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ABSTRACT 

Oncogene activation disturbs cellular processes and accommodates a complex 

landscape of changes in the genome that contribute to genomic instability, which 

accelerates mutation rates and promotes tumourigenesis. Part of this cellular turmoil, 

involves deregulation of physiological DNA replication, widely described as 

replication stress. Oncogene-induced replication stress is an early driver of genomic 

instability and is attributed to a plethora of factors, most notably aberrant origin firing, 

replication-transcription collisions, reactive oxygen species and defective nucleotide 

metabolism.  

 

Significance 

Replication stress is a fundamental step and an early driver of tumourigenesis and 

has been associated with many activated oncogenes. Deciphering the mechanisms 

that contribute to the replication stress response may provide new avenues for 

targeted cancer treatment. In this review, we discuss the latest findings on the DNA 

replication stress response and examine the various mechanisms through which 

activated oncogenes induce replication stress. 
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INTRODUCTION 

Genomic instability (GIN) has been highlighted as a driving force of 

tumourigenesis by Hanahan and Weinberg in their celebrated ‘Hallmarks of cancer’ 

paper (1). GIN can result from changes in the number or structure of chromosomes 

(chromosomal instability), changes in the number of oligonucleotide repeats in 

microsatellite sequences (microsatellite instability), or base pair mutations, all of 

which are associated with activated oncogenes. Deregulation of DNA replication, 

known as replication stress (RS), is linked to GIN and is increased during the early 

steps of carcinogenesis (2-4). In particular, RS has been associated with 

chromosomal instability (5) as well as activation of the APOBEC3 family of 

deaminases (6) which increase the mutagenic load that fuels tumourigeneseis. In 

this review, we cover the latest findings on the RS response and discuss in detail the 

various mechanisms through which oncogenes induce RS.  

 

DNA REPLICATION  

DNA replication ensures the precise duplication of DNA during each cell cycle. It 

is a tightly regulated process that consists of two stages: licensing and initiation 

(reviewed in ref. 7). In eukaryotic cells, the licensing stage is restricted during late 

mitosis and G1-phase when thousands of replication origins are established along 

the genome and ensures that DNA replication occurs only once per cell cycle. For an 

origin to form, the origin recognition complex (ORC) binds at the origin site and 

recruits CDT1 and CDC6, which in turn facilitate loading of the mini-chromosome 

maintenance 2-7 (MCM2-7) helicases to form the pre-replicative complex (pre-RC) 

(Fig. 1A).  
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Cell cycle progression is controlled by cyclin dependent kinases (CDK) and the 

retinoblastoma/E2F pathway. CDK activity depends on binding to their regulatory 

subunits, cyclins, whose levels are regulated throughout the cell cycle by the 

anaphase promoting complex/cyclosome (APC/C). APC/C activity is high from late M 

to late G1-phase, hence CDK activity oscillates accordingly, being low during G1 and 

high during S/G2-phases. Mitogenic signalling by RAS triggers CYCLIN D/CDK4 to 

phosphorylate retinoblastoma, which renders it inactive, thus alleviating its inhibitory 

effect on the E2F family of transcription activators. E2F proteins promote expression 

of CYCLIN A and E, amongst other key S-phase genes, which upon binding to CDK2 

during G1/S-phase partake in promoting entry into S-phase.  

Replication initiation occurs as the cell proceeds into S-phase and requires the 

concerted action of CDK2 and DBF4/DRF1-dependent CDC7 kinases, which 

phosphorylates the pre-RC allowing recruitment of CDC45 and the GINS complex, 

and leads to the activation of the replicative helicase (CMG complex). Once this 

occurs, a replication bubble is formed and replication forks proceed bi-directionally 

from the origin (Fig. 1A). Under normal conditions, an excess of origins is licensed 

but only a small number of them becomes activated, with the remaining dormant 

origins reserved as a backup.  

  

THE DNA REPLICATION STRESS RESPONSE 

Replication is susceptible to impediments in DNA caused by both exogenous and 

endogenous DNA damaging agents and by the intrinsic properties of certain DNA 

sequences to adopt secondary structures. In particular, fork progression can be 

hindered due to interference with the transcription machinery, torsional stress or non-
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B DNA structures (cruciforms, hairpins, trinucleotide repeats, R-loops, G-

quadruplexes). 

