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Abstract:  

Gas diffusion layer (GDL), consisting of a microporous layer (MPL) and a carbon fibre 

substrate, is one of the major components in proton exchange membrane fuel cells (PEMFCs). 

In gas diffusion electrodes (GDEs) with in-situ grown aligned Pt nanowire (NW) catalysts, 

the GDL can also provide an important function in controlling the growth and distribution of 

the Pt nanowires. In this work, a systematic investigation is conducted to evaluate the 

evolution of the GDL structure on the PtNW growth process to prepare GDEs. The influence 

mechanisms including carbon loading, carbon composition and polytetrafluoroethylene 

(PTFE) loading in the MPL and PTFE in the carbon fibre substrate on the electrode power 

performance are studied in detail. An optimum structure for MPL, 4 mg cm-2 carbon loading 

with an equal amount of carbon black (CB) and acetylene black (AB), plus 5% PTFE loading, 

is deserved. This GDL structure can provide suitable substrate coverage, reasonable surface 

nucleation sites and required hydrophobicity for the in-situ growth of PtNWs. The results 

indicate that the GDL features play a significant role in the growth and distribution of the 

obtained Pt nanowires to achieve high performance GDEs for PEMFC application. 

 

Keywords: Gas diffusion layer; Microporous layer; Pt; nanowire; Proton exchange 

membrane fuel cell (PEMFC) 
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1. Introduction 

Gas diffusion layer (GDL) is one of the key components in proton exchange membrane fuel 

cells (PEMFCs). It usually consists of double functional layers: one is a macroporous 

substrate layer and the other is a microporous layer (MPL) coated on the surface of the 

substrate.[1-3] The substrate is usually made from porous stacked carbon fibres and treated by 

a water-proofing agent such as polytetrafluoroethylene (PTFE).[4-6] The MPL is made from 

carbon nanospheres for an excellent electrical conductivity and a hydrophobic polymeric 

binder, i.e. PTFE to maintain the integrity of carbon nanospheres and facilitate an efficient 

water transport out of the catalyst layers (CLs).[7-9] Therefore, the whole GDL is believed to 

provide mechanical strength to support CLs, deliver reactants to and remove produced water 

from CLs as well as reduce interfacial contact resistance (ICR) with CLs.[10-12] 

 

With a high specific surface area (ca. 250 m2 g-1),[13] Vulcan XC-72R carbon black (CB) is 

extensively used to fabricate MPLs in commercial GDLs and also as catalyst supports.[14] 

Acetylene black (AB), with a surface area ranged in 15-70 m2 g–1, is also commonly used in 

MPLs to achieve a homogeneous surface.[15] The mixture of CB and AB with various 

compositions can be used to control the surface properties of MPLs such as specific surface 

area, porosity and electrical conductivity. In addition, PTFE as the additive agent in both the 

substrate and MPL to avoid water flooding, can also significantly affect the surface 

wettability and porosity, further influencing the structure of GDLs.[16] 

 

As a component next to the CL in fuel cell construction, the characteristics of the GDL 

considerably affect the performance of PEMFCs, especially when the gas diffusion electrode 

(GDE) technique is employed by directly coating catalysts on the GDL surface.[17, 18] 

Different from the conventional methods by painting[19, 20], spraying[21, 22] or printing[23, 
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24] the catalyst layer onto the GDL surface, our group have developed aligned Pt nanowire 

(NW) GDE concept by in-situ growing Pt nanowires on the GDL surface.[25-27] The 

achieved extremely thin catalyst layer consisting of only a monolayer array of single-crystal 

Pt NWs could effectively reduce mass transfer resistance and boost the catalyst utilisation 

ratio for an improved power performance.[28] However, the in-situ growth of PtNW CLs is 

obtained by a one-pot wet-chemical process, where the GDL structure, including the porosity, 

homogeneity, hydrophobicity, etc. can significantly influences the growth and distribution of 

the Pt NWs on the GDL surface.[28] Therefore, a systematic investigation on the evolution 

mechanism of the GDL structure for Pt nanowire growth is required to achieve 

high-performance GDEs for PEMFC applications. 

 

In this work, the evolution of GDL structures on the performance of the aligned PtNW GDEs 

is studied in detail. Considering the crystal nucleation and growth processes of Pt NWs and 

the actual PtNW GDE performance in single PEMFCs, the carbon loading and carbon 

composition in the MPL, as well as the PTFE amounts in both of the substrate and MPL are 

investigated comprehensively. It is found that the GDEs with a proper GDL structure can 

exhibit an enhanced performance compared to the reported research work. The morphology 

and distribution of the Pt NWs on the GDL surface are discussed in detail considering the 

electrochemical impedance spectroscopy (EIS) analysis and single cell test results. 

