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Review
Immune Factors in Deep Vein Thrombosis
Initiation
Ivan Budnik1 and Alexander Brill1,2,*
Highlights
Local endothelial activation, and the
release of Weibel–Palade bodies pre-
sent in endothelial cells, are instrumen-
tal for deep vein thrombosis (DVT)
initiation. In addition to the vascular
system, the immune system is emer-
ging as a pivotal player in the patho-
physiology of DVT, potentially opening
new prophylactic approaches.

Mast cell activation and degranulation
are crucial for the local inflammatory
response resulting in DVT. Mast cells
may potentially link hypoxia and
endothelial activation.

Neutrophil extracellular traps play an
important role in DVT by providing a
scaffold for adhering platelets and red
blood cells and promoting thrombin
generation and fibrin deposition.

Platelets are an important source of
damage-associated molecular pat-
terns facilitating further leukocyte
recruitment and promoting venous
thrombosis.
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Deep vein thrombosis (DVT) is a major origin of morbidity and mortality. While
DVT has long been considered as blood coagulation disorder, several recent
lines of evidence demonstrate that immune cells and inflammatory processes
are involved in DVT initiation. Here, we discuss these mechanisms, in particular,
the role of immune cells in endothelial activation, and the immune cascades
leading to expression of adhesion receptors on endothelial cells. We analyze
the specific recruitment and functional roles of different immune cells, such as
mast cells and leukocytes, in DVT. Importantly, we also speculate how immune
modulation could be used for DVT prevention with a lower risk of bleeding
complications than conventional therapeutic approaches.

DVT: A Global Health Problem
DVT and its major complication, pulmonary embolism (PE), designated together as venous
thromboembolism (VTE), are one of the leading causes of disability and death worldwide.
VTE is the third most common cardiovascular pathology by its prevalence after myocardial
infarction and stroke [1], with about 900 000 cases and 300 000 deaths in the US annually.
Surprisingly, the prevalence and mortality of VTE has not substantially decreased over 30
years despite progress in diagnostic and prophylactic modalities [2]. DVT develops in deep
veins, usually, but not exclusively, in legs, causing pain, redness, swelling, and impaired
gait. If the thrombus is unstable, it can become detached and travel to the lungs, where it
occludes pulmonary circulation causing PE. In contrast to arterial thrombosis, whose
mechanisms have been intensively investigated, DVT remains largely terra incognita, which
inspired the American Surgeon General to issue a Call to Action to stimulate research of
venous thrombosis [3].

Blood Coagulation Cascade and Thrombus Development
Blood clotting is based on a protein polymer called fibrin, produced by cleavage of its precursor,
fibrinogen, by the protease thrombin (Figure 1) [4]. Thrombin is formed by activated Factor X
(FXa)-mediated processing of prothrombin. Activation of FX can occur via two mechanisms
designated as extrinsic and intrinsic pathways. The former one is initiated by a protein
designated as tissue factor (TF), which may be exposed by the tissues or blood cells,
predominantly monocytes. The intrinsic pathway starts from contact of FXII with a negatively
charged surface. Both pathways trigger a cascade of enzymatic transformations converging on
FX. Upon formation, fibrin is stabilized by a transglutaminase, FXIII.