 

The ATR/CHK1 pathway 

In response to RS, the cell initiates a DNA damage response (DDR) with the aim 

of resolving the damage or DNA secondary structures and restore fork progression 

(reviewed in ref. 8). During replication fork stalling, uncoupling between the 

replicative helicase and polymerase leads to the accumulation of single strand DNA 

(ssDNA) which is bound by RPA. ssDNA-RPA in turn allows the recruitment of the 

ATR kinase through ATRIP, as well as RAD17-RFC and RAD9-RAD1-HUS1 (9-1-1). 

The 9-1-1 complex also interacts with TOPBP1, which triggers ATR-ATRIP kinase 

activity, leading to the phosphorylation of numerous down-stream factors that 

collectively respond to RS. Recently, ETAA1 was identified as a novel RPA binding 

protein that activates ATR in response to DNA damage in parallel to 

TOPBP1/RAD17/9-1-1, and is involved in fork restart (9, 10). Τhe synergistic action 

of the TIMELESS/TIPIN complex promotes binding of CLASPIN to RPA, which 

allows ATR to phosphorylate its primary substrate kinase, CHK1, at Ser-317 and 

Ser-345. Additionally, ATR phosphorylates histone Η2ΑΧ at Ser-319 (γH2AX) early 

in the response. This modification then spreads away from the stalled fork, and is 

further sustained by two other DDR kinases ATM and DNA-PKcs. 

CHK1 organises the cellular DDR by inducing cell cycle arrest, inhibiting late 

origin firing, activating dormant origin firing, and promoting fork stabilization and fork 

restart (Fig. 1B). Cell cycle arrest allows sufficient time for the cell to effect lesions 

repair and also prevent premature entry into mitosis with under-replicated DNA. In 

response to stress, CHK1 phosphorylates CDK activators CDC25A/C, which leads to 
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their degradation or nuclear export, thus triggering arrest at S, G2 or G2/M-phases. 

At the same time, CHK1 phosphorylates and activates the CDK antagonist WEE1 

causing G2 delay.  

During unperturbed early S-phase, ATR protects the genome from ssDNA 

formation by inhibiting origin firing and promoting nucleotide synthesis at the same 

time (11). In general, ATR regulates origin firing by phosphorylating MLL at Ser-516, 

stabilizing it on chromatin where it methylates histone H3K4, inhibits CDC45 loading 

and blocks origin activation (12). Additionally, CHK1 regulates replication initiation by 

binding and phosphorylating TRESLIN, which inhibits CDC45 loading onto origins 

(13). Recently, a backup pathway of CHK1 activation was identified, when upon ATR 

inhibition, accumulation of ssDNA produces aberrant DNA structures, that after 

processing by SLX4-MUS81 induce a DNA-PK-dependent CHK1 activation that 

inhibits origin firing (11). 

In order to complete DNA replication in response to any disturbance, CHK1 

inhibits origin firing at new replication factories (late origins), while at the same time 

allows the firing of dormant origins within active replication factories that experience 

stress (14, 15) (Fig. 1B).  

 

Replication fork stabilization and reversal 

Stabilization of the replication fork has long been considered a CHK1 response to 

RS, protecting it from deleterious nucleolytic processing. This view has been 

challenged recently by evidence from yeast, showing that fork stability is retained in 

the absence of checkpoint kinases (16). In addition, a SILAC-iPOND study in human 

cells, revealed ATR to be responsible for fork but not replisome stability in response 

to RS and that ATR protects the fork from various forms of collapse (17). Notably, 
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RS at an active fork triggers accumulation of homologous recombination proteins, 

whereas RS arising in the context of an origin that fired due to a checkpoint 

deficiency triggers accumulation of non-homologous end joining proteins (17).  

A common mechanism of fork stabilisation involves the annealing of the parental 

DNA strands, followed by binding of the newly synthesized strands, thus forming a 

reversed fork structure, also known as regressed fork or a ‘chicken foot’ (Fig. 1B). 

