     ( 0,1,..., 4)µ θ θ θ θ= + + + + =i i i i iG w w w w i  212 

 213 



8 
 

 The total genetic variance GV , contributed by allele segregation at the QTL, can be partitioned into 214 

four independent components of variance. Each variance component is contributed by its own 215 

corresponding genetic parameter as 216 

 217 

( )
( )

24

02
4 2

0

σ =

=

=
∑
∑

i i iti
t

i iti

f G w

f w
              Eqn 4 218 

 219 
where t = 1,2,…,4 corresponds to the four orthogonal scales defined for the monogenic, digenic, 220 

trigenic and quadrigenic genetic effects, and i (= 0,1,…,4) indicates the number of A alleles in the 221 

QTL genotype. The significance of the estimated genetic effects can be tested using the one- or 222 

two-tailed t-test, with the standard error given by 2' /t nσ (degree of freedom equals to n-4), 223 

where 2'tσ  is the estimated variance for the tth contrast and can be calculated by 
4

2 2

0

ˆe it i
i

w fσ
=

⋅∑ , 224 

where 2ˆeσ  is the estimated residual variance and n is the sample size. In this work, we characterize 225 

and illustrate the model (1) in two specific populations, an S2 population (below) and a randomly 226 

mating population (Supporting Information Method S2), though the model is generic for 227 

populations with any given genetic structure. It should be noted that the variance components here 228 

refer to genetic variances contributed by monogenic, digenic, trigenic or quadrigenic effects in the 229 

model, rather than the variances of the contrasts. 230 

 231 

One locus model for an S2 population 232 

In the second generation segregating population, denoted by S2, created from crossing two parental 233 

autotetraploid lines with genotypes AAAA and aaaa, the frequencies of the offspring genotypes can 234 

be expressed in terms of α, the coefficient of double reduction at the QTL, as, 2
0 (1 2 ) / 36f α= + , 235 

1 2(1 )(1 2 ) / 9f α α= − + , 2 [3 4 (1 )] / 6f α α= − − , 3 2(1 )(1 2 ) / 9f α α= − +  and 2
4 (1 2 ) / 36f α= + . The 236 

corresponding orthogonal contrast scales are summarized in Table 2. The genotypic values GA = 237 

(G4 G3 G2 G1 G0)T can be presented in a matrix form given by  238 

 239 
( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )( )

2

2

1
2

2

2 3

42

1 2 5 2 3 2 1 3 1 4 4 3 12 2

1 1 1 4 6 1 2 6 1 2 4 4 3 24 2

1 0 1 2 3 0 1 2 1 12 2

1 1 1 4 6 1 2 6 1 2 4 4 3 24 2

1 2 5 2 3 2 1 3 1 4 4 3 12 2

A A AG S E

α α α α α α
µ

α α α α α α θ
θα α α α
θα α α α α α
θ

α α α α α α

 − − − − + +
   
   − − + − + − + +
   
   = = − + − + +
   
   − − + − + − + +
     − − − − − − + + 

 240 
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 241 
The genetic effects of the QTL genotypes can be calculated from 1

A A AE S G−=  where  242 

  243 
( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( )( )
( )

( )( )
( )

( )
( )

( )( )
( )

( )( )
( )

2 22

2
1

1 2 36 2 1 2 1 9 4 4 3 6 2 1 2 1 9 1 2 36

1 2 12 1 3 0 1 3 1 2 12

4 4 31 2 5 2 1 4 1 1 4 1 1 2 5 2
12 2 3 2 2 2 3 2 12 2

1 2 1 0 1 1 2

1 4 6 4 1

AS

α α α α α α α α

α α α α

α αα α α α α α α α
α α α α α

−

+ + − − + + − +

+ − − − +

− ++ − − − − − + −
−

+ + + + +

− −

− −

 
 
 −
 
 
 =
 
 
 
 
  

 244 

 245 
General two locus model 246 

The one locus method described above is extended to two biallelic loci, A and B, in an 247 

autotetraploid population with a specified genetic structure. There will be twenty-five possible 248 

genotypes at the two loci (without accounting for linkage phase). A general form for the two-locus 249 

tetraploid genotype may be given as ( ) ( )4 4i ji jA a B b− − with 0,1,..., 4i = for the number of A alleles and 250 

0,1,..., 4j = for the number of B alleles in the genotype. The genotypic value and genotype 251 

frequency are denoted by ijG  and ijf . The marginal frequencies of the genotypes at locus A and 252 

locus B are denoted by .if and .if ( 0,1,..., 4i = ). Without loss of generality, locus A is assumed to be 253 

closer to the centromere than locus B and the coefficients of double reduction at the two loci are 254 

denoted by α and β , respectively. A linear model for the genotypic value is comprised of genetic 255 

effects at each of the two loci and epistatic effects between the genes at the two loci, and is fully 256 

characterized by a total of twenty-five parameters in the form of a regression model of allelic effects 257 

analogous to equation (1), as follows: 258 

 259 

1 1 1 1 1 2 1 2

1 3 1 3 1 4 1 4 2 1 2 1 2 2 2 2 2 3 2 3 2 4 2 4 3 1 3 1

3 2 3 2 3 3 3 3 3 4 3 4 4 1

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

        

        

ijG x x x x y y y y z I z I

z I z I z I z I z I z I z I

z I z I z I z I

θ z θ z θ z θ z

θ z θ z θ z θ z θ z θ z θ z θ z θ z θ z θ z θ z θ z θ z

θ z θ z θ z θ z θ z θ z θ z

µ θ θ θ θ z z z z= + + + + + + + + + + +

+ + + + + + +

+ + +
4 1 4 2 4 2 4 3 4 3 4 4 4 4

z I z I z Iθ z θ z θ z θ z θ z θ z θ z+ + +

 Eqn 5 260 

 261 

where µ  is the population mean, iθ  (or iζ ) (i = 1, …, 4 ) are accordingly monogenic, digenic, 262 

trigenic and quadrigenic genetic effects at locus A (or locus B), and ix  (or iy ) (i=1, …, 4) are the 263 

design variables for the corresponding genetic effects at locus A (or locus B), as summarised in 264 

Table 3. i jIθ ζ are the epistasis parameters between the effects iθ  and jζ  (i=1,…,4; j=1,…,4). For 265 

example, 
1 1

Iθ ζ is the monogenic x monogenic effect of loci A and B. The corresponding design 266 
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variables are given by 
i jzθ z . A full definition of all 25 genetic effect parameters is given in 267 

Supporting Information Table S2. 268 

  269 

In a similar but algebraically more tedious way to the one locus model, we derived the orthogonal 270 

contrast scales for the two-locus tetrasomic model under two different settings regarding the mutual 271 

dependency of genotypes at the two loci: linkage equilibrium (Supporting Information Method S3) 272 

and linkage disequilibrium (Supporting Information Method S4). We would like make it clear that 273 

given a feasible sample size, it is impractical to estimate all of the parameters in the above two-274 

locus model (Eqn 5). To tackle this practical limitation, we suggest use of a reduced model, in 275 

which the focus is on the interaction parameters of interest, as shown in Supporting Information 276 

Method S5. 277 

 278 

Detection of major gene segregation in an outbred autotetraploid population 279 

The segregation analysis models the trait phenotype data distribution as a mixed distribution in 280 

which each component distribution corresponds to a particular genotype of the major QTL. We 281 

illustrate a trait phenotype based segregation analysis by modeling the trait phenotype data using the 282 

following likelihood function of m mixed normal distributions  283 

 284 

( ) ( ) ( )1 2 1 2

1
2 2

01

, , , , , , ; ,
n m

P P j P P j i j
ji

L G Y G G f G G g y Gσ α α σ
−

==

= ∑∏    Eqn 6a 285 

  286 
where m represents the number of segregating QTL genotypes with the genotypic value vector, 287 

0 1( )−= K mG G G  , 2σ  is the residual variance, 1PG  and 2PG  denote the two parental QTL genotypes, 288 

{ }1 2, , ,= K nY y y y  represents the offspring trait data, α  denotes the coefficient of double 289 

reduction, ( )1 2, ,j P Pf G G α  (j=0,…,m-1) indicates the frequency of the QTL genotype 4j jQ q −  and 290 