Because of the known roles of these factors in clot formation, the current paradigm of DVT
prophylaxis focuses predominantly on the coagulation system, by targeting thrombin (e.g.,
dabigatran), active FXa (e.g., rivaroxaban) or vitamin K-dependent clotting factors (e.g.,
warfarin; Figure 1). However, due to the substantial overlap in the mechanisms of normal
hemostasis and pathological thrombosis, the therapeutic window of anticoagulants may be
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Figure 1. Blood Coagulation Cascade and Major Targets of Current Antithrombotic Therapy. There are two pathways of blood coagulation initiation:
intrinsic and extrinsic. The intrinsic pathway starts from activation of FXII by contact with a negatively charged surface, whereas the external one commences with FVII
activation by interaction with TF on the surface of monocytes, microparticles, activated endothelial cells, or cells in the injured vessel wall. Both pathways converge on
activation of FX (prothrombinase), which converts inactive thrombin precursor prothrombin into active enzyme. Thrombin, a central molecule in the cascade, cleaves
fibrinogen turning it into fibrin that consititutes basis for a thrombus. Fibrin crosslinking by active FXIII with subsequent clot retraction make the clot more solid, firm and
resistant to fibrin-degrading enzymes. Major targets of the contemporary antithrombotic therapy are depicted. Abbreviations: FVa, activated factor V; FVII, factor VII;
FVIIa, activated FVII; FVIIIa, activated factor VIII; FIX, factor IX; FIXa, activated FIX; FX, factor X; FXa, activated FX; FXI, factor XI; FXIa, activated FXI; FXII, factor XII; FXIIa,
activated FXII; FXIIIa, activated factor XIII; PolyP, polyphosphate; TF, tissue factor.
narrow because of increased chances for bleeding complications. Using a mouse model
(Table 1), the Wolberg group has demonstrated an antithrombotic potential of targeting
coagulation FXIII, thus preventing retention of red blood cells in the thrombus [5,6]. Given
that partial inhibition of FXIII does not impair hemostasis, this may be a promising anti-DVT
approach, although its usefulness in humans needs validation (Table 2). More broadly, there is a
general demand for a fundamentally new approach that would allow for efficient DVT prevention
without risk of bleeding. In this review, we discuss recent advances in understanding the
mechanisms of DVT, demonstrating a pivotal role of the immune system in its pathogenesis,
and show that recent experimental data call for a paradigm shift, namely to reconsider DVT as
an immunity- and inflammation-related process rather than merely coagulation-dependent
thrombosis.
Trends in Immunology, August 2018, Vol. 39, No. 8 611



Table 1. Mouse Models of Venous Thrombosis

Model Major factor inducing thrombosis Comments and Disadvantages (D/A) Refs

IVC stenosis + short external compression Flow stagnation + endothelial damage D/A: produces endothelial injury untypical for DVT [8,105]

IVC stenosis Flow stagnation Strong inflammatory component in thrombosis initiation
D/A: substantial variation in thrombus size

[8,20,21,28]

IVS stasis Complete flow cessation Important role of blood coagulation.
D/A: no flow

[8,19,74]

Electrolytic model Endothelial activation D/A: breaches the integrity of the IVC wall [8,106]

Ferric chloride Endothelial denudation D/A: produces endothelial injury untypical for DVT [8,107]

Rose Bengal/irradiation Endothelial injury D/A: produces endothelial injury untypical for DVT [107]
Of note, once a thrombus is formed, a process of its resolution begins. In mouse models,
thrombus size reaches its maximum within the first 1–2 days, after which it gradually decreases
during 2–3 weeks [7–9]. The process of venous thrombus resolution depends on leukocytes,
cytokines, metalloproteinases, as well as effector–memory T cells, sharing certain similarities
with wound healing [10,11]. When DVT has occurred, even its successful treatment (in many
cases surgical, catheter-guided thrombus dissolution) does not preclude all the spectrum of
DVT complications, such as recurrence, pulmonary hypertension, post-thrombotic syndrome,
and others. Also, in case of a tardy diagnosis, life-threatening PE can develop. Consequently,
the primary effort of translational research should focus on DVT prevention and in this review,
we have therefore concentrated specifically on the mechanisms of venous thrombosis initiation.
For readers interested in thrombus resolution we recommend the following reviews on the topic
[12,13].

The initiation of venous thrombus formation involves a complex cascade of events that can be
divided into three consecutive though overlapping stages: (i) blood flow stagnancy and hypoxia;
(ii) activation of the endothelium; and (iii) blood cell recruitment leading to activation of blood
coagulation and thrombus development (Figure 2). We outline these steps and the involvement
of immune cells below.

Stage 1: Blood Flow Stagnancy and Hypoxia Trigger DVT
DVT develops in the valvular pockets of the veins [14]. As blood pressure gradually decreases
from the heart ventricles all the way to the veins, the pumping function of the heart may become
insufficient to push blood through the veins. Thus, normal function of the auxiliary muscle pump
becomes indispensable for proper blood flow especially in the legs given that humans have
vertical spinal orientation. When limb muscles do not contract regularly and properly, blood flow
velocity in certain veins decreases to complete stasis. This is associated with elevated risk for
DVT. Thus, blood flow stagnation in the veins is one of the main factors driving idiopathic DVT
(i.e., excluding DVT resulting from a clear reason, such as cancer or trauma) [15]. This is an
important stipulation because, for example, DVT caused by cancer (and cancer-associated
therapy) is based on elevated blood coagulation induced, in particular, by TF-bearing micro-
particles [16]. Flow stagnation can result from sessile position of an individual, such as observed
after surgery (especially an orthopedic one), in a bed-ridden position or even during long-haul
flights. In pediatric patients, immobility for more than 72 h is also considered one of the main
factors triggering DVT with each additional day of hospitalization increasing the risk by 3% [17].
Venous stasis increases also with age and it was observed that contrast material stays in the
veins of elderly patients for up to 1 h after venography [18]. It should be noted however that
612 Trends in Immunology, August 2018, Vol. 39, No. 8