 

2. Experimental Section  

2.1 Chemicals and Materials 

All chemicals and materials were used as received without any further purification. 

Hexachloroplatinic acid hexahydrate (H2PtCl6·6H2O, ≥37.50% Pt basis) and PTFE (60 wt% 

dispersion in H2O) were purchased from Sigma-Aldrich UK. Formic acid (CH2O2, 90%) and 

isopropanol (IPA) (C3H8O, >99.5%) were obtained from Fisher Scientific UK. Vulcan 
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XC-72R carbon black (CB) and acetylene black (AB) (100% compressed, 99.9+%) were 

purchased from Fuel Cell Store USA and Alfa Aesar USA, respectively. DuPont Nafion® 212 

membrane and Nafion® solution (D1021, 10 wt%) were obtained from Ion Power Inc. 

SIGRACET® GDLs 35BA, 35BC, 35CC and 35DC carbon paper were supplied by SGL 

Group. The gas diffusion electrodes (ELE1065-0983, 0.4 mgPt cm–2) were obtained from 

Johnson Matthey Fuel Cells Ltd and used as anodes for fabricating fuel cells. Ultrapure water 

(18.2 MΩ cm) from a Millipore water system was used throughout. 

 

2.2 Carbon loading in MPLs 

35BA, the pure carbon fibre paper without MPL, was used as the substrate for fabricating 

GDLs with self-painted MPLs. According to the data from SGL Group, the areal weight of 

35BA is 54 g m-2, and that of 35BC GDL which consists of 35BA with the standard MPL is 

110 g m-2. Considering there is 20% PTFE in the standard MPL (based on the total MPL 

weight), the calculated carbon loading is 4.48 mg cm-2. This value is much higher than those 

reported in literature that is usually in the range of 0.5-2 mg cm-2.[29-31] To find the optimal 

carbon amount for Pt NWs GDE, the carbon loading in MPLs was studied based on the 

standard 35BA with the CB loadings of 1, 3, 4, 4.48 and 5 mg cm–2. The PTFE percentage in 

the MPL was 20% based on the total MPL weight. The mixtures of CB and PTFE were 

dispersed in ultrapure water and IPA solution by ultrasonic processing with bath for 15 min 

(U300, Ultrawave, UK) and horn for 10 min (130 W, 30% amplitude, VCX 130, SONICS, 

USA). The resulting carbon inks were brush painted on 35BA substrate, and dried overnight 

at 40 oC in the oven. After that, the GDL samples were heated at 240 oC for 30 min in air to 

remove the remained dispersing agent and then at 350 oC for 30 min to improve the 

distribution of PTFE.[9] The treated GDLs were then ready to use for the growth of Pt NWs. 

 

2.3 Carbon composition in MPLs 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 
 

With the optimized carbon loading, a carbon mixture of CB and AB were employed for the 

preparation of carbon inks. The percentage of CB was adjusted to 0, 10, 25, 40, 50, 60, 75, 90 

and 100% in the carbon mixture. All other processes are the same as described in Section 3.2. 

 

2.4 PTFE loading in substrates and MPLs 

To study the effect of PTFE in the substrate, Sigracet® 35BC, 35CC and 35DC GDLs, all with 

the standard Sigracet MPL but different PTFE loadings of 5, 10 and 20% in the substrate, 

respectively, were used. 35BA was used as the based substrate for the fabrication of 

self-painted GDLs to investigate the influence of PTFE in the MPL. Self-painted MPLs were 

prepared with different PTFE loadings based on the optimized carbon loading and carbon 

composition. The PTFE loadings were 5, 10, 15, 20, 25, 30 and 40% (to total MPL weight) in 

carbon inks. The self-painted GDLs were then treated as mentioned above for the growth of 

Pt NWs.  

 

2.5 Pt NWs GDE preparation and physical characterization 

Pieces of standard and the self-painted GDLs were used as supports for Pt nanowire growth. 

The detailed procedure is described in our previous studies.[32,33] Before use, the GDLs 

were cleaned with ultrapure water and IPA. For the in-situ growth of 0.4 mg cm–2 Pt 

nanowires on a piece of 16 cm2 GDL, 17 mg H2PtCl6·6H2O (6.4 mg Pt) and 0.53 mL formic 

acid were added to 10.6 mL ultrapure water. The GDL was then immersed and push to the 

bottom in the mixed solution in a 10 cm glass Petri dish by a plastic tweezer and stored at 

room temperature for Pt nanowire growth. After the colour of the solution changed from 

yellow to colourless and the growth of nanowire was completed, the samples were rinsed 

using ultrapure water and IPA, followed by drying at 40 oC overnight. The as-prepared carbon 

paper samples with in-situ grown Pt nanowires were directly used as GDEs at the cathode side. 