( )2; ,j i jg y G σ  is the probability density function of a normal distribution with mean jG  and 291 

variance 2σ .  292 

  293 

To estimate the genetic effect parameters, we first need to calculate the mean for each QTL 294 

genotype from the offspring population, which is equivalent to estimating the means for a finite 295 

mixture of component distributions. For any given parental QTL genotypes and the coefficient of 296 

double reduction at the putative major QTL, the parameters can be estimated from standard normal 297 

mixture model analysis using the EM algorithm (Dempster, 1977). In the present context, offspring 298 

QTL genotypes were unknown but can be inferred either from the individual’s genotype 299 
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information at marker loci nearby to the QTL, as we developed previously (Luo et al., 2000; Luo et 300 

al., 2004), or from their parental genotypes at the QTL. A modified version of equation (6a) 301 

incorporating parental marker information, given by 
1PM , 

2PM , and offspring marker information 302 

given by iO , is given as follows 303 

 304 

( ) ( ) ( )1 2 1 2 1 2

1
2 2

01

, , , , , , , , , , ; ,
n m

P P ij P P P P i j i j
ji

L G Y G G f G G r M M O g y Gσ α α σ
−

==

= ∑∏  Eqn 6b 305 

where ijf  is the QTL genotype frequency for the ith individual and the jth QTL genotype, 306 

calculated according to equations (3) and (4) in the multi-locus linkage analysis we developed 307 

previously (Leach et al., 2010). 308 

 309 

Assuming biallelic segregation at a putative QTL, there are a total of twelve possible autotetraploid 310 

parental genotype configurations, listed as (1) aaaa Aaaa× , (2) aaaa AAaa× , (3) aaaa AAAa× , (4) 311 

Aaaa AAaa× , (5) Aaaa AAAa× , (6) Aaaa AAAA× , (7) AAaa AAAa× , (8) AAaa AAAA× , (9) 312 

AAAa AAAA× , (10) Aaaa Aaaa× , (11) AAaa AAaa× , and (12) AAAa AAAa× . We conducted a 313 

scan of the likelihood function (Eqn 6a) over all twelve parental genotype configurations and over 314 

all different levels of double reduction from its minimum value of 0.00 to the maximum of 0.25, at 315 

every increment of 0.005. Given a parental genotype configuration ( )1 2
,P PG G , the frequency of 316 

QTL genotype 4j jQ q −  denoted  ( )1 2
, ,j P Pf G G α  (j=0, …, m-1), can be calculated as a function of 317 

the coefficient of double reduction α.  318 

 319 

The EM algorithm is initialised with starting values for the QTL genotypic values by using k-means 320 

cluster analysis. The sample variance is used to initialise 2σ . It then involves iterating the E-step 321 

that calculates the conditional probability of the ith individual having the QTL genotype 4j jQ q − , i.e. 322 

 323 

 
( ) ( )
( ) ( )

1 2

1 2

2

1
2

0

, , ; ,

, , ; ,

j P P j i j
ij m

k P P k i k
k

f G G g y G

f G G g y G

α σ
ω

α σ
−

=

=
∑

      Eqn 7 324 

and the M-step that calculates the maximum likelihood estimates (MLEs) of the model parameters 325 

given the conditional probabilities from the above E step from the following formula 326 

1 1

ˆ /
n n

j ij i ij
i i

G yω ω
= =

= ∑ ∑          Eqn 8 327 
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1
2 2

1 0

ˆˆ ( )
n m

ij i j
i j

y G nσ ω
−

= =
= −∑∑         Eqn 9 328 

The E-step and M-step are repeated iteratively until convergence.  329 

 330 

We calculated the log-likelihood ratio statistic (LRT)  331 

 332 
 ( ) ( )1 2 1 2

* *2 2ˆ ˆ2 , , , , , , , ,P P P PLRT L G Y G G L G Y G Gσ α σ α = − 
% %      Eqn 10 333 

 334 
as a statistical test for significance of major QTL segregation in the population under study. In Eqn 335 

10, *Ĝ  and *2σ̂  are the MLEs of the genotypic means and residual variance, while  %G  and 2σ% are 336 

the mean and variance of the trait calculated from all individuals. Each model was compared with 337 

the null model assuming no major gene to be segregating in the population, by applying the 338 

likelihood-ratio test (LRT). The LRT statistic in the present context asymptotically follows a chi-339 

square distribution with m-1 degrees of freedom, with m equal to the number of QTL genotypes 340 

segregating as defined above.  341 

  342 

Estimation of overlap between normal densities 343 

We proposed an average overlapping coefficient (aOVL) to define a disparity index for quantifying 344 

the average difference between any two component normal distributions. The overlap coefficient 345 

between two normal distributions has been defined (Inman & Bradley, 1989) as  346 

 347 

 1 22OVL
µ µ
σ

 − 
= Φ − 

 
        Eqn 11 348 

where Φ denotes the cumulative distribution function of the standard normal distribution, 1µ  and 349 

2µ are the means of the two component normal distributions, and 2σ  is the variance for the 350 

component normal distribution. In the tetraploid case, there are k (k = 2,…, 5) components in the 351 

mixture normal distribution and the corresponding aOVL could be calculated by 352 

 353 

 
1 1

2
2

k k
i j

i j i

G G
aOVL

kσ= = +

 −  
 = Φ −      

∑ ∑       Eqn 12 354 

  355 
aOVL takes a value between 0 and 1, with larger values indicating that the component normal 356 

distributions are less well separated.  357 

  358 

Simulated autotetraploid populations 359 
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Simulated populations were created by developing programs to mimic the gametogenesis of an 360 

autotetraploid individual with a given genotype and random union of gametes to generate a zygote. 361 

Segregation and recombination of alleles at the loci of interest were simulated under tetrasomic 362 

inheritance, as explained in detail elsewhere (Luo et al., 2000). Given a simulated genotype for any 363 

offspring individual, the phenotype of the individual was determined as the sum of the genotypic 364 

value calculated from the corresponding simulated model, developed here as shown in equations (1) 365 

or (5), or developed by Killick (1971) (see Supporting Information Note S1), and a variable 366 

randomly sampled from a normal distribution, 2(0, )N σ . The residual variance was calculated 367 

according to the prior phenotypic variance of the trait in question and the heritability of the 368 

simulated QTL.  369 

 370 

Segregating autotetraploid potato population 371 

A first generation segregating population (S1) of autotetraploid potato (Solanum tuberosum) was 372 

created by crossing two parental cultivars, with the American cultivar Atlantic as the maternal 373 

parent and the Chinese cultivar Longshu-3 as the paternal parent. A second generation (S2) 374 

segregating population consisting of 304 full-sib individuals (S2) was derived by crossing two 375 

individuals (5-12 and 1-20) from the S1 population. The S2 population was planted together with 376 

their parental lines in three different field trials in 2015, each with five replicates per individual, by 377 

propagating the individuals asexually using tubers. A series of morphological and agronomic traits 378 

were scored, including plant height and flowering time.  379 

 380 

Data availability 381 

Programs and data for statistical analyses presented in the paper are freely available from 382 

https://github.com/LJLeach/QuantModelTetra and the link is included on our group website at 383 

www.statisticalgenetics.info.   384 

385 

https://github.com/LJLeach/QuantModelTetra
http://www.statisticalgenetics.info/
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Results  386 

Detecting major genes in outbred autotetraploid populations 387 

To illustrate the use of our new method, we considered the detection of major effect QTL in a 388 

segregating population, one of the most popular quantitative genetic analyses using trait phenotype 389 

data. If a major gene makes a sufficiently large contribution to the phenotypic variation of a 390 

quantitative trait relative to the background genetic and environmental variation, then the 391 

phenotypic distribution will be multimodal (Falconer, 1989). In an outbred autotetraploid S2 392 

population, the distribution may be bimodal, trimodal, quadrimodal or quinquemodal under a 393 

biallelic model, depending on the parental genotype configuration and the occurrence of double 394 

reduction. Simulated examples of each are shown in Fig. 1a-d.  395 

 396 

We simulated a quantitative trait for 300, 500 or 1,000 S2 individuals generated by crossing parental 397 

genotypes AAaa AAaa×  and with a range of heritability values for the major gene, from 10% to 398 

35%. The monogenic, digenic, trigenic and quadrigenic effects for this gene and the population 399 

mean were all set equal to 1. The coefficient of double reduction at this QTL was equal to 0.1. 400 