Early studies in S. cerevisiae, showed that reversed forks accumulate in response to 

checkpoint defects (18), which led to the view that fork reversal is a pathological 

response. However, an expanding body of evidence has shown that reversed forks 

are also important for fork stability and protection from collapse. Reversed forks are 

formed through the action of many proteins, including RAD51 (19), PARP1 (20), 

BLM (21), WRN (22), SMARCAL1 (22), FANCM (23), FBH1 (24), HLTF (25) and 

ZRANB3 (26) and are favoured by positive supercoiling. Reversed forks are 

protected by BRCA1/2 (27), RAD51 (27), TOP1 (20), FANCA/B (28), FANCD2 (28), 

REV1 (29), WRN (30), BOD1L (31), RECQL5 (32) and WRNIP1 (33), in whose 

absence they are susceptible to the activity of nucleases MRE11 (27), DNA2 (34) 

and EXO1 (35) or resolvase Yen1 (36). Despite its positive role in resolving stalled 

forks, if unrestrained, fork reversal can cause fork collapse (37), highlighting the 

need for a regulated balance between reversal and restart. 

 

Replication fork restart 

Once a fork is stalled, different pathways, including homologous recombination, 

re-priming, template switching, translesion synthesis and break-induced replication 

may occur to allow replication restart (Fig. 2). The details of these mechanisms have 

been described elsewhere (38) and are not the focus of this review. Alternatively, 
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stalled forks may be resolved by an incoming fork from an adjacent origin. Evidence 

in yeast has shown that terminally arrested forks that are unprotected by 

Rad52/Rad51, cannot merge with a converging fork and appear in the ensuing 

mitosis as anaphase bridges (39). If fork stalling is sustained the forks often collapse 

into double strand breaks (DSBs) by the combined nucleolytic activities of SLX4 and 

nucleases MUS81-EME1, XPF-ERCC1 and EXO1 (reviewed in ref. 40). 

Recent insights from the Hickson and Halazonetis labs discovered how under-

replicated DNA is managed if it escapes replication/repair during S-phase. According 

to their data, regions of under-replicated DNA are processed by MUS81-EME1 

during G2 and with the help of RAD52, POLD3 polymerase and SLX4-MUS81 

perform mitotic DNA synthesis (MiDAS) to repair the collapsed forks (41-43). 

Furthermore, RECQL5 helicase is recruited to common fragile sites (CFSs) by 

MUS81 to remove RAD51 filaments from stalled replication forks to allow processing 

by MUS81-EME1 and enable MiDAS (44). Lack of MiDAS increases 53BP1 bodies, 

anaphase bridges and chromosomal rearrangements, promotes tumour growth and 

sensitizes cells to aphidicolin (41-43) (Fig. 2).  

 

Targeting replication stress for cancer treatment 

Importantly, RS can be exploited for cancer cell killing and thus has been 

described as an Achille’s heel of cancer. ATR or CHK1 inhibition induces RS and 

synthetic lethality in CYCLIN E (45), c-MYC (46) and H/K-RAS (47) overexpressing 

cells, as well as MYC-induced lymphomas (48), MLL-ENL or NRAS-driven acute 

myeloid leukaemias and HRAS-expressing fibrosarkomas (46). Furthermore, WEE1 

inhibition confers synthetic lethality in H3K36me3-deficient cancer cells by instigating 

deoxyribonucleoside triphosphate (dNTP) starvation and RS (49). In an intriguing 
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recent report, a combination of ATR and CHK1 inhibitors, result in fork slowing, 

replication catastrophe and synthetic lethality in cells overexpressing HRASV12 or c-

MYC and in other cancer cell lines (50). In this case, CHK1 inhibition causes 

increased CDK-dependent origin firing that depletes dNTP pools, leading to fork 

slowing and ssDNA accumulation that is normally protected by an ATR-dependent 

deposition of RPA; the subsequent ATR inhibition deprotects the forks and kills the 

cell (50).  