The microstructure of CB and AB was characterized by a high-resolution transmission 
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electron microscope (HR-TEM, Philips CM200 FEG). The morphology and distribution of Pt 

nanowires within GDEs were analysed by a field emission scanning electron microscope 

(FE-SEM, JEOL 7000F, operating at 20 kV).  

 

2.6 Membrane electrode assembly (MEA) fabrication 

The commercial Johnson Matthey GDEs with a Pt nanoparticle loading at 0.4 mgPt cm–2 were 

used as anodes and the as-prepared GDEs were used as cathodes. Before being fabricated into 

MEAs the GDE surface was coated with a thin layer of Nafion ionomer (0.6 mg cm–2). The 

two GDEs were then sandwiched at both sides of a 6×6 cm2 Nafion 212 membrane and the 

MEA was hot pressed at 125 oC under 4.9 MPa pressure for 2 min.  

 

2.7 Fuel cell tests 

The fabricated MEAs were tested in a PEMFC test stand (PaxiTech-BioLogic FCT-50S) with 

electrochemical impedance spectroscopy (EIS) capabilities. The gasket used in fuel cell 

testing was PTFE sheet with a thickness of 254 µm at both cathode and anode sides. The 

MEAs were conditioned by a break-in at 0.6 V for 7 h, and after that polarisation curves were 

recorded at a scan rate of 5 mV s–1. The stoichiometry for H2 and air was 1.3/2.4 with the 

minimum gas flow rates of 120 and 300 mL min–1, respectively. EIS measurements were 

performed in the frequency range from 10 kHz to 0.1 Hz with amplitudes of 0.05, 1 and 2 A. 

Three current densities at low, medium and high values, i.e. at 0.05, 0.5 and 1.0 A cm–2, 

respectively, were chosen for the measurements. All the displayed resistances in the EIS 

spectra indicate the area specific resistance (ASR). Water flooding test based on a 24 h hold at 

0.6 V was also conducted. All the above tests were conducted at 70 oC with gases fully 

humidified before entering the cell. The backpressure was 2 barg on the pressure gauge at 

both sides. Cathode cyclic voltammograms (CVs) were recorded using an EZstat-Pro system 

integrated with the test stand. The cathode was fed with fully humidified N2 at 300 mL min–1 
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and the anode was fed with fully humidified pure H2 at 120 mL min–1, serving as both 

reference and counter electrodes. Then, the cathode potential was cycled between 0.05 and 1.2 

V at 20 mV s-1 for 5 cycles, and the fifth cycle was recorded. The cell temperature and 

backpressure for CVs were 25 oC and 0 barg, respectively. The electrochemical surface area 

(ECSA) was measured by the electrochemical hydrogen adsorption/desorption method and 

calculated by the equation given below: 

  5
222

2 10
)()(210

)(
)/( ×













⋅⋅
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gmECSA

g

H

µ
    (1) 

where QH is the hydrogen adsorption or desorption charge, L is the catalyst loading (e.g. 0.4 

mgPt cm-2) and Ag is the area of the GDE (e.g. 16 cm2). QH = 210 µC cm-2 is used as the 

conversion factor, corresponding to the charge on a polycrystalline Pt surface covered by a 

monolayer of hydrogen atoms [34]. 

 

3. Results and discussion 

3.1. Influence of carbon loading on MPL 

Surface optical microscopy images of 35BA substrate and the GDLs with self-painted MPLs 

with Vulcan XC-72R CB at loadings of 1, 3, 4, 4.48 and 5 mg cm-2 are shown in Fig. 1. It can 

be seen that the plain 35BA substrate (Fig. 1a) is made of stacked carbon fibres. With the CB 

loading of 1 or 3 mg cm-2 in the MPL, the substrate is not fully covered and the bottom carbon 

fibres are still obvious. With a higher CB loading, better coverage is achieved on the substrate 

surface. There is no obvious difference between the three high CB loadings. Some cracks 

appear on the dried MPL, which can’t be avoided although they can be minimised by a 

complex painting approach. 

 

The catalytic performance of Pt NWs in-situ grown on the GDLs with various CB loading 

was characterised in the single fuel cell and the corresponding polarisation and power density 
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curves are shown in Fig. 2a. The relationships of the current density at 0.6 V and the 

maximum power density versus the CB loading are presented in Fig. 2b. The results of Pt 

NWs directly grown on the 35BA substrate without the MPL are also included for comparison. 