Accordingly, the genetic variance of the major gene, VG, was calculated as 1.132, according to 401 

equation (4). The residual variances of the trait were chosen based on the simulated heritability and 402 

genetic variance of the major gene.  403 

 404 

In practice, the parental genotype configuration is usually unknown in outbred autotetraploid 405 

populations, therefore trait segregation analysis was carried out across all twelve possible parental 406 

genotype configurations, (for example AAAa AAAa× ), across the range of possible values (0-0.25) 407 

for the rate of double reduction (Luo et al., 2006a). The value corresponding to the highest 408 

likelihood value was taken as the MLE of the double reduction parameter. For a given parental 409 

genotype configuration and coefficient of double reduction, the expected offspring genotype 410 

frequency distribution could be calculated directly in terms of α , and then used to calculate the 411 

general orthogonal scales ijw  for the genetic effects of genotype i for the jth contrast (j = 1,2,...,4). 412 

We implemented the EM algorithm as described in Equations (7)-(9) to calculate the MLEs of the 413 

genotypic values for each QTL genotype, ˆ
jG . The genetic effect parameters for the major QTL, AE , 414 

could then be calculated according to equation (3), and the significance of major QTL segregation 415 

was tested as shown in equation (10).  416 

 417 

Segregation analysis of phenotypic data in autotetraploids has a very poor statistical power for 418 

major gene detection when heritability is low (10%) (Table 4), which reflects the high degree of 419 
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overlap between the component normal distributions, as indicated by a high average overlapping 420 

coefficient (aOVL>0.5). When heritability is doubled to 20%, then the statistical power reaches an 421 

acceptable level of 79%, though only when there is large population size of at least 1,000 here. Only 422 

when there is a large degree of separation between component distributions, for example 2 0.30h =  423 

and 0.3575aOVL = , does major gene detection have adequate power with more realistic population 424 

sizes (n≥300). When trait heritability is low, we caution that the genetic variance of major QTL is 425 

significantly overestimated by using trait segregation analysis in autotetraploids. Segregation 426 

analysis was able to correctly infer the parental QTL genotypes only in less than 10% of simulations. 427 

 428 

Comparison with Killick’s model 429 

We used a numerical example to explore the statistical properties of our model compared with an 430 

additive-dominance model, such as Killick’s model. We simulated two biallelic loci, AQ  and BQ , 431 

with alleles segregating in linkage equilibrium at the two loci in an S2 population created from 432 

crossing two homozygous autotetraploid parents. The population mean, all genetic effects of the 433 

two loci and epistatic effects were simulated to be equal to 1. It should be noted that the simulation 434 

was designed without incorporating an environmental variable, with a  purpose to minimize the 435 

influence of random sampling variation in the comparison of the methods. Shown in Supporting 436 

Information Table S3 are the genotypic values calculated either from a two locus orthogonal 437 

contrast based model defined according to equation (5) or from Killick’s model with two loci. In 438 

Scenario 1, double reduction was absent at both loci, and genotypic values were generated either 439 

under our model (Scenario 1O, Supporting Information Table S3a) or under Killick’s model 440 

(Scenario 1K, Supporting Information Table S3b); in Scenario 2, the coefficient of double reduction 441 

was equal to 0.05 for locus AQ  and 0.10 for BQ , and the data was simulated under our model 442 

(Scenario 2O).  443 

 444 

As expected from the orthogonal property of our model, estimates of monogenic, digenic, trigenic 445 

and quadrigenic effects under both scenarios are independent of the estimation of epistatic effects 446 

(Table 5). All genetic effects can be consistently estimated under both single-locus (reduced) 447 

models and two-locus (full) models, when data are simulated under either our model or Killick’s 448 

model. For example, under Scenario 1O, all estimated genetic effects take the same value of 1 449 

regardless of whether the model is fitted for one locus or for both loci, including epistatic 450 

parameters. In contrast, estimates of additive and dominance effects are markedly biased from their 451 

true values, particularly when epistatic effects are fitted in Killick’s model, suggesting the model is 452 

vulnerable to the inclusion of various effects in the genetic models. For example, in Scenario 1K, 453 

additive and dominance effects are estimated to be equal to 1.94 in either reduced (single locus) 454 
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model, but all effects across both loci are correctly estimated to be equal to 1.00 when the full 455 

model is used. A further limitation of Killick’s model arises because the genetic effect parameters 456 

are only defined on the basis of genotypic values and not using the genotypic frequencies (though 457 

genotypic frequencies are considered when estimating the population mean). This explains why the 458 

estimates of genetic effects from Killick’s model (and other additive-dominance models in the 459 

current literature) involving both loci remained the same under Scenarios 1o and 2o. In contrast, our 460 

model confers a statistically appropriate and feasible way to estimate the various genetic effects in 461 

populations with various genotypic frequency distributions. 462 

 463 

Parameter estimation under the orthogonal model 464 

We carried out a simulation study to test for reliability of the theoretical models presented above 465 

and to explore the statistical properties of the methods developed for estimating the model 466 

parameters under the orthogonal model, including the impact of the double reduction parameter on 467 

the estimation of genetic effect parameters. We considered a biallelic quantitative trait locus, AQ , 468 

segregating in an 1S  population created from parental genotypes AAaa and AAaa. Segregation at the 469 

simulated QTL contributed 20% of the phenotypic variance of the trait. All genetic effects at the 470 

QTL, EA = (µ θ1 θ2 θ3 θ4)T, were set equal to 1, and the residual variance was determined 471 

accordingly. Given the parental genotypes, offspring genotypes were generated under two levels of 472 

double reduction, α = 0 or 0.15, the former corresponding to bivalent pairing of homologous 473 

chromosomes and the latter to quadrivalent pairing in the autotetraploid meiosis.  474 

 475 

Our previous simulation studies showed that trait segregation analysis based on phenotype data 476 

alone had limited power to detect segregation of major genes for traits with low heritability (see 477 

Table 4). It is well established that use of genetic markers is effective in recovering genotype 478 

information at QTL, leading to an increase in statistical power for detecting the QTL. We therefore 479 

simulated a chromosome with a single QTL closest to the centromere and an additional 10 genetic 480 

marker loci equally spaced at 10 cM intervals downstream from the QTL (Table 6). We 481 

implemented a modified version of the trait segregation analysis (equation 6b), which incorporates 482 

the parental and offspring marker information. This is expected to make the distribution of offspring 483 

QTL genotypes more informative, with an expected gain in statistical efficiency of parameter 484 

estimation from the mixture model. 485 

 486 

Based on the simulated parental QTL genotype configuration (AAaa and AAaa), the EM algorithm 487 

was used as described in equations (7) to (9) to give the MLEs for the QTL genotypic values. The 488 

genetic effect parameters were then estimated using our orthogonal model based on a range of 489 
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assumed values for the coefficient of double reduction. Table 7 shows the means and standard 490 

errors of the estimated genetic effects based on 500 repeated simulations. The genetic effect 491 

parameters and their variance components were predicted adequately as long as double reduction 492 

was properly taken into account, while the corresponding estimates were comparatively poor when 493 

double reduction was ignored. It is clear from the heritability estimates ( 2h ) that an overestimated 494 

double reduction parameter may lead to overestimation of the genetic variance, and thus 495 

overestimation of trait heritability.  496 

 497 

Case study of flowering time and plant height in autotetraploid potato 498 

To demonstrate the application of the methods we developed for modeling and analyzing real 499 

experimental data collected from autotetraploid species, we analyzed the phenotype data of two 500 

quantitative traits, flowering time and plant height, scored on 304 offspring from a cross between 501 

two varieties of cultivated autotetraploid potato (Solanum tuberosum). We found significant 502 

variation in the trait phenotype scores across three separate field trials, showing the major effect of 503 

the environment on both traits (ANOVA, p < 0.001, Supporting Information Tables S4, S5). We 504 

also observed a significant genotype by environment (G x E) interaction for plant height (ANOVA, 505 

p < 0.001, Supporting Information Table S5).  506 

 507 

We observed highly significant statistical evidence for segregation of major QTL genes for both 508 

flowering time and plant height. Figure S2 shows the LOD score profiles for different 509 

configurations of parental genotypes of QTL for both traits, which enable identification of the most 510 

likely parental QTL genotype(s). For flowering time, there was significant evidence for a major 511 