Reversing RS as a strategy to alleviate its tumourigenic effect has proven to be 

more complicated, as an extra CHK1 allele can reduce RS but surprisingly increases 

transformation (51). Nevertheless, replication fork stability is a significant contributing 

factor to chemotherapeutic drug resistance. This is exemplified by the fact that 

alleviation of MRE11-dependent GIN upon treatment with replication poisons in 

BRCA-deficient cells, by loss of PTIP, CHD4 or PARP1 confers synthetic viability 

and chemoresistance (52). All of the above, highlight the importance of RS as a 

hallmark and driver of cancer.  

 

ONCOGENES 

Normal cells become cancerous through a complex process known as oncogenic 

transformation. Transformation is driven by altered expression of oncogenes, tumor 

suppressors or microRNAs that derail their normal physiological function (reviewed 

in ref. 53). A proto-oncogene is a gene that under unperturbed conditions generally 

encodes a protein implicated in cell growth, differentiation or apoptosis. Either 

through point mutation, chromosomal translocation or copy number amplification, 

expression of the proto-oncogene is misregulated resulting in an activated 

oncogene. Oncogenes are translated into oncoproteins, which are classified as 
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growth factors, growth factor receptors, transcription factors, signal transducers, 

chromatin remodelers and apoptosis regulators. As such, oncogene activation may 

cause massive changes in the genome by deregulating cell cycle, metabolism, 

replication-timing or transcription, which ultimately drive GIN. 

The principle mechanisms through which GIN is induced in cancer involve DNA 

repair defects, heightened replication stress and telomeric dysfunction (Fig. 3A). In 

hereditary cancers, GIN is commonly attributed to germline mutations in genes 

involved in DNA damage repair. These mutations give rise to unrepaired or 

inaccurately repaired DNA that lead to GIN (reviewed in ref. 54). Certain oncogenes 

can also cause a similar DNA repair defect. In particular, overexpression of 

oncogenic RAS and BRAF cause dissociation of BRCA1 from chromatin, which 

compromises DSB repair leading to DNA damage and senescence (55). 

Furthermore, wild type HRAS and NRAS modulate DDR to support the tumorigenic 

activity of oncogenic KRAS (56).  

Oncogenes can also induce DNA replication defects and under-replicated DNA, 

which leads to accumulation of mutations and GIN. RS manifests in various forms, 

the most obvious being perturbed fork extension rates and/or heighted fork 

stalling/collapse, which may prevent complete replication of the genome. Such sites 

are marked by 53BP1 (57) and often correspond to CFSs, which are more 

susceptible to breakage by MUS81-EME1 or XPF-ERCC1. Replication through 

CFSs is exacerbated by mild RS, partly due to the absence or aberrant activation of 

dormant origins within these regions (58). During chromosomal segregation in 

mitosis, under-replicated regions often present as ultra-fine anaphase DNA bridges 

(UFBs) (59) that are bound by PICH, BLM and RPA with FANCD2 associated with 
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their extremities. Unresolved UFBs may lead to chromosome breakage and/or mis-

segregation, resulting in micronuclei formation in daughter cells (59). 

Finally, telomeric dysfunction can also lead to GIN. Telomeres are comprised of 

repeated sequences that maintain and protect chromosome ends from deleterious 

processing and/or unscheduled DNA repair. With each cell cycle, telomere repeats 

progressively shorten due to the ‘end-replication problem’, oxidative damage and RS 

associated with oncogenic activation. Telomeric dysfunction is linked to extended 

chromosomal shattering and rearrangements known as chromothripsis and kataegis, 

which drive GIN in cancer (60). Telomeric erosion is counteracted by the expression 

of telomerase that synthesizes de novo telomeric repeats at chromosome ends. 

Reports that HPV 16E6/E7-induced anaphase bridges (61) and oncogene-induced 

senescence (62) are ameliorated upon activation of telomerase activity, highlight the 

connection between telomeric integrity and GIN. Additionally, HRAS causes 

telomeric fork stalling, as well as telomeric fragility and loss of telomere repeats (63). 

Therefore, telomeric erosion can be linked to oncogene-induced telomeric replication 

stress, although it can also be attributed to oncogene-induced telomerase 

deregulation (61).  