It can be seen that the use of the MPL results in a significant improvement in the fuel cell 

performance, which is in line with the results reported in literature.[35] Importantly, the figure 

shows that the performance is highly dependent on the CB loading in the MPLs. With the 

lower CB amount of 1 and 3 mg cm-2, the performance is low, and this can be ascribed to the 

poor contact with the polymer electrolyte membrane due to the uneven substrate surface (Fig. 

3a-d), leading to a large ICR. Furthermore, some Pt NWs may grow in the substrate rather 

than on the MPL surface because the large pores in the substrate enable the penetration of 

reaction solution. In this case, there is very little ionic conducting path between substrate and 

the electrolyte membrane, thus no contribution to the catalytic activity. The performance 

increases with growing CB loading due to the improved coverage of the substrate surface (Fig. 

3e-f). At 4 mg cm-2, the current density at 0.6 V reaches 0.77 A cm-2. With further increase of 

the carbon loading, the power performance decreases, although a slightly higher maximum 

power density is observed when CB is 4.48 mg cm-2. Given that the practical fuel cell 

operation voltage is usually at 0.6-0.65 V, the CB loading of 4 mg cm-2 was regarded as the 

optimal amount and used in the following work. Compared with our early results by directly 

growing Pt nanowires on Freudenberg H2315 I6 carbon paper [25], where also no MPL was 

used but a much higher power performance was obtained than that from the 35BA substrate 

here. This can be ascribed to the different carbon fibre type and compaction density of the two 

GDLs. The uncompact 35BA substrate causes much more Pt NWs to grow in the large pores 

within the substrate, together with the larger electric resistance of 35BA, finally resulting in a 

very poor performance here. 
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EIS measurements were conducted to help understand the effect of carbon loading on the 

behaviour of Pt NWs. The measurements were performed at three current densities at 0.05 

(Fig. 3g), 0.5 (Fig. 3h) and 1.0 A cm-2 (Fig. 3i), corresponding to low, mid and high current 

density range, respectively. At a low current density, the impedance represented by the single 

semicircle is dominated by the charge transfer losses, while at a large current density, a 2nd 

semicircle appearing at the low frequency region is mainly caused by the mass transfer losses. 

From Fig. 3g, it can be seen that all samples show a very similar impedance, but the samples 

with the low carbon loadings of 1 and 3 mg cm-2 exhibit a much larger ohmic resistance 

shown by larger start points at a high frequency, which stands for the sum of all ohmic 

resistances from the electrode and electrolyte, including ICR. Considering the same fuel cell 

construction is used for all samples except the GDE, this difference can be ascribed to the 

large ICR between the GDE surface and the polymer electrolyte membrane, in particular the 

uneven GDL surface with the uncovered carbon fibres at the low carbon loading as shown in 

Fig. 3d. Samples with 4, 4.48 and 5 mg cm-2 carbon loadings all show a similar ohmic 

resistance due to the even MPL surface, further confirming that the main contribution to the 

ohmic resistance in these samples is the ICR. This is also confirmed by EIS at larger current 

densities of 0.5 A cm-2 (Fig. 3h) and 1.0 A cm-2 (Fig. 3i). A slightly lower charge transfer 

resistance is observed for the sample with a carbon loading of 4 mg cm-2 and lower mass 

transfer resistance for the one with 4.48 mg cm-2 at a large current density (Fig. 3c), which is 

in line with polarisation curves shown in Fig. 2. 

 

3.2. Influence of carbon composition on GPL 

With the optimum carbon loading of 4 mg cm-2 and 20% PTFE, the carbon composition in the 

MPL with different carbon black (CB) and acetylene black (AB) ratios was then investigated. 

The in-situ performance of Pt NWs GDEs from painted GDLs with different carbon 

compositions in the MPLs is shown in Fig. 4 with the cases of MPLs made from pure AB and 
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CB. It is shown in Fig. 4a that Pt NWs GDE with pure AB in the MPL exhibits the poorest 

performance. With the adding of CB the performance is gradually improved and achieves the 

highest value with CB 50%+AB 50%. At a higher CB amount, the performance slightly 

declines but no big difference is observed with the CB amount between 60-100%. The change 

of the current density at 0.6 V and the maximum power density versus various carbon 

compositions shown in Fig. 4b can explain the trend well. It increases at first, and then 

reaches the peak at the optimum composition, finally decreases with a slight difference. 

 

To further confirm the power performance, EIS measurements were conducted and the 

corresponding spectra are shown in Fig. 4c-e. It can be seen that at the low current density 

(Fig. 4c), the Pt NWs GDE with pure AB in the MPL shows the largest resistance while the 

smallest value is observed for the one with CB 50%+AB 50%. Three other GDEs show a 

similar impedance to each other. At the medium and high current densities (Fig. 4d and e), the 

change trend of the impedance with the carbon composition generally agrees with that of the 

polarisation curves (Fig. 4a), with the smallest charge and mass transfer resistances observed 

for the sample with CB 50% and AB 50% and the largest of that for the one with pure AB.  