QTL (p < 0.0001) under three alternative configurations, namely [5] ( Aaaa AAAa× ), [10] 512 

( Aaaa Aaaa× ) and [11] ( AAaa AAaa× ), each with similar LOD score profiles and maximum LOD 513 

scores (Fig. S2a). Under each alternative model, the estimated mixture normal distribution is 514 

composed of five component normal distributions. In the absence of any marker information, model 515 

[11] was chosen as the most likely parental genotype configuration (Table 8, Fig. 1e), because the 516 

average parental trait scores (illustrated by arrows in Fig. 1e) were most likely to have come from 517 

the third component normal distribution corresponding to genotype AAaa. Meanwhile, model [5] 518 

was deemed unlikely because the parental phenotype scores were unlikely to have come from 519 

component genotypes Aaaa and AAAa, as shown in Fig. S3a. However, model [10] was only 520 

slightly less likely than model [11], as shown in Fig. S3b, illustrating the difficulty in clearly 521 

distinguishing parental genotype configuration through trait segregation analysis in autotetraploids.  522 

 523 
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For plant height, there was significant evidence for a major QTL (p = 0.003) under genotype 524 

configurations [3] aaaa AAAa× , [9] ( AAAa AAAA× ) and [11] ( AAaa AAaa× ) (Fig. S2b). Model 525 

[9] was chosen as the most likely parental genotype configuration (Table 8, Fig. 1f), because the 526 

average parental trait scores were more likely to have come from the component normal 527 

distributions for genotypes AAAa and AAAA (Fig. 1f) than from the component distributions for 528 

genotypes aaaa and AAAa (Fig. S3c) or AAaa and AAaa (Fig. S3d). Preliminary prediction of 529 

parental genotype configuration in this way can be valuable for various downstream analyses, 530 

including linkage and linkage disequilibrium based QTL analyses. 531 

 532 

We estimated the narrow heritability of flowering time and plant height using the linear mixed 533 

model, as described in Supporting Information Method S6, based on the most likely value of the 534 

coefficient of double reduction inferred from the trait segregation analysis (Table 8). High values of 535 

narrow heritability were estimated for both flowering time (79%) and plant height (73%), and the 536 

assumed values for the double reduction rate had very little effect (Supporting Information Table 537 

S6). For both traits, the major QTL effect explained a significant proportion of the total phenotypic 538 

variance (29-39%), and up to one half of the total genetic variance (40-50%, Table 8).  539 

 540 

All of the estimated genetic effects at the major QTL for both traits were highly significant (p < 541 

0.0001). These estimates reveal valuable information on the genetic architecture of the trait, which 542 

may be useful for identifying useful QTL for selection purposes. For flowering time, a monogenic 543 

effect of 5.92 indicates that the average effect of replacing allele a with allele A at the major QTL in 544 

any autotetraploid genotype will be to delay flowering by around 6 days. Significance of the 545 

trigenic and quadrigenic genetic effects means that the interaction between the increasing alleles (A) 546 

and decreasing alleles (a) depends on the identity of the third and fourth alleles in an autotetraploid 547 

genotype. However, the corresponding genetic variance components at trigenic and quadrigenic 548 

levels contributed very little to the total genetic variance of the major QTL (0.07% and 0.32%), 549 

suggesting that higher level allelic interactions exert limited effects on the genotypic values for this 550 

trait. For plant height, we observed a monogenic effect of 12.46, meaning that on average, replacing 551 

allele a with allele A at the major effect QTL will increase height by around 12cm, while a 552 

significant digenic effect of -6.84 suggests the importance of two-way allelic interactions at the 553 

major QTL for plant height, though such interactions make a relatively small contribution (2.48%) 554 

to the total genetic variance. 555 

556 
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Discussion 557 

In recent decades, considerable progress has been made in the genetic analysis of quantitative traits 558 

in diploid plant, animal and human species. For example, new technologies and statistical methods 559 

have enabled genome-wide mapping of genetic variation and led to the detection of individual 560 

genomic regions (Quantitative Trait Loci), or more rarely individual quantitative trait nucleotides, 561 

that directly or indirectly influence trait phenotypic variation. However, progress has been limited 562 

by many factors (Hill, 2012), including difficulties in disentangling pleiotropic and epistatic effects 563 

of genes, and the complicated inheritance systems in polyploid species.  564 

 565 

A crucial foundation for all quantitative genetic analyses in species of any ploidy level, including 566 

QTL analysis and evaluation of quantitative genetic parameters, is a quantitative genetic model that 567 

links together the genetic effects of genes with the quantitative trait phenotype. Historically, the 568 

field of quantitative genetics has focused on diploid species, and as such, the quantitative genetic 569 

model, theory and methods for various quantitative genetic analyses have been well established and 570 

routinely practiced (Mather & Jinks, 1971; Falconer, 1989; Lynch & Walsh, 1998). Meanwhile, 571 

progress in the genetic analysis of polyploid species, particularly autotetraploids, has lagged far 572 

behind. Built upon Kempthorne’s model, Hackett et al., (2001) proposed a quantitative genetic 573 

model for use in interval mapping of QTL in autotetraploids, though this model was not based on a 574 

strict tetrasomic inheritance model, and does not possess the orthogonal property between different 575 

model parameters and their estimates.   576 

 577 

In this article, we have contributed a quantitative genetic model for autotetraploid species based on 578 

the orthogonal contrast scales model developed for diploids (Cockerham, 1954). The model relates 579 

the phenotype score of an autotetraploid individual for a quantitative trait to the alleles at the loci 580 

that contribute to trait variation, in terms of monogenic, digenic, trigenic, and quadrigenic effects at 581 

individual loci, and epistatic effects between loci. The orthogonal property of the model ensures that 582 

the genetic effects can be independently estimated for one or two loci, assuming only pair-wise 583 

epistatic effects. This property is very useful for obtaining reliable estimates of genetic effects and 584 

genetic variance components, even when the number of QTL involved is unknown, which is usually 585 

the case (Zeng et al., 2005). The model could be extended to three or more loci, assuming epistasis 586 

only occurs between pairs of loci. It has been recognised that use of an orthogonal model for QTL 587 

mapping would be advantageous in various ways (Kao & Zeng, 2002; Zeng et al., 2005). For 588 

example, different QTL genetic effects may be tested and estimated separately. Parameter estimates 589 

are also independent of which, if any, epistatic effects are fitted in the model, which will simplify 590 

genetic interpretation of the underlying genetic architecture.  591 
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 592 

Our model decreases the number of parameters used to describe the genetic effects of QTL from 593 

255 (Kempthorne, 1955; Kempthorne, 1957) down to 24 for a two-locus analysis, making it 594 

statistically tractable for real data analysis. We have shown its suitability for use in populations with 595 

various genetic structures, including segregating populations (e.g. S2) and natural populations of 596 

unrelated individuals, either in linkage equilibrium or linkage disequilibrium. While there is 597 

evidence for multiple allele segregation at individual QTL genes in diploid populations (Barton & 598 

Keightley, 2002), each allele may only increase or decrease the trait phenotype, therefore the 599 

biallelic setting is appropriate for quantitative genetic analysis in autotetraploids.  600 

 601 

We have shown that our model can accurately estimate the genetic effects in a segregating 602 

population under either one locus (reduced model) or two locus (full model) settings. Our model 603 

takes proper account of the complex features of autotetrasomic inheritance, including double 604 

reduction, unlike other quantitative genetic models developed for autotetraploids (Killick, 1971). 605 

We showed that the double reduction parameter has a significant impact on the genetic parameter 606 

estimation, and thus advise that this parameter should be taken into account in any quantitative 607 

genetic analysis in autotetraploid species to avoid bias in the estimation of genetic effects. We have 608 

provided statistical tests for the significance of double reduction and methods for its accurate 609 

estimation using molecular marker data in our previous work (Luo et al., 2004; Luo et al., 2006a). 610 