Apoptosis and senescence act as protective mechanisms that eliminate or halt 

cells that present with RS and/or GIN. This cancer protection barrier is quite robust 

as affirmed by the fact that expression of oncogenes alone does not lead to 

oncogenic transformation, unless combined with other genetic events, most notably, 

additional expression of other oncogenes or mutation of tumour suppressor genes 

(64-66). Oncogene-induced senescence is ascribed to the actions of the tumour 

suppressor p53 and its positive regulator p14/p19 (ARF). ARF inhibits the ubiquitin 

ligase MDM2 that is normally responsible for p53 degradation, thereby stabilizing 
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p53 levels. Amongst other oncogenes, p53 is activated in response to RAS, c-MYC, 

E1A and STAT5A overexpression either directly through ARF or RS-induced ATM 

activation. In addition, oncogenes RAS, MYC, E2F1, β-CATENIN and adenovirus 

E1A have been shown to upregulate ARF, while c-MYC causes ARF stabilization by 

inhibiting its ubiquitylation and subsequent degradation by ULF ubiquitin ligase 

(reviewed in ref. 67). 

Of the 803 identified oncogenes in the ONGene database (http://ongene.bioinfo-

minzhao.org/) only 27 have been assessed for their impact on RS, the majority of 

which are most commonly activated in human cancers. Additionally, for those 

oncogenes that have been studied there is variability in how RS is driven (Table 1). 

The concept that different oncogenes induce RS through different mechanisms is 

supported by many reports. In particular, RAS and CYCLIN E create unique 

landscapes of fragile sites that differ to the sites induced by aphidicolin treatment, 

which inhibits replication (68). Overexpression of CYCLIN E, but not A or D1, 

induces chromosomal instability in human cells (69). Overexpression of CYCLIN E 

and CDC25 also cause fork slowing and replication fork reversal at the same time 

point, but DSB formation and DDR signalling exhibit vastly different kinetics (70). It is 

worth noting that not all oncogenes lead to fork stalling, as exemplified by DEK that 

promotes fork progression under RS conditions (71) and E1A (72), SPI1/PU.1 (73) 

and LMO2 (74) that increase fork speed. 

 

MECHANISMS OF REPLICATION STRESS INDUCTION BY ONCOGENES 

In the following section, we will discuss the various mechanisms through which 

oncogenes induce RS. 

 

http://ongene.bioinfo-minzhao.org/
http://ongene.bioinfo-minzhao.org/
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Origin firing dysregulation 

As mentioned earlier, replication is a fine-tuned process that ensures faithful DNA 

duplication once and only once per cell cycle. Dysregulation of CDK activity or 

mutations in the retinoblastoma/E2F pathway lead to perturbation of licensing or 

initiation, which in turn cause the unscheduled firing of origins. This may involve 

increased or decreased firing or re-firing of the same origin, all of which compromise 

physiological fork progression and lead to cells entering mitosis bearing under- or 

over-replicated DNA that eventually leads to GIN. 

Different origins are activated at different time points during S-phase and 

modulation of CDKs affect the number of replication clusters rather than the origins 

within them (75). Interestingly, the level of origin firing inversely correlates with the 

rate of replication fork progression, which is believed to reflect the availability of 

essential replication factors (76). Under physiological conditions, origin firing is 

regulated by ATM and ATR by controlling CDK2 and CDC7 through CDC25A (77). 

CHK1 is crucial in this regulation, as its inhibition increases origin firing and leads to 

RS (78).  

 

Decreased firing 

Inhibition of DNA licensing reduces origin firing and induces GIN and increased 

sensitivity to RS-inducing agents (79). Compromised MCM loading due to reduced 

CDT1, CDC6 and ORC or increased CDT1 inhibitor GEMININ may hinder licensing. 

In the absence of functional p53, inhibition of DNA licensing in cancer cells allows 

their entry into S-phase with reduced origin firing (80). Similarly, ORC1 deletion 

reduces origin firing and increases sensitivity to hydroxyurea in tumour or MYC-

expressing cells (81), suggesting a possible therapeutic approach to target certain 
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cancers. Moreover, CDK deregulation in G1 through inhibition of Cdh1 and Sic1 

reduces origin firing and causes GIN (82). In addition, CDKs phosphorylate CDC6 

and protect it from APC/C-dependent proteolysis during G1 (83), thus disruption of 

this mechanism would enable licensing and perhaps origin firing during S-phase. 