Table 2. Cells and Molecules Involved in Experimental DVT

Targets Model/effect of genetic deficiency or inhibition or infusion Refs

Targets supporting DVT

VWF Stenosis model/reduced thrombosis prevalence
Stasis model/reduced thrombosis prevalence

[21]

P-selectin Stenosis model/reduced thrombosis prevalence [28]

E-selectin Stasis model/smaller thrombi [108]

CLEC-2 Stenosis model/full conditional knockout, full protection, no thrombi;
platelet-specific knockout, lower thrombosis prevalence

[86]

Podoplanin Stenosis model/smaller thrombi [86]

Tissue factor Stasis model/reduced thrombus size in tumor-bearing mice [109]

PCSK9 Stenosis model/reduced thrombosis prevalence and thrombus size,
reduced neutrophil recruitment

[57]

MRP-14 Stasis model/lower thrombus weight
Stenosis model/lower thrombosis prevalence

[94]

Complement C3 and C5 Stenosis model/C3: smaller thrombi, lower thrombosis prevalence; C5:
smaller thrombi

[36]

apoA-I Stenosis model/genetic ablation: higher thrombosis prevalence; infusion:
lower thrombosis prevalence

[95]

eNOS Stenosis model/higher thrombosis prevalence [95]

TLR-4 Stasis model/in endotoxemia: smaller thrombi [41]

ICAM-1 Stasis model/in endotoxemia: smaller thrombi;
in Klebsiella-induced pneumonia: smaller thrombi

[41,110]

NETs Stenosis model/reduced thrombosis prevalence;
in APS: reduced thrombosis prevalence

[59,72,111]

HMGB1 Stenosis model/reduced thrombosis prevalence [65]

mTORC1 Stasis model/smaller thrombi [87]

Galectin-3 Stasis model/smaller thrombi [112]

Thromboxane A2 Stasis model/smaller thrombi after aspirin administration [82]

MCs Stenosis model/genetic ablation: full protection, pharmacological
degranulation inhibition: reduced thrombosis prevalence

[46]

NLRP3 Stasis model/smaller thrombi [25]

Interleukin-17A Stenosis model/infusion induces larger thrombi [113]

Growth arrest-specific 6
(Gas6)

Stenosis model/smaller thrombi [114]

Coagulation Factor XIII Stasis model/smaller thrombi [5,6]

Targets inhibiting DVT

APP Stasis model/larger thrombi and higher embolization level [98]

PTGS-2 Stasis model/larger thrombi, higher thrombus firmness and elasticity [115]

TLR-9 Stasis model/larger thrombi [73]

SR-BI Stenosis model/increased thrombosis prevalence [95]

17a-estradiol Stasis model/infusion induces smaller thrombi [116]

Glutathione peroxidase-1 Stasis model/larger thrombi [52]
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blood flow stagnancy either may require additional factors or be unusually prolonged to cause
DVT, or both, because, for example, normal night sleep does not result in DVT.

Animal models recapitulating complete [19] or partial [20,21] blood flow restriction by applying
ligature on the inferior vena cava (IVC; stasis and stenosis DVT models, respectively; Table 1)
have been developed and used to delineate mechanisms of venous thrombosis initiation and
resolution. In addition to the experimental approach, the pivotal role of flow reduction in cell
accrual in the valves has recently been demonstrated by a computer simulation approach [22].

Blood inside the vein is the only source of oxygen for the venous wall. Thus, diminished supply
with new portions of blood creates local hypoxia in the vein. Hypoxia is considered the major
pathogenetic mechanism linking blood flow stagnancy with following processes in the vessel
wall leading to thrombosis. Hamer and co-authors directly demonstrated in dogs and patients
that blood oxygenation in venous valve pockets quickly falls once the flow becomes static and
returns back to original values when pulsatile (i.e., mimicking muscle pump-supported) flow is
applied [23]. It has been recently shown that whole-body hypoxia potentiates venous throm-
bosis [24,25]. Hypoxia results in activation of various cell types in the venous wall, such as mast
cells (MCs) and endothelium, leading to expression of adhesion receptors (e.g., intercellular cell
614 Trends in Immunology, August 2018, Vol. 39, No. 8



adhesion molecule 1, ICAM-1) and release of Weibel–Palade body (WPB; storage granules
present in endothelial cells) constituents [26]. This cascade of events is a prerequisite for local
recruitment of leukocytes and platelets; an inflammatory phenomenon that was first demon-
strated to be induced by flow restriction more than 50 years ago [27]. The recruited cells give
start to thrombosis through various routes, some of which are discussed below.