Since double reduction is a location dependent parameter, the marker data can provide an 611 

approximation of the double reduction parameter near to the QTL. 612 

 613 

We carried out trait segregation analysis to illustrate the practical application of our quantitative 614 

genetic model for the analysis of trait phenotype data in autotetraploids. Trait segregation analysis 615 

has been an important topic in the history of quantitative genetics in diploids (Falconer, 1989). It 616 

serves as an important intermediate step prior to collection of genomic marker data, allowing major 617 

genes affecting quantitative traits to be detected prior to designing further genomic analyses, such 618 

as QTL analysis, and also enabling more efficient selection in breeding programs of agronomic 619 

traits in autotetraploid crops or animals (Falconer, 1989).  620 

 621 

Segregation analysis involves the estimation of normal mixtures, which is well known to be an ill-622 

posed problem, particularly when the disparity between the component distributions is small (Xiao 623 

et al., 2007; Lourens et al., 2013). Methods for segregation analysis may therefore suffer from low 624 

statistical power in diploids, and even more so in autotetraploids (Xiao et al., 2007). We extended 625 

the concept of the overlapping coefficient (Inman & Bradley, 1989) to quantify the disparity 626 
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between multiple component normal distributions for segregation analysis in autotetraploids. Our 627 

results echo previous work showing that maximum likelihood estimation may perform poorly when 628 

component distributions are poorly separated, and substantial bias may be observed when OVL 629 

exceeds 0.45 (Lourens et al., 2013). Additionally, when the disparity is low, within population 630 

variance will be underestimated; in the present context, the proportion of the trait phenotypic 631 

variation explained by the QTL, i.e. its heritability, may therefore be markedly overestimated. This 632 

could be an inherent weakness of the statistical method implemented for segregation analysis and 633 

care must thus be taken when interpreting the results of phenotype-based analysis in autotetraploids. 634 

We observed the statistical power to detect QTL segregation is low when heritability is low (≤ 20%) 635 

and the OVL is greater than 0.4, while the power became adequate for detecting QTL segregation 636 

when heritability was at least 30%, in populations with a modest size of at least 300.  637 

 638 

We have demonstrated the utility of our quantitative genetic model for autotetraploids by analyzing 639 

real data on flowering time and plant height in a segregating population of potato. We estimated 640 

high values of narrow heritability for both flowering time (79%) and plant height (73%), consistent 641 

with various other potato populations (Khan et al., 2013; Ozturk & Yildrim, 2014), and also crops 642 

such as barley, which have shown high heritability (>90%) for flowering time (Maurer et al., 2015). 643 

Trait segregation analysis showed evidence for segregation of a major gene affecting flowering time 644 

in this population. Work in Arabidopsis, rice and tomato, led to the identification of FLOWERING 645 

LOCUS T (FT) as the mobile signal “florigen” that plays a central role in the floral transition, 646 

travelling from the leaves to the shoot apical meristem to promote flowering (Turk et al., 2008). 647 

More recently, several functional homologues of the key Arabidopsis flowering time genes have 648 

been identified in potato, including StSP3D as the mobile signal “florigen”, and StSP6A as the 649 

mobile signal “tuberigen” responsible for the stolon to tuber transition (Navarro et al., 2011). A 650 

CONSTANS (CO) homologue, StCO, has also been discovered with a role in repression of 651 

tuberisation (Gonzalez-Schain et al., 2012), as well as homologues of other key flowering time 652 

genes, including StCDF1 (Kloosterman et al., 2013). The major regulators of flowering time in 653 

potato are therefore conserved with Arabidopsis, but have also been recruited to control the 654 

developmental switch involved in storage organ formation.  655 

 656 

The quantitative genetic model we presented here lays the foundation for quantitative genetic 657 

analysis in autotetraploid species. In addition to the classical phenotype based analysis of 658 

quantitative traits, such as segregation analysis, estimation of breeding values, and genetic variance 659 

components, the model fulfills an essential requirement for DNA molecular marker assisted QTL 660 

analysis under both linkage and linkage disequilibrium based settings. The model will therefore 661 
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facilitate future studies of the genetic architecture and evolution of quantitative traits in important 662 

crop species such as potato (D’Hoop et al., 2008; Massa et al., 2015), and coffee (del Pilar 663 

Moncada et al., 2016), forest legumes such as alfalfa (Yu et al., 2016), and ornamental species such 664 

as rose (Gitonga et al., 2016).  665 

 666 

Acknowledgements The study was supported by research grants from BBSRC (BB/N008952/1) in 667 

the United Kingdom, the National Nature Science Foundation of China (grant numbers 81172006 668 

and 91231114) and the Leverhulme Trust.  669 

 670 

Author contribution Z.L. conceived of and designed the study. Z.L. designed the theoretical 671 

model and statistical methods. J.C. implemented the statistical methods. Z.L., F.Z. and L.W. created 672 

the potato segregating population, implemented field trials and collected the phenotypic data. J.C.  673 

analysed the data with inputs from Z.L. L.L., Z.L., J.C. and L.L. wrote the paper.   674 

675 



23 
 

References 676 

Adams KL, Wendel JF. 2005. Novel patterns of gene expression in polyploid plants. Trends in 677 

Genetics 21: 539-543. 678 

 679 

Barton NH, Keightley PD. 2002. Understanding quantitative genetic variation. Nature Reviews 680 

Genetics 3: 11–21. 681 

 682 

Cockerham CC. 1954. An extension of the concept of partitioning hereditary variance for analysis 683 

of covariance among relatives when epistasis is present. Genetics 39: 859-882. 684 

 685 

Comai L, Tyagi A, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, Byers B. 2000. 686 

Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. The 687 

Plant Cell 12: 1551-1568. 688 

 689 

Danzmann RG, Gharbi K. 2001. Gene mapping in fishes: a means to an end. Genetica 111: 3-23. 690 

 691 

Del Pilar Moncada M, Tovar E, Montoya JC, Gonzalez A, Spindel J, McCouch S. 2016. A 692 

genetic linkage map of coffee Coffea Arabica L. and QTL for yield, plant height, and bean size. 693 

Tree Genetics and Genomes 12:5. 694 

 695 

Dempster AP. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of 696 

the Royal Statistical Society B 39: 1-22. 697 

 698 

D’hoop BB, Joao Paulo M, Mank R, van Eck HJ, van Eeuwijk FA. 2008. Association mapping 699 

of quality traits in potato Solanum tuberosum L. Euphytica 161: 47-60.  700 

 701 

Falconer DS, Mackay TFC. 1989. Introduction to Quantitative Genetics. Pearson Prentice Hall. 702 

 703 

Fisher RA. 1947. The theory of linkage in polysomic inheritance. Philosophical Transactions of 704 

the Royal Society B 23: 55-87. 705 

 706 

Gitonga VW, Stolker R, Koning-Boucoiran CFS, Aelaei M, Visser RGF, Maliepaard C, Krens 707 

FA. 2016. Inheritance and QTL analysis of the determinants of flower color in tetraploid cut roses. 708 

Molecular Breeding 36: 143. 709 

 710 



24 
 

Gonzalez-Schain ND, Diaz-Mendoza M, Zurczak M, Suarez-Lopez P. 2012. Potato CONSTANS is 711 

involved in photoperiodic tuberization in a graft-transmissible manner The Plant Journal 70: 678-690. 712 

 713 

Hackett CA, Bradshaw JE, McNicol JW. 2001. Interval mapping of quantitative trait loci in 714 

autotetraploid species. Genetics 159: 1819-1832.  715 

 716 

Haldane JBS. 1930. Theoretical genetics of autopolyploids. Journal of Genetics 22: 359-372. 717 

 718 

Hill WG. 2012. Quantitative genetics in the genome era Current Genomics 13: 196-206. 719 

 720 

Inman HF, Bradley EL. 1989. The overlapping coefficient as a measure of agreement between 721 

probability distributions and point estimation of the overlap of two normal densities. 722 

Communications in Statistics- Theory and Methods 18: 3851-3874. 723 

 724 

Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, 725 

Hu Y, Liang H, Soltis PS et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 726 

473: 97-100. 727 

 728 

Kao CH, Zeng ZB. 2002. Modeling epistasis of quantitative trait loci using Cockerham's model. 729 

Genetics 160: 1243-1261. 730 

 731 

Kempthorne O. 1955. The correlation between relatives in a simple autotetraploid population. 732 

Genetics 40: 168-174. 733 

 734 

Kempthorne O. 1957. An Introduction to Genetic Statistics. New York: John Wiley & Sons. 735 

 736 

Li CC. 1957. The genetic variance of autotetraploids with two alleles. Genetics 42: 583-592. 737 