 

To understand the mechanism of the performance change of Pt NWs GDEs on different 

carbon compositions, the detailed microstructures of CB and AB were analysed by 

transmission electron microscope (TEM). TEM images of CB and AB presented in Fig. S1 

(Supporting Information) demonstrate that CB has a spherical shape with an average diameter 

of ca. 50 nm (Fig. S1a-b) and AB consists of graphitic flakes with irregular shape (Fig. S1c-d). 

According to the literature, CB has a microporous structure and thus a large specific surface 

area[36] while the smooth and inert surface of AB results in a lower specific surface.[37] In 

this work, the irregular surface of CB particles can provide more nucleation sites for Pt than 

the smooth AB surface. The mixture of CB and AB with different compositions may change 
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the external surface and internal pore structure in the MPL, influencing the growth and 

distribution of Pt NWs on the GDL surface. Scanning electron microscope (SEM) images of 

Pt NWs grown on the self-painted MPLs with different carbon compositions can further 

explain the performance difference and the results are shown in Fig. 4f-h. It can be seen that 

Pt NWs are sparsely distributed on the surface of the MPL with pure AB due to the inert 

surface (Fig. 4f). When 50% CB+50% AB were mixed for the carbon ink, the surface 

becomes preferable for Pt nanowire growth as more of them are observed on the surface and 

distribute uniformly with little aggregation (Fig. 4g). But when pure CB is used, the number 

of Pt NWs on the surface decreases and some of them even grow into the carbon surface in 

the pores (Fig. 4h) due to the large amount of nucleation sites on the active CB surface. 

 

The possible reason for the different behaviour of Pt NWs on the MPL surface can be 

assumed in the following. When the pure AB is used, the inert surface provides few sites for 

the nucleation of Pt thus sparsely distributed Pt nanowire agglomerates are formed. With the 

increase of the CB amount, more nucleation sites are provided for more Pt NWs growth, thus 

a better distribution is obtained and achieves the highest performance at the optimum 

composition. Further increasing the CB amount results in a much loose MPL and some Pt 

NWs may grow into the internal surface of the pore in MPL, which has very little contribution 

to the power performance as there is not enough ionic conduct path to the polymer electrolyte 

membrane, resulting in a lower catalyst utilisation. Therefore, the carbon composition in the 

MPL can influence the growth of Pt NWs and further affects the fuel cell performance. 

 

3.3. Influence of PTFE Loading on GPL 

To avoid water flooding in fuel cell operation, both the substrate and MPL are usually treated 

with PTFE to achieve super-hydrophobicity. This feature will significantly affect the GDL 

porosity and the surface wettability as well. As Pt NWs GDEs are fabricated by in-situ growth 
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Pt NWs on the GDL surface through a wet-chemical process, the hydrophobicity feature of 

the GDL could affect the nucleation and growth of Pt NWs, inevitably influencing the final 

PEMFC performance. Therefore, the effects of the PTFE loading in both of the substrates and 

MPL are also investigated and the detailed information of the standard and self-painted GDLs 

used for the PTFE study is listed in Table 1. The EIS results of Pt NWs GDEs with various 

PTFE loadings in the carbon fibre substrate of GDLs at the current densities of 0.05, 0.5 and 

1.0 A cm-2 show similar diameters of semicircles in Fig. S2, indicating that the charge and 

mass transfer resistances are nearly the same at three situations. Therefore, it can be 

concluded that the PTFE amount in the substrate shows little effect on the growth of Pt NWs. 

 

To evaluate the effect of the PTFE loading in the MPL, GDLs with different PTFE amounts in 

the MPL but with the same substrate were studied. As this kind of GDLs couldn’t be obtained 

commercially, MPLs were self-painted on 35BA substrates in the lab. Based on the optimal 

carbon loading of 4 mg cm-2 and the composition of CB 50%+AB 50%, carbon inks were 

prepared with different PTFE loadings of 5, 10, 15, 20, 25, 30 and 40% with respect to the 

total MPL weight. Fig. 5 shows the performance of Pt NWs GDEs grown on the painted 

MPLs with various PTFE loadings from 5 to 40%. The electrode performance generally 

decreases with the increase in PTFE amount. EIS measurements were conducted to further 

confirm the results, and a similar trend is observed to that of the polarisation curves. It shows 

clearly in Fig. 6a-c that at all three current density points, the sample with 5% PTFE exhibits 

the smallest semicircles, indicating the smallest charge and mass transfer resistances. On one 

hand, this can be attributed to the uniform distribution of Pt NWs on the carbon surface at low 