Stage 2: Endothelial Activation
Endothelial activation and exocytosis of WPBs, central events in DVT initiation, are rapidly
(within 1–6 h) induced by stenosis of the IVC [21,28]. In this process, WPBs fuse with the
plasma membrane and release their constituents expressing some of them, such as von
Willebrand factor (VWF; a coagulation factor present in the WPBs) and P-selectin, on the
membrane, thus mediating cell recruitment. This is consistent with increased levels of soluble
P-selectin in patients with DVT [29], although soluble P-selectin may originate also from
activated platelets. Elevated levels of P-selectin both in the circulation and the venous wall
are associated with upregulated DVT in the electrolytic mouse model [30]. Inhibition of P-
selectin suppresses DVT and stimulates spontaneous recanalization of the thrombus in an IVC
balloon occlusion model in baboons, suggesting its pathophysiological role in venous throm-
bosis [31].

Hypoxia results in the synthesis of reactive oxygen species (ROS), which activate the endo-
thelium, inducing the expression of adhesion receptors and recruitment and extravasation of
leukocytes [32]. ROS may activate endothelial cells also indirectly, for example, via the
complement system. Oxidative stress induces complement activation (in particular, by endo-
thelial cells damaged by ROS) and its deposition on the vessel wall leading to progression of
inflammation [33,34]. The susceptibility to DVT strongly correlates with complement compo-
nent C5a (C5a) levels in a mouse model [35]. Mice deficient for C3 or C5 have reduced
experimental venous thrombosis, with the lack of C5 not being accompanied by any defects in
platelet activation or normal hemostasis [36]. High levels of the C3 are associated with high risk
of DVT in humans [37]. Mechanistically, high-molecular-weight multimers of VWF released from
WPBs provide a scaffold for complement activation [38]. Complement components bind to
VWF strings and become activated through the alternative activation pathway [39]. Thus, in
addition to the direct activation of endothelium by hypoxia and ROS, the complement system
may represent an additional link between flow restriction and endothelial activation.

In addition to cell recruitment, activated endothelium enhances blood coagulation and exerts
suppressed anticoagulant function, thus contributing to thrombus formation [40]. Upregulation
of the endothelial surface adhesion receptor ICAM-1 underlies augmented DVT under the
endotoxemic conditions [41]. Clinically, endothelial activation has been reported in patients with
VTE and thrombosis of superficial veins [42,43].

It has recently become clear that endothelial activation and cell recruitment, the critical events in
DVT initiation likely induced by local hypoxia, require an intermediary: MCs. MCs are a part of
the innate immune system that largely reside in tissues and are present in the vicinity of blood
vessels [44]. These are large cells containing granules enriched with proinflammatory medi-
ators, such as tumor necrosis factor-a and histamine, and antithrombotic factors, such as
tissue plasminogen activator (tPA) and heparin. Thus, MCs might be expected to exert opposite
effects on thrombosis: its reduction by releasing blood coagulation inhibitors or stimulation by
supporting local inflammatory response. The involvement of MCs in DVT is implicitly supported
by their accumulation at the site of venous thrombosis [45], but their net functional contribution
has long remained obscure.
Trends in Immunology, August 2018, Vol. 39, No. 8 615



Using the stenosis DVT model in mice, we have recently demonstrated that two strains of
MC-deficient mice are completely protected against DVT [46]. Adoptive transfer of in vitro-
differentiated MCs into MC-deficient animals restored thrombosis, suggesting that it is the
lack of MCs that prevents DVT. Thus, the net effect of MC degranulation in this model is the
exacerbation of venous thrombosis, suggesting that the activity of MC-originated proinflam-
matory factors outweighs the activity of antithrombotic factors. Absence of MCs completely
prevents thrombosis, suggesting that MCs are absolutely required (although may not be
sufficient) for its initiation.