 738 

Khan MF, Tabassum N, Latif A, Khaliq A, Malik M. 2013. Morphological characterization of 739 

potato Solanum tuberosum L. germplasm under rainfed environment. African Journal of 740 

Biotechnology 12: 3214-3223.  741 

 742 

Killick RJ 1971 The biometrical genetics of autotetraploids: I. Generations derived from a cross 743 

between two pure lines. Heredity 27: 331-346. 744 

 745 



25 
 

Kloosterman B, Abelanda JA, del Mar Carretero Gomez M, oortwijn M, de Boer JM, 746 
Kowitwanich K, Horvath BM, van Eck HJ, Smaczniak C, Prat S et al. 2013. Naturally occurring 747 

allele diversity allows potato cultivation in northern latitudes. Nature 495: 246-252. 748 

 749 

Leach LJ, Wang L, Kearsey MJ, Luo ZW. 2010. Multilocus tetrasomic linkage analysis using 750 

hidden Markov chain model. Proceedings of the National Academy of Sciences 1079: 4270-4274. 751 

 752 

Li J, Das K, Fu G, Tong C, Li Y, Tobias C, Wu R. 2010. EM algorithm for mapping quantitative 753 

trait loci in multivalent tetraploids. International Journal of Plant Genomics 754 

doi:10.1155/2010/216547. 755 

 756 

Lourens S, Zhang Y, Long JD, Paulsen JS. 2013. Bias in estimation of a mixture of normal 757 

distributions. Journal of Biometrics and Biostatistics 4: 1000179. 758 

 759 

Luo ZW, Hackett CA, Bradshaw JE, McNicol JW, Milbourne D. 2000. Predicting parental 760 

genotypes and gene segregation for tetrasomic inheritance. Theoretical and Applied Genetics 100: 761 

1067-1073. 762 

 763 

Luo ZW, Zhang RM, Kearsey MJ. 2004. Theoretical basis for genetic linkage analysis in 764 

autotetraploid species. Proceedings of the National Academy of Sciences 101: 7040-7045. 765 

 766 

Luo ZW, Zhang Z, Leach LJ, Zhang RM, Bradshaw JE, Kearsey MJ. 2006a. Constructing 767 

genetic linkage maps under a tetrasomic model. Genetics 172: 2635-2645. 768 

 769 

Luo ZW, Zhang Z, Zhang RM, Pandey M, Gailing O, Hattemer H, Finkeldey R. 2006b. 770 

Modeling population genetic data in autotetraploid species. Genetics 172: 639-646. 771 

 772 

Lynch W, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. USA: Sinauer Associates 773 

Inc. 774 

 775 

Massa AN, Manrique-Carpintero NC, Coombs JJ, Zarka DG, Boone AE, Kirk WW, Hackett 776 

CA, Bryan GJ, Douches DS. 2015. Genetic linkage mapping of economically important traits in 777 

cultivated tetraploid potato Solanum tuberosum L. G3 5: 2357-2364. 778 

 779 

Mather K. 1936. Segregation and linkage in autotetraploids. Journal of Genetics 32: 287-314. 780 



26 
 

 781 

Mather K, Jinks JL. 1971. Biometrical Genetics. London: Chapman and Hall. 782 

 783 

Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian B, Reif JC, 784 

Pillen K. 2015. Modelling the genetic architecture of flowering time control in barley through 785 

nested association mapping. BMC Genomics 16: 290. 786 

 787 

Navarro C, Abelenda JA, Cruz-Oro E, Cuellar CA, Tamaki S, Silva J, Shimamoto K, Prat S. 2011. 788 
Control of flowering and storage organ formation in potato by FLOWERING LOCUS T Nature 478: 789 

119-123. 790 

 791 

Otto SP, Whitton J. 2000. Polyploid incidence and evolution. Annual Reviews Genetics 34: 401-792 

437. 793 

 794 

Ozturk G, Yildirim Z. 2014. Heritability estimates of some quantitative traits in potatoes. Turkish 795 

Journal of Field Crops 19: 262-267. 796 

.  797 

Soltis DE, Soltis PS. 1995. The dynamic nature of polyploid genomes. Proceedings of the National 798 

Academy of Sciences 92: 8089-8091. 799 

 800 

Song K, Lu P, Tang K, Osborn TC. 1995. Rapid genome change in synthetic polyploids of 801 

Brassica and its implications for polyploid evolution. Proceedings of the National Academy of 802 

Sciences 92: 7719-7723. 803 

 804 

Turck F, Fornara F, Coupland G. 2008. Regulation and identity of florigen: FLOWERING LOCUS T 805 

moves centre stage Annual Reviews Plant Biology 59: 573-594. 806 

 807 

van Geest G, Bourke PM, Voorrips RE, Marasek-Ciolakowska A, Liao Y, Post A, van Meeteren U, 808 
Visser RGF, Maliepaard C, Arens P. 2017. An ultra-dense integrated linkage map for hexaploid 809 

chrysanthemum enables multi-allelic QTL analysis. Theoretical and Applied Genetics 130: 2527-2541. 810 

 811 

Vaughan DA, Balazs E, Heslop-Harrison JS. 2007. From crop domestication to super-812 

demonstration. Annals of Botany 100: 893-901. 813 

 814 



27 
 

Wang J, Tian L. 2004. Stochastic and epigenetic changes of gene expression in Arabidopsis 815 

polyploids. Genetics 167: 1961-1973. 816 

 817 

Wolfe KH. 2001. Yesterday's polyploids and the mystery of diploidization. Nature Reviews 818 

Genetics 2: 333-341. 819 

 820 

Wright AJ. 1979. The use of differential coefficients in the development and interpretation of 821 

quantitative genetic models. Heredity 431:1-8. 822 

 823 

Xiao J, Wang X, Hu Z, Tang Z, Xu C. 2007. Multivariate segregation analysis for quantitative 824 

traits in line crosses. Heredity 98: 427-435. 825 

 826 

Yu L-X, Liu X, Boge W, Liu X-P. 2016. Genome-wide association study identifies loci for salt 827 

tolerance during germination in autotetraploid alfalfa Medicago sativa L. using genotyping by 828 

sequencing. Frontiers in Plant Science 7: 956. 829 

 830 

Zeng ZB, Wang T, Zou W. 2005. Modeling quantitative trait loci and interpretation of models. 831 

Genetics 169: 1711-1725. 832 

833 



28 
 

Supporting Information 834 

Additional Supporting Information may be found online in the Supporting Information tab for this 835 

article: 836 

 837 

Fig S1 Impact of genetic effect parameters on genotypic values in the orthogonal model. 838 

 839 

Fig S2 LOD score profiles for flowering time (a) and plant height (b) under different configurations 840 

of parental genotypes at a putative QTL. 841 

 842 

Fig S3 Mixture normal distribution and inferred component normal distributions for flowering time 843 

and plant height under alternative parental QTL genotype configurations.  844 

 845 

Methods S1 Notations and definition of the orthogonal model in autotetraploids. 846 

 847 

Methods S2 One locus model for a randomly mating population. 848 

 849 

Methods S3 Two locus model under linkage equilibrium. 850 

 851 

Methods S4 Two locus model under linkage disequilibrium. 852 

 853 

Methods S5 Reduced two-locus model and analysis. 854 

 855 

Methods S6 Estimation of narrow-sense heritability in autotetraploids. 856 

 857 

Note S1 Definition of the Killick quantitative genetic model. 858 

 859 

Table S1 The number of digenic, trigenic and quadrigenic allelic interactions in autotetraploid 860 

genotypes. 861 

 862 

Table S2 Definition of the 25 genetic parameters for the two locus quantitative genetic model in 863 

autotetraploids. 864 

 865 

Table S3 Numerical examples with genotypic values generated under our orthogonal model (a) or 866 

under Killick’s model (b). 867 

 868 



29 
 

Table S4 One-way ANOVA for flowering time in autotetraploid potato. 869 

 870 
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 872 

Table S6 Narrow sense heritability of two autotetraploid potato quantitative traits (flowering time 873 

and plant height) using the linear mixed model. 874 

 875 

Figure Legends 876 

 877 

Figure 1. Segregation analysis for quantitative traits in simulated and real outbred 878 

autotetraploid segregating populations. 879 

 The quantitative trait phenotype may show a bimodal (a), trimodal (b), quadrimodal (c) or 880 

quinquemodal (d) distribution in a segregating population derived from a cross between parental 881 

genotypes as indicated above each panel and with a given value of the coefficient of double 882 

reduction, α . Flowering time (e) in the potato segregating population showed a quinquemodel 883 

distribution with the most likely parental genotype configuration being AAaa x AAaa. Plant height 884 