PTFE loading and the increasing agglomeration at higher PTFE amounts. On the other hand, 

at a high PTFE loading, the polymer in the pores partially reduces the porosity of the MPL, 

resulting in a large mass transfer loss.[38] To confirm the assumption for the change of the 

performance, the morphology and distribution of Pt NWs grown on the GDLs with the 
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self-painted MPLs with 5, 20 and 40% PTFE, corresponding to the low, medium and high 

PTFE amount, were analysed by SEM and the images are shown in Fig. 5. For the GDL with 

the low PTFE loading of 5% in the MPL (Fig. 6d), Pt NWs uniformly distributed on the 

surface and the nanowire morphology can be observed from the high magnification image. At 

the medium and high PTFE amount of 20% (Fig. 6e) and 40% (Fig. 6f), the distribution of Pt 

NWs becomes non-uniform and tends to aggregate to form superstructures, and some parts of 

the surface are not covered by Pt nanowires. This is because the high PTFE loading covers 

more surface area of the GDL thus presents a hurdle for the surface nucleation and finally 

leading to a dense agglomeration and non-uniform distribution. Therefore, the performance 

declines with the increase of the PTFE loading in the MPL.  

 

Cathode CVs were recorded in the single cell to compare the ECSA of the Pt NWs GDEs with 

different PTFE loadings in MPLs. According to CV curves in 7a and the Pt precursor, the 

calculated ECSAs for Pt NWs GDEs with the PTFE loading of 5, 10, 15, 20, 25, 30 and 40% 

are 19.65, 19.35, 18.25, 18.17, 18.61, 18.25, 16.13 m2 g–1, respectively. A summary of the 

ECSAs with the PTFE loading is shown in Fig. 7b. It can be seen that the ECSA value slowly 

decreases with increase in PTFE amount, but the values are still very close to each other 

except the value of 40% which is slightly lower. Considering the SEM analysis results (Fig. 6), 

it can be concluded that with the increase in PTFE amount, the catalyst utilisation slowly 

becomes poorer and thus a smaller ECSA value is obtained, finally resulting in an increased 

charge transfer loss and a lower catalytic activity (Fig. 5). 

 

The above test results demonstrate the influence of the amount of PTFE in the MPL on the 

in-situ performance. To further check the possible role in water flooding during the fuel cell 

testing, in particular at a lower PTFE loading, e.g. 5%, Pt NWs GDEs with the painted MPLs 

at low, medium and high PTFE amounts were tested as cathodes by soaking at 0.6 V over a 
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period of ca. 24 h. Fig. 8 indicates that during this period the performance of Pt NWs  GDEs 

is generally stable for the MPLs with low and medium PTFE loadings, but an obvious 

decrease can be observed with the PTFE loading of 40%. Although further investigation is 

needed to clarify the mechanism, one possible reason is that the high PTFE loading results in 

limited nucleation sites with agglomerated Pt NWs on the surface, resulting in a fast interface 

degradation in the operation. Hence, it can be deduced that a PTFE loading below 20% in the 

MPL doesn’t result in water flooding in the continuous operation of fuel cells.  

 

Furthermore, the comparison of the cathode performance of the in-situ growth of Pt NWs 

GDEs on Freudenberg H2315 I6 GDL carbon paper (Pt loading 0.4 mg cm-2), E-TEK ELAT® 

GDEs LT120EW (Pt loading 0.5 mg cm-2), Pt/C (20 wt%) nanoparticle GDEs, and the 

optimized in-situ growth Pt NWs GDEs in this work was studied (Fig. 9)[4-6] It can be seen 

that optimized in-situ growth Pt NWs GDEs in this work exhibits a higher power performance 

than the other GDEs at 0.6 V, while at the high voltage region (>0.7 V), it also presents a 

higher power performance. The optimum structure of in-situ growth Pt NWs GDEs in this 

work, 4 mg cm-2 carbon loading with the composition of 50% carbon black (CB) + 50% 

acetylene black (AB) and the 5% PTFE loading, can provide a suitable substrate coverage, 

reasonable surface nucleation sites and satisfying hydrophobicity for the growth of Pt NWs. 