In addition to protection from DVT, MC deficiency is accompanied by reduced cell recruitment
at the venous wall after stenosis application [46]. Consequently, the factor or factors released
from MCs and responsible for DVT may be involved in endothelial activation. Histamine is one of
the most likely candidates produced by MCs. Indeed, local application of histamine accelerated
DVT in wild-type mice and induced DVT in MC-deficient mice [46]. The mechanisms of the
prothrombotic effect of histamine might involve its ability to induce release of VWF and P-
selectin from WPBs [47] and enhance expression of E-selectin and ICAM-1 [48], mediating
blood cell recruitment to the vascular wall. Histamine also stimulates the expression of TF, the
key initiator of blood coagulation, in different cell types [49,50].

Mechanisms of MC activation by hypoxia remain obscure, but oxidative stress and ROS appear
to play a role in this process. ROS can be both the cause and the consequence of MC activation
because, on the one hand, inhibition of MC activation downregulates ROS production and, on
the other hand, antioxidants prevent MC degranulation [51]. Generation of ROS has a direct
impact on DVT in a mouse model. Indeed, H2O2 has been shown to mediate increased
susceptibility to DVT in aged mice, whereas mice overexpressing an antioxidant, glutathione
peroxidase 1, are protected against the prothrombotic effect of H2O2 [52].

Mastocytosis, which is associated with abnormally high numbers of MCs, is accompanied by
bleeding symptoms in a small proportion of patients [53]. The reason for this is unclear but it is
possible that when the number of MCs exceeds a certain limit, massive release of antithrom-
botic factors starts to prevail over the effect of proinflammatory/prothrombotic stimuli. How-
ever, the importance of MCs in venous thrombosis is corroborated by a clear link between
allergic diseases and VTE [54]. Severity of asthma strongly correlates with the risk of not only
DVT but also PE [55]. MCs and histamine are implicated in airway and lung inflammation-related
thrombosis induced by diesel exhaust particles and prevention of histamine release has an
antithrombotic effect [56]. Thus, targeting MCs by inhibiting their activation and degranulation,
as well as further identification of and targeting MC granular constituents exacerbating throm-
bosis, may represent a fundamentally new approach to fight DVT, although the precise benefit
and advantages of this approach in patients are still to be verified.

Stage 3: Blood Cell Recruitment
Leukocytes
Restriction of venous blood flow induces rapid leukocyte recruitment. After 1 h of IVC
stenosis, leukocytes start to roll along and adhere to the venous endothelium, and after
5–6 h, leukocytes carpet the entire endothelial surface. Neutrophils account for more than
80% of adherent leukocytes and monocytes represent the remainder [28]. Leukocyte recruit-
ment is dependent on P-selectin exposure on the luminal side of the venous endothelium
since the number of leukocytes recruited to the venous wall in mice lacking P-selectin on the
endothelial surface is reduced by several orders of magnitude. Moreover, these mice are
protected against DVT, indicating that leukocyte recruitment is crucial for DVT development in
616 Trends in Immunology, August 2018, Vol. 39, No. 8



response to blood flow restriction. Although activated platelets also expose P-selectin on their
surface, the role of platelet-derived P-selectin in leukocyte recruitment is less prominent [28].
Leukocyte recruitment is also affected by various plasma components. For example, higher
plasma levels of low-density lipoproteins (LDL) likely enhance leukocyte accumulation since
deficiency in proprotein convertase subtilisin/kexin type 9 (PCSK9), an enzymatically inactive
protein that binds the LDL receptor favoring its degradation, significantly reduces leukocyte
adhesion and thrombus growth in the stenosis DVT model [57]. Given that leukocyte
recruitment to the venous wall is indispensable for DVT, below we discuss the contribution
of the main leukocyte subsets recruited, namely neutrophils and monocytes, to the patho-
genesis of the disease.

Neutrophils
The involvement of neutrophils in DVT was discovered several decades ago [58]. Recent
studies have demonstrated the critical role of neutrophils in the pathophysiology of DVT
[28,59,60]. Depletion of neutrophils inhibits venous thrombus formation, indicating that their
role cannot be substituted by other leukocytes [28]. This prothrombotic effect of neutrophils,
however, is observed only in the stenosis DVT model, whereas in the stasis model, neutropenia
does not affect thrombus size in mice and results in development of even larger thrombi in
rats [61,62].