(f) showed a trimodal distribution with the most likely parental genotype configuration being AAAa 885 

x AAAA. Average parental phenotype scores for P1 and P2 parental varieties are indicated using 886 

orange and green arrows respectively. Red lines indicate the mixture normal distribution and dotted 887 

blue lines indicate the inferred component normal distributions, numbered to indicate genotypes 1) 888 

aaaa; 2) Aaaa; 3) AAaa; 4) AAAa; and 5) AAAA.  889 

890 
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Tables 891 

Table 1. The general orthogonal contrast scales model for one locus. 892 

 i 4 3 2 1 0 

 Genotype AAAA AAAa AAaa Aaaa aaaa 

 Frequency 4f  3f  2f  1f  0f  

 Genotypic value 4G  3G  2G  1G  0G  

1θ  1W  41w  31w  21w  11w  01w  

2θ  2W  42w  32w  22w  12w  02w  

3θ  3W  43w  33w  23w  13w  03w  

4θ  4W  44w  34w  24w  14w  04w  

Gi and fi denote the genotypic values and genotypic frequencies for the five genotypes 893 

with i copies of the A allele. iθ (i=1,2,…,4) are the monogenic, digenic, trigenic and 894 

quadrigenic genetic effects respectively. ijw (i=0,1,…,4; j=1,…,4) is the scale component 895 

of genotype i for the jth contrast. 896 



31 
 

897 

Table 2. Orthogonal contrast scales for one locus in a biallelic autotetraploid S2 population. 898 

 Genotype AAAA AAAa AAaa Aaaa aaaa 

 Frequency 
4f  3f  2f  1f  0f  

   
4G  3G  2G  1G  0G  

1θ  
1W  

2 1 0 -1 -2 

2θ  
2W  

( )5 2 3α−  ( )1 4 6α−  ( )1 2 3α− +  ( )1 4 6α−  ( )5 2 3α−  

3θ  
3W  

( )2 1 3α−  ( )1 2 6α− +  0  ( )1 2 6α+  ( )2 1 3α− −  

4θ  
4W  

( )( )
( )

21 4 4 3
12 2

α α α

α

− − +

+
 

( )( )
( )

21 2 4 4 3
24 2
α α α

α

+ − +
−

+
 ( )( )

( )

21 2 1
12 2
α α

α
− +

+
 

( )( )
( )

21 2 4 4 3
24 2
α α α

α

+ − +
−

+
 

( )( )
( )

21 4 4 3
12 2

α α α

α

− − +

+
 

( )1,..., 4i iθ =  are the monogenic, digenic, trigenic, and quadrigenic genetic effects of locus A. if and ( )0,1,..., 4iG i =  are the frequency and genotypic 899 

values for the ith genotype 4i iA a − , respectively. α is the coefficient of double reduction at locus A. 900 

901 
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Table 3. The general orthogonal contrast scales model for two loci (A and B). 902 

 

Genotype AAAA AAAa AAaa Aaaa aaaa 

 

Genotype BBBB BBBb BBbb Bbbb bbbb 

Frequency 4.f  3.f  2.f  1.f  0.f  Frequency .4f  .3f  .2f  .1f  .0f  

G 4.G  3.G  2.G  1.G  0.G  G .4G  .3G  .2G  .1G  .0G  

1θ  1AW  41w  31w  21w  11w  01w  1ζ  1BV  41v  31v  21v  11v  01v  

2θ  2AW  42w  32w  22w  12w  02w  2ζ  2BV  42v  32v  22v  12v  02v  

3θ  3AW  43w  33w  23w  13w  03w  3ζ  3BV  43v  33v  23v  13v  03v  

4θ  4AW  44w  34w  24w  14w  04w  4ζ  4BV  44v  34v  24v  14v  04v  

 903 

.iG ( .iG  ) and .if ( .if  ) (i = 0, 1,…, 4) denote the genotypic values and genotypic frequencies for the five genotypes of locus A (locus B). iθ ( iζ  ) (i=1, 904 

2,…, 4) are the monogenic, digenic, trigenic and quadrigenic effects for locus A and locus B, respectively. Here ijw and ijv  (i=0,1,…,4; j=1,2,…,4), are 905 

the orthogonal contrast scales of genotype i for the jth contrast, calculated separately for each locus using the general biallelic one locus model. 906 

 907 



33 
 

Table 4. Statistical power of major gene detection in outbred autotetraploid populations. 908 
Heritability 

( 2h ) 

Sample Size 

(n) 

aOVL 

 

power (%) Genetic Variance ( Q̂TLV ) 

mean s.e. 

 

0.10 

300  

0.5275 

 

17 4.8786 0.2343 

500 18 4.1234 0.2345 

1000 23 3.4567 0.2325 

 

0.15 

300  

0.4634 

29 2.8886 0.1575 

500 35 2.5018 0.1477 

1000 53 2.4363 0.1306 

 

0.20 

300  

0.4193 

46 2.3815 0.1156 

500 54 2.1323 0.1004 

1000 79 1.6360 0.0746 

 

0.25 

300  

0.3856 

59 1.8227 0.0825 

500 75 1.5201 0.0703 

1000 99 1.4111 0.0504 

 

0.30 

300  

0.3575 

71 1.6470 0.0705 

500 93 1.4608 0.0611 

1000 99 1.2765 0.044 

 

0.35 

300  

0.3329 

77 1.5475 0.0626 

500 100 1.3251 0.0465 

1000 100 1.2272 0.0352 

aOVL is the average overlapping coefficient between normal distributions. The empirical statistical 909 

power for major gene detection is given at significance level 5% based on 100 replicates. The 910 

simulated value of VG was equal to 1.132. 911 
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Table 5. Estimates of genetic effects using Killick’s model and the orthogonal contrast scales based model, under Scenario 1 (without double 912 

reduction, 0.00A Bα α= = ) or Scenario 2 (with double reduction, 0.05, 0.10A Bα α= = ). 913 

Killick’s model (ref. 23) 

Scenario µ  a  1d  2d  3d  b  1h  2h  3h  abI  1ahI  2ahI  3ahI  1d bI  1 1d hI  1 2d hI  1 3d hI  2d bI  2 1d hI  2 2d hI  2 3d hI  3d bI  3 1d hI  3 2d hI  3 3d hI  

1O 1.00 2.67 -2.52 -2.08 -0.85 - - - - - - - - - - - - - - - - - - - - 

1.00 - - - - 2.67 -2.52 -2.08 -0.85 - - - - - - - - - - - - - - - - 

1.00 7.44 -7.03 -5.82 -2.38 7.44 -7.03 -5.82 -2.38 7.11 -6.72 -5.56 -2.28 -6.72 6.35 5.25 2.15 -5.56 5.25 4.34 1.78 -2.27 2.15 1.78 0.73 

1K 3.78 1.94 1.94 1.94 1.94                     

 3.78     1.94 1.94 1.94 1.94                 

 3.78 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 O 1.10 2.84 -2.62 -2.22 -0.91 - - - - - - - - - - - - - - - - - - - - 

1.10 - - - - 2.75 -2.60 -2.15 -0.88 - - - - - - - - - - - - - - - - 

1.10 7.44 -7.03 -5.82 -2.38 7.44 -7.04 -5.82 -2.38 7.11 -6.72 -5.56 -2.28 -6.72 6.35 5.25 2.15 -5.56 5.25 4.34 1.78 -2.27 2.15 1.78 0.73 

orthogonal contrast scales based model 

Scenario µ  
1θ  2θ  3θ  4θ  1ζ  2ζ  3ζ  4ζ  1 1Iθ ζ  1 2Iθ ζ  1 3Iθ ζ  1 4Iθ ζ  2 1Iθ ζ  2 2Iθ ζ  2 3Iθ ζ  2 4Iθ ζ  3 1Iθ ζ  3 2Iθ ζ  3 3Iθ ζ  3 4Iθ ζ  4 1Iθ ζ  4 2Iθ ζ  4 3Iθ ζ  4 4Iθ ζ  