Therefore a better performance is obtained compared to the in-situ growth of Pt NWs GDEs 

on the commercial Freudenberg H2315 I6 GDL carbon paper.[4-6] 

 

4. Conclusion 

In this study, the GDL structures such as carbon loading, carbon composition and PTFE 

loading were systematically investigated to understand the effects on the power performance 

of Pt NWs GDEs. The results demonstrate that, to achieve a high performance GDE, it is 

critical to control the amount of nucleation sites on the MPL surface for the production of 
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uniform Pt NWs with a balanced mass transport loss, but the PTFE loading in the substrate 

exhibited very limited influence. The obtained optimum carbon loading in the MPL is 4 mg 

cm-2, as a higher carbon loading results in a very thick MPL and a smaller carbon amount 

could not cover the surface very effectively. Regarding the carbon composition in the MPL, 

the mixture of CB 50% and AB 50% provided a suitable porosity and a reasonable number of 

surface nucleation sites for the growth of aligned Pt NWs to achieve a high power 

performance PtNW GDE. The higher CB amount made Pt NWs to grow into the inner pore 

surface between the active CB spheres while the higher AB content resulted in agglomerates 

and sparse distribution of Pt NWs owing to the inert surface properties. Furthermore, the 

PTFE amount within the MPL needs to be kept as low as possible to enable effective 

nucleation sites on the surface while can still prevent water flooding during fuel cell operation. 

The understanding obtained here can potentially provide reference for the design and 

development of fuel cell electrodes with other advanced nanostructures.  
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Figure and table captions 

Table 1. Information of the PTFE loading in the standard and self-painted GDLs. 

 

Fig. 1. Optical microscopy images of (a) 35BA substrate and the GDLs with self-painted 

MPLs at the Vulcan XC-72R CB loading of (b) 1, (c) 3, (d) 4, (e) 4.48 and (f) 5 mg cm-2.  

Fig. 2. (a) Polarisation and power density curves, and (b) the trend of the current density at 

0.6 V and the maximum power density for Pt NWs GDEs with different CB loadings in the 

painted MPLs. (20% PTFE in MPLs based on the total MPL weight). Measurements were 

taken at Tcell=70 oC with fully humidified H2 and air at 2 barg (stoichiometry s=1.3/2.4). 

Fig. 3. SEM images at different magnifications for Pt NWs grown on the self-painted MPL 

with carbon loading of (a-d) 1 mg cm-2 (e) 4, (c) 5 mg cm-2 (20% PTFE in MPLs based on the 

total MPL weight). EIS measured at (g) 0.05, (h) 0.5 and (i) 1.0 A cm–2 for Pt NWs GDEs 

with different CB loadings in the painted MPLs. (20% PTFE in MPLs based on the total MPL 

weight). Measurements were taken at Tcell=70 oC with fully humidified H2 and air at 2 barg 

(stoichiometry s=1.3/2.4). 

Fig. 4. (a) Polarisation and power density curves, and (b) the trend of the current density at 

0.6 V and the maximum power density for Pt NWs GDEs with different carbon compositions 

in the painted MPLs. EIS measured at (c) 0.05, (d) 0.5 and (e) 1.0 A cm–2 for Pt NWs GDEs 

with different carbon compositions in the painted MPLs. Measurements were taken at Tcell=70 

oC with fully humidified H2 and air at 2 barg (stoichiometry s=1.3/2.4). SEM images for Pt 

NWs grown on the self-painted MPL with (f) pure AB, (g) CB 50% + AB 50%, (h) pure CB. 

(Carbon loading is 4 mg cm-2, PTFE is 20%).  
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Fig. 5. Polarisation and power density curves of Pt NWs GDEs with different PTFE loadings 

in self-painted MPLs. Measurements were taken at Tcell=70 oC with fully humidified H2 and 

air at 2 barg (stoichiometry s=1.3/2.4). 

Fig. 6. EIS measured at (a) 0.05, (b) 0.5 and (c) 1.0 A cm-2 for Pt NWs GDEs with different 

PTFE loadings in the self-painted MPLs. SEM images of Pt NWs GDEs with (d) 5%, (e) 20% 

and (f) 40% PTFE amount in the self-painted MPLs. Measurements were taken at Tcell=70 oC 

with fully humidified H2 and air at 2 barg (stoichiometry s=1.3/2.4). 

Fig. 7. (a) Cathode CVs and (b) summary of ECSAs for the Pt NWs GDEs with different 

PTFE loadings in the MPLs. Measurements were taken at Tcell=70 oC with fully humidified H2 

and N2 at 2 barg (stoichiometry s=1.3/2.4). 

Fig. 8. Continuous operation test at 0.6 V for Pt NWs GDEs with painted MPLs at the low, 

medium and high PTFE amounts. Measurements were taken at Tcell=70 oC with fully 

humidified H2 and air at 2 barg (stoichiometry s=1.3/2.4). 