Upon recruitment to the venous wall, neutrophils undergo activation and release their nuclear
material, forming a web-like extracellular structures designated as neutrophil extracellular traps
(NETs). These are composed of DNA, histones, secretory granule constituents, and other
components implicated in antimicrobial defense [63]. It has been shown that signals originating
from the neutrophil P-selectin glycoprotein ligand-1, a counter-receptor for P-selectin, may
trigger the process of NET formation (NETosis) [64]. Under pathogen-free conditions of
thrombosis, NETosis may also be induced by high-mobility group box 1 (HMGB1) released
by and exposed on the surface of platelets recruited to the venous wall [65,66]. Although
monocytes may also be able to form extracellular traps [67], experiments on neutropenic mice
have shown that neutrophils are the major source of these traps in venous thrombi [28]. NETs
are abundantly present in venous thrombi [59,68], which is in line with increased plasma levels
of NETs biomarkers in patients with DVT [69,70]. Prevention of NETosis [71,72] or destruction
of NETs by infusion of deoxyribonuclease (DNase) I [28,59] protects mice from thrombus
formation in the stenosis DVT model, indicating the crucial role of NETs in the onset of DVT.
NETs support DVT also in the stasis model in some [66] but not in other studies [73]. The latter
study demonstrates that Toll-like receptor (TLR)-9-deficient mice have larger thrombi than
control animals, despite elevated levels of NET markers, and that treatment with DNase I or
genetic ablation if peptidyl arginine deiminase (PAD)-4 (an enzyme required for NET production)
does not reduce thrombus size in the stasis model. More prominent prothrombotic function of
neutrophils and NETs in stenosed versus fully closed vessels suggests that residual blood flow
is indispensable for the inflammatory mechanism to become operational in venous thrombosis
commencement, whereas complete absence of flow likely induces DVT through a more
coagulation-dependent mechanism [74].

The mechanisms by which NETs may contribute to venous thrombosis have become an
important area of research. It has been shown that various adhesion proteins, including VWF,
fibrinogen, and fibronectin, may bind to DNA/histone strings so that NETs become a scaffold
for adhering platelets and red blood cells independent of the fibrin network [68]. Upon release
into the extracellular space, histones trigger activation of endothelial cells [75], which is
consistent with increased plasma levels of VWF in mice infused with purified histones [59].
Trends in Immunology, August 2018, Vol. 39, No. 8 617



In vitro experiments have also demonstrated that NETs stimulate platelet adhesion and
aggregation at a venous shear rate and induce thrombocytopenia in vivo, with both effects
being abolished by histone inactivation [68,76].

Another mechanism of the prothrombotic effect of NETs is potentiation of the coagulant
cascade and reduction of anticoagulant activity. NETs can bind FXII and provide a scaffold
for FXII activation [28]. Activated FXII may amplify fibrin formation without activating FXI,
presumably through direct interaction with fibrin [77]. Additionally, neutrophil elastase and
other proteases associated with NETs degrade anticoagulants, such as TF pathway inhibitor
(TFPI) [78], while histones impair thrombomodulin-dependent protein C activation [79], pro-
moting thrombin generation. A recent study has demonstrated in vitro that while NETs
components, DNA and histones, potentiate thrombin generation and blood clotting, NETs,
as a biological entity, are unable to do so [80]. This implies (if proven in vivo) that NETs might
need a certain degree of degradation to acquire procoagulant activity. Thus, NETs could
represent an important mechanistic link between neutrophil accrual and venous
thrombogenesis.

Monocytes
Monocytes and, to a lesser extent, neutrophils recruited to the venous wall serve as a principal
source of TF; the major initiator of the extrinsic coagulation pathway and fibrin deposition. In the
stenosis model of DVT, deletion of TF in myeloid leukocytes completely prevents thrombus
formation without affecting leukocyte recruitment [28]. In contrast, in the complete stasis
model, DVT is driven primarily by the vessel-wall-derived but not leukocyte-derived TF [74].
This difference might be attributed to different pathogenetic mechanisms operating in these
similar but distinct models.

The prothrombotic function of leukocytes is negatively regulated by signaling via TLR-9. It has
been shown that lack of this pattern-recognition receptor is associated with larger venous
thrombi and increased levels of NETosis, necrosis, and apoptosis markers in the stasis, but not
stenosis, model of DVT in mice [73]. It has also been shown that lack of TLR-9 leads to reduced
monocyte recruitment to venous thrombi [81].