1O 1.00 1.00 1.00 1.00 1.00 - - - - - - - - - - - - - - - - - - - - 

1.00 - - - - 1.00 1.00 1.00 1.00 - - - - - - - - - - - - - - - - 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1K 3.78 0.32 -0.81 1.94 -3.89                     

 3.78     0.32 -0.81 1.94 -3.89                 

 3.78 0.32 -0.81 1.94 -3.89 0.32 -0.81 1.94 -3.89 0.03 -0.07 1.67 -0.33 -0.07 0.17 -0.42 0.83 0.17 -0.42 1.00 -2.00 -0.33 0.83 -2.00 4.00 

2 O 1.10 1.08 1.08 1.07 1.07 - - - - - - - - - - - - - - - - - - - - 

1.10 - - - - 1.07 1.05 1.03 1.03 - - - - - - - - - - - - - - - - 

1.10 1.08 1.08 1.07 1.07 1.07 1.05 1.03 1.03 1.05 1.04 1.02 1.02 1.04 1.03 1.01 1.01 1.03 1.02 1.00 1.00 1.03 1.02 1.00 1.00 
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µ is the population mean. a (b ) indicate the additive effect for locus AQ ( BQ ). 1d , 2d and 3d ( 1h , 2h and 3h ) indicate three unique dominance effects 914 

for the simplex, duplex and triplex heterozygote genotypes for locus AQ  ( BQ ). iθ  (or iζ ) (i = 1,…, 4 ) are the monogenic, digenic, trigenic and 915 

quadrigenic genetic effects at locus AQ  (or BQ ). i jIθ ζ  denote epistasis between the effects iθ  and jζ  (i=1,…,4; j=1,…,4).’-‘ indicates the parameter 916 

was not estimated. The population mean, all genetic effects of the two loci and epistatic effects were simulated to be 1.0. In scenario 1, the simulation 917 

data was generated under either Killick’s model (1K) or our orthogonal contrast scales based model (1O). 918 
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Table 6. Simulation settings based on a single QTL with 10 linked marker loci. 919 

 920 

 921 

 922 

 923 

 924 

 925 

 926 

 927 

 928 

 929 

 930 

 931 

Markers were located on the same side of the QTL, which is closest to the centromere. r denotes the 932 

recombination frequency between the QTL and marker loci. The offspring population of size n = 933 

300 was generated under a tetrasomic inheritance model with double reduction rate set equal to 0.00 934 

or 0.15. Heritability was assumed to be 0.2. Alleles listed in the same column had the same linkage 935 

phase. 936 

Locus r Parental genotypes Genetic parameters 
P1 P2 µ, θ1, θ2, θ3, θ4, = 1 

QTL 0.00 AAaa  AAaa   0α =  0.15α =  
1L  0.02 1 2 3 3M M M M  5 6 7 8M M M M     

2L  0.11 1 2 2 4M M M M  5 2 2 6M M M M  4G  5.458 5.215 

3L  0.19 1 1 3 4M M M M  3 5 6 7M M M M  3G  1.938 1.787 

4L  0.26 4 2 3 4M M M M  5 6 6 8M M M M  2G  0.708 0.622 

5L  0.32 2 1 4 2M M M M  4 5 7 6M M M M  1G  0.271 0.221 

6L  0.38 3 2 1 1M M M M  5 5 6 7M M M M  0G  0.125 0.082 

7L  0.42 1 3 3 4M M M M  4 3 5 6M M M M  σ  1.928 2.222 

8L  0.46 1 1 3 4M M M M  5 2 6 7M M M M     

9L  0.50 2 2 1 3M M M M  1 5 6 7M M M M     

10L  0.53 2 3 4 4M M M M  2 5 5 6M M M M     
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Table 7. Means and standard errors of the parameter estimates based on 500 repeated simulations of the single QTL model. 937 

Offspring data generated with double reduction rate 0α =  
Simulated values Estimated values 

 α =  0 α =  0.05 α =  0.10 α =  0.15 
µ  1.000   0.992 (0.005)  1.016 (0.005)  1.043 (0.005)  1.072 (0.005)  

1θ  1.000 1V  0.667 0.947 (0.006) 0.632 (0.008) 0.959 (0.006) 0.688 (0.009) 0.973 (0.006) 0.773 (0.010) 0.988 (0.006) 0.864 (0.011) 

2θ  1.000 2V  0.222 0.953 (0.012) 0.217 (0.005) 0.965 (0.012) 0.251 (0.006) 0.976 (0.012) 0.287 (0.007) 0.986 (0.012) 0.325 (0.007) 

3θ  1.000 3V  0.037 1.039 (0.029) 0.055 (0.002) 1.057 (0.028) 0.065 (0.003) 1.068 (0.028) 0.074 (0.003) 1.077 (0.028) 0.083 (0.003) 

4θ  1.000 4V  0.003 1.053 (0.092) 0.019 (0.001) 1.095 (0.091) 0.020 (0.003) 1.123 (0.091) 0.020 (0.001) 1.147 (0.091) 0.021 (0.001) 

σ  1.928   1.915 (0.003)  1.915 (0.003)  1.916 (0.003)  1.916 (0.003)  
2h  0.200   0.200 (0.002)  0.217 (0.002)  0.238 (0.002)  0.258 (0.002)  

Offspring data generated with double reduction rate 0.15α =  
Simulated values Estimated values 

 α =  0.15 α =  0.00 α =  0.05 α =  0.20 

µ  1.000   0.999 (0.005)  0.938 (0.006)  0.950 (0.005)  1.027 (0.005)  

1θ  1.000 1V  0.867 0.960 (0.006) 0.814 (0.010) 0.906 (0.006) 0.561 (0.008) 0.925 (0.006) 0.641 (0.008) 0.977 (0.006) 0.908 (0.011) 

2θ  1.000 2V  0.311 0.969 (0.011) 0.310 (0.007) 0.903 (0.011) 0.195 (0.004) 0.936 (0.011) 0.234 (0.005) 0.981 (0.011) 0.350 (0.007) 

3θ  1.000 3V  0.053 1.118 (0.027) 0.086 (0.004) 1.108 (0.027) 0.059 (0.002) 1.111 (0.027) 0.068 (0.003) 1.122 (0.027) 0.095 (0.004) 

4θ  1.000 4V  0.004 1.312 (0.101) 0.026 (0.002) 1.435 (0.100) 0.025 (0.002) 1.343 (0.101) 0.025 (0.002) 1.313 (0.101) 0.027 (0.002) 

σ  2.222   2.212 (0.004)  2.216 (0.004)  2.213 (0.002)  2.212 (0.002)  
2h  0.200   0.201 (0.002)  0.146 (0.001)  0.164 (0.002)  0.219 (0.002)  
µ  is the population mean and iθ  (i=1,…,4) are accordingly monogenic, digenic, trigenic and quadrigenic genetic effects of the QTL. σ  is the 938 

environmental error and 2h  is the heritability. 1V , 2V , 3V and 4V  represent monogenic, digenic, trigenic and quadrigenic genetic variance components, 939 

respectively. The estimation procedure was carried out assuming a range of values for the coefficient of double reduction α. The simulated values of α 940 

are highlighted in bold.  941 
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Table 8. Inference of major QTL genes affecting flowering time and plant height in a 942 

segregating population of autotetraploid potato. 943 

 Flowering time (days) Plant height (cm) 

1PG / 2PG  QQqq / QQqq QQQq / QQQQ 

α̂  0.055 0.165 

-ln(L) 939.47 1099.89 

LOD score 13.83 5.70 

P value 0.0000 0.003 
2ĥ  79.38 72.67 

Mean 33.62 45.97 

Monogenic 5.92 (25.97)*** 12.46 (51.61) *** 

Digenic 2.83 (2.03) *** -6.84 (1.31) *** 

Trigenic 0.59 (0.02) *** - 

Quadrigenic -5.09 (0.09) *** - 

QTL TotalV V (%) 39.7 29.7 

QTL geneticV V  (%) 50.1 40.8 

Estimated parameters of the quantitative genetic model are given based on the most likely 944 

parental genotype configuration. Monogenic, digenic, trigenic and quadrigenic genetic effects 945 

estimated from the orthogonal contrast scales model are shown, with the genetic variance 946 

component in brackets. *** p-value < 0.0001 from the two-tailed t-test. 947 
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