Fig. 9. Comparison of the cathode polarization curves of the in-situ growth of Pt NWs GDEs 

on Freudenberg H2315 I6 GDL carbon paper (Pt loading 0.4 mg cm-2), E-TEK ELAT® GDEs 

LT120EW (Pt loading 0.5 mg cm-2), Pt/C (20 wt%) nanoparticle GDEs, and the optimized 

in-situ growth Pt NWs GDEs in this work. 
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Table 1. Information of the PTFE loading in the standard and self-painted GDLs. 

Type GDL PTFE loading in the substrate (%) PTFE loading in the MPL (%) 

Standard 

35BA 5 No MPL 
35BC 5 20 
35CC 10 20 
35DC 20 20 

Self-painted 

35BA+MPL1 5 5 
35BA+MPL2 5 10 
35BA+MPL3 5 15 
35BA+MPL4 5 20 
35BA+MPL5 5 25 
35BA+MPL6 5 30 
35BA+MPL7 5 40 

  

 

Fig. 1. Optical microscopy images of (a) 35BA substrate and the GDLs with self-painted 

MPLs at the Vulcan XC-72R CB loading of (b) 1, (c) 3, (d) 4, (e) 4.48 and (f) 5 mg cm-2. 
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Fig. 2. (a) Polarisation and power density curves, and (b) the trend of the current density at 

0.6 V and the maximum power density for Pt NWs GDEs with different CB loadings in the 

painted MPLs. (20% PTFE in MPLs based on the total MPL weight). Measurements were 

taken at Tcell=70 oC with fully humidified H2 and air at 2 barg (stoichiometry s=1.3/2.4). 

 

 

Fig. 3. SEM images at different magnifications for Pt NWs grown on the self-painted MPL 

with carbon loading of (a-d) 1 mg cm-2 (e) 4, (c) 5 mg cm-2 (20% PTFE in MPLs based on the 

total MPL weight). EIS measured at (g) 0.05, (h) 0.5 and (i) 1.0 A cm–2 for Pt NWs GDEs 

with different CB loadings in the painted MPLs. (20% PTFE in MPLs based on the total MPL 

weight). Measurements were taken at Tcell=70 oC with fully humidified H2 and air at 2 barg 

(stoichiometry s=1.3/2.4). 
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Fig. 4. (a) Polarisation and power density curves, and (b) the trend of the current density at 

0.6 V and the maximum power density for Pt NWs GDEs with different carbon compositions 

in the painted MPLs. EIS measured at (c) 0.05, (d) 0.5 and (e) 1.0 A cm–2 for Pt NWs GDEs 

with different carbon compositions in the painted MPLs. Measurements were taken at Tcell=70 

oC with fully humidified H2 and air at 2 barg (stoichiometry s=1.3/2.4). SEM images for Pt 

NWs grown on the self-painted MPL with (f) pure AB, (g) CB 50% + AB 50%, (h) pure CB. 

(Carbon loading is 4 mg cm-2, PTFE is 20%). 
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Fig. 5. Polarisation and power density curves of Pt NWs GDEs with different PTFE loadings 

in self-painted MPLs. Measurements were taken at Tcell=70 oC with fully humidified H2 and 

air at 2 barg (stoichiometry s=1.3/2.4). 

 

 

Fig. 6. EIS measured at (a) 0.05, (b) 0.5 and (c) 1.0 A cm-2 for Pt NWs GDEs with different 

PTFE loadings in the self-painted MPLs. SEM images of Pt NWs GDEs with (d) 5%, (e) 20% 

and (f) 40% PTFE amount in the self-painted MPLs. Measurements were taken at Tcell=70 oC 

with fully humidified H2 and air at 2 barg (stoichiometry s=1.3/2.4). 
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Fig. 7. (a) Cathode CVs and (b) summary of ECSAs for the Pt NWs GDEs with different 

PTFE loadings in the MPLs. Measurements were taken at Tcell=70 oC with fully humidified H2 

and N2 at 2 barg (stoichiometry s=1.3/2.4). 

 

 

Fig. 8. Continuous operation test at 0.6 V for Pt NWs GDEs with painted MPLs at the low, 

medium and high PTFE amounts. Measurements were taken at Tcell=70 oC with fully 

humidified H2 and air at 2 barg (stoichiometry s=1.3/2.4). 
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Fig. 9. Comparison of the cathode polarization curves of the in-situ growth of Pt NWs GDEs 

on Freudenberg H2315 I6 GDL carbon paper (Pt loading 0.4 mg cm-2), E-TEK ELAT® GDEs 

LT120EW (Pt loading 0.5 mg cm-2), Pt/C (20 wt%) nanoparticle GDEs, and the optimized 

in-situ growth Pt NWs GDEs in this work. 

  

 