Platelets
Platelets are recruited to the venous wall shortly after blood flow restriction and play an
important role in DVT as platelet depletion substantially reduces thrombosis [28]. A role of
platelets in DVT is supported by the observations that an antiplatelet drug aspirin reduces
DVT in mice (by preventing thromboxane A2 synthesis) [82] and VTE in patients undergoing
orthopedic surgery [83,84]; a condition frequently associated with compromised venous
blood flow. Importantly, efficacy of venous thrombosis prophylaxis by aspirin is non-inferior to
that of rivaroxaban, an anticoagulant widely used in clinical practice [85], which confirms
involvement of platelets in DVT pathogenesis. In contrast to arterial thrombosis, where
platelets form large aggregates [78], in DVT, platelets are mainly recruited as single cells
and adhere either directly to the activated endothelium or to adherent leukocytes forming
small heterotypic aggregates [28].

Platelet recruitment to the venous thrombus is mediated by binding of platelet receptor GPIba
to VWF exposed on the endothelial surface. Indeed, deficiency in either GPIba extracellular
domain [28] or VWF [21] prevents experimental DVT. Recently, it has been shown that
platelet recruitment also depends on the platelet membrane molecule CLEC-2, a hemi-
immunoreceptor tyrosine-based activation motif-bearing receptor capable of binding
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podoplanin. Podoplanin is a mucin-type transmembrane protein expressed in the murine IVC
wall in tunica media and adventitia (middle and external layers of the venous wall, respec-
tively), and its expression is markedly upregulated in the course of thrombus formation [86]. It
has been proposed that hypoxia-induced activation of the endothelial cells, caused by
restriction of the blood flow, renders endothelial cell–cell junctions looser, allowing for platelet
penetration into subendothelial spaces where the interaction between CLEC-2 and podo-
planin may take place [86].

The analysis of signal transduction pathways in platelets following recruitment to the venous
wall has shown a role for mechanistic target of rapamycin complex 1 (mTORC1), a rapamycin-
sensitive protein complex consisting of mTOR, Raptor, and mLST8 (mammalian lethal with
SEC13 protein 8) [87]. Deficiency of mTORC1 considerably reduces DVT in the murine flow
restriction model. Platelet recruitment to the developing venous thrombus is also associated
with enhanced generation of ROS, promoting thrombus growth [52]. The contribution of both
mTORC1 and ROS to the pathogenesis of DVT increases with age [52,87], which is consistent
with higher incidence of VTE in elderly patients [88]. Platelet recruitment and DVT in the
conditions of hypobaric hypoxia, such as encountered at high altitude, depend in a mouse
model also on assembly of NOD-like receptor family, pyrin domain containing 3 (NLRP3)
inflammasome [25], a molecular platform triggering autoactivation of caspase-1, which cleaves
the proinflammatory cytokines, interleukin (IL)-1b, and IL-18, into their active forms (reviewed in
[89]). Deficiency in NLRP3 is associated with reduced thrombus size in complete stasis-
induced DVT in mice [25]. This finding is in accordance with the study demonstrating increased
serum IL-18 levels in experimental DVT in rats [90] as well as with the clinical observation
demonstrating increased levels of IL-1b and IL-18 in patients with DVT [25].

Besides procoagulant activity (reviewed in [91]), recruited platelets provide important proin-
flammatory stimuli being a source of various damage-associated molecular patterns (DAMPs)
[92,93]. Following recruitment to the venous wall, platelets expose HMGB1 [92], a nucleosomal
protein that serves as a DAMP when released into the extracellular space. Deficiency in platelet-
derived HMGB1 markedly decreases thrombus size and thrombosis incidence in the DVT
model [65]. Operating through the receptor for advanced glycation end-products (RAGE) and
other pattern recognition receptors, HMGB1 promotes NETosis of the recruited neutrophils
and facilitates recruitment of monocytes [65]; an important source of TF triggering the extrinsic
coagulation pathway. Additionally, HMGB1 promotes recruitment and activation of new pla-
telets at early stages of venous thrombus formation. Enhanced NETosis and platelet accrual
result in further HMGB1 accumulation in the developing thrombus forming a positive feedback
propagating DVT [65]. Myeloid-related protein (MRP)-14, a member of the S100 family of
calcium-modulated proteins, is another DAMP abundantly expressed in platelets and neu-
trophils [94]. MRP-14 deficiency is associated with reduced DVT, which is partially rescued by
adoptive transfer of wild-type platelets or neutrophils. Acting in a Mac-1-dependent manner,
MRP-14 fosters NETosis, thereby promoting venous thrombus propagation. Collectively, the
data characterize platelets as important regulators of sterile inflammation and stress the role of
platelet–neutrophil crosstalk in venous thrombogenesis.

Involvement of platelets in the pathogenesis of DVT is limited by several mechanisms. Platelet
recruitment to the venous endothelium is downregulated by the interaction of apoA-I, the major
apolipoprotein in high-density lipoprotein (HDL), with endothelial receptor scavenger receptor-
BI (SR-BI). This interaction diminishes endothelial activation and WPB release in an endothelial
NO synthase (eNOS)-dependent manner [95]. SR-BI-mediated signaling protects from venous
thrombosis in mice, which is consistent with increased risk of DVT in patients with low plasma
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Outstanding Questions
Is local hypoxia a leading factor exac-
erbating DVT? Are there (if any) other
causes?

What are the mechanisms of hypoxia-
driven local inflammation?

What mechanisms mediate mast cell
activation and degranulation under
flow stagnancy conditions? What
mediators released by mast cells trig-
ger DVT?

What therapeutic interventions target-
ing the immune system and local
inflammation will be most efficient
against DVT?

Based on combination of targeting the
immune response with conventional
methods of tackling DVT, it is tempting
to develop a personalized approach of
DVT prevention in different predispos-
ing conditions (e.g., infection/sepsis,
allergy, cancer, or major surgery).
HDL levels [96], although some reports contradict this [97]. The ability of platelets to promote
leukocyte recruitment to the venous thrombus is negatively regulated by amyloid precursor
protein (APP) abundantly expressed in platelets. In the stasis DVT model, substitution of wild-
type platelets by APP-deficient ones increased platelet–leukocyte interaction. Genetic defi-
ciency in APP is associated with enhanced NETosis, greater incorporation of NETs into venous
thrombi, and enhanced DVT [98]. Thus, APP or its functional analogs may represent a new
approach to DVT prevention targeting simultaneously local inflammation and NETs production.

Concluding Remarks
Mechanisms of DVT initiation represent a cascade of events virtually identical to the local
inflammatory response recently designated as immunothrombosis [99]. This opens a window
of opportunities for identification of new antithrombotic targets because (i) the immune system
is not directly implicated in normal hemostasis and targeting it is unlikely to result in excessive
bleeding; and (ii) multiple anti-inflammatory drugs are already on the market and, consequently,
available for testing their efficacy to prevent DVT.

Although the precise mechanisms of how the immune-system-related cells and molecules are
implicated in DVT may differ, some of them converge on local inflammation in the venous wall.
Thus, focusing on this common denominator, reduction of endothelial activation, release of
WPBs and local cell recruitment could be a promising strategy ameliorating venous thrombosis.
For example, NO is one of the most potent inhibitors of WPB liberation [100], and we can
therefore speculate about potential usefulness of NO donors (which are already in clinical use)
for DVT prevention. HDL activates eNOS through binding SR-BI [101] and a component of
HDL, apoA-I, was shown to efficiently reduce DVT in experimental conditions operating via the
same route [95]. A mutated form of apoA-I with higher lipid-binding propensity, called apoA-I
Milano, downregulates arterial thrombosis caused by ferric chloride [102]. Of note, synthetic
apoA-I analogs have been developed and proven to recapitulate various effects of the natural
protein [103]. Hence, the apoA-I/HDL axis might be considered potentially useful to fight DVT.
Histones, a part of NETs, also stimulate WPB release [104] and their prothrombotic activity can
therefore rely, at least in part, on this effect. Based on experimental evidence, endothelial
activation can be limited also by targeting MC degranulation, especially given that drugs with
such mechanism of action are already in clinical use for other purposes. Determination of
targetable mechanisms of MC activation in the unique environment of the veins, identification of
the MC-derived factors promoting DVT, and verification of the relevance and efficacy of this
approach in patients represent a challenge for future research. Thus, the following directions
currently seem to be most promising in the translational aspect to prevent DVT by manipulating
the immune system: (i) amelioration of local vessel response to hypoxia; (ii) inhibition of
endothelial activation and WPB release (e.g., NO, targeting MC etc.); (iii) inhibition of immune
cell recruitment (e.g., adhesion receptor antagonists); and (iv) targeting NETs.

In conclusion, DVT develops as a form of immunothrombosis with a particularly important role
of local inflammation at the stage of thrombosis initiation. Targeting inflammatory pathways is
less likely to cause bleeding complications than inhibition of blood coagulation mechanisms.
Thus, it may be considered as an alternative and safer approach for the prevention of DVT in at-
risk populations and further research in this area may provide important new therapeutic
options (See Outstanding Questions).
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