Oncogenes have also been shown to affect replication origin licensing. In 

particular, MYC deregulates expression of both CDKs and E2Fs and modifies cell 

cycle progression (reviewed in ref. 84). On the other hand, there seems to be 

controversial data regarding CYCLIN E. In one report, CYCLIN E overexpression 

impairs MCM2, 4 and 7 loading onto chromatin during telophase and early G1, which 

reduces the number of active replication origins in early S-phase (85). In contrast to 

this, other groups have shown that CYCLIN E overexpression increases the number 

of origins firing in S-phase (86, 87). This discrepancy could be attributed to different 

properties of the cell lines used in these studies, as CYCLIN E can promote or inhibit 

pre-RC formation depending on cellular context (88). 

Intriguingly, decreased origin firing increases fork speed progression (76), raising 

the question of how this causes GIN. In mouse, Chaos3 is a viable mutation that 

destabilizes MCM4. MCM4Chaos3/Chaos3 MEFs exhibit a 60% reduction of all MCM2-7 

components, which does not affect origin firing but does reduce the number of 

dormant origins and increases fork speeds (89). Due to the inability of the cells to 

repair endogenous RS through firing of dormant origins, fork stalling occurs and RS 

markers such as γH2AX, pRAD17 and RPA are activated, suggesting that GIN can 

occur even in the absence of direct fork slowing (89). Following the same pattern, 

E1A expressing cells exhibit reduced origin firing and increased fork speeds (72). 

 

Increased firing 
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Untimely origin firing is the result of disruption of initiation control. This has been 

shown in X. laevis where increasing CDK activity accelerates the origin firing pattern 

(75), as well as in other systems where dysregulation of ATR, CHK1 or WEE1 that 

control CDK or CDC7 activity, cause extensive origin firing (90, 78, 77). 

Dysregulation of origin activation increases the possibilities of conflicts with 

transcription (87) and may lead to enhanced depletion of replication building blocks 

such as dNTPs (90, 86, 91), histones (92) or RPA (93), which hinder fork 

progression (Fig. 3B).  

Many oncogenes disrupt the physiological origin firing schedule. In particular, Di 

Micco et al. showed RAS to induce a hyper-proliferation phase accompanied by 

increased origin firing that contributes to RS (94). HPV E6/7 and CYCLIN E 

overexpression enhances origin firing leading to GIN (86), while c-MYC 

overexpression increases origin activity in a transcription-independent (95) but 

CDC45 and GINS-dependent manner (96). Interestingly, inhibition of origin firing 

failed to abrogate RAS-induced RS (97) but did rescue CYCLIN E–induced RS (98), 

which again hints at different mechanisms through which oncogene activation leads 

to RS. 

 

Re-firing 

Disruption of DNA licensing as well as CDK-dependent protective pathways 

enable re-replication events, which are associated with GIN and tumourigenesis 

(99). In particular, CDT1 (and to a lesser extent CDC6) overexpression induce re-

firing that leads to GIN (100), while depletion of GEMININ induces re-firing and 

activation of the DDR (101). Moreover, compromising the CUL4-DDB1 ubiquitin 

ligase, which regulates CDT1 (102) or loss of EMI1 that indirectly regulates 
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GEMININ, also leads to re-replication (103). The ATR-dependent S-phase 

checkpoint surveys the genome and prevents re-replication caused by 

overexpression of licensing factors (but not GEMININ loss), either through p53-

dependent activation of p21 or through dephosphorylation of retinoblastoma (104, 

101, 100). Circumventing the retinoblastoma/E2F pathway is another way to 

instigate re-replication and CYCLIN E and c-MYC facilitate this (105), while HPV E7 

ubiquitinates retinoblastoma marking it for degradation (106). 

The main consequences of origin re-firing entail the so-called head-to-tail 

collisions that occur between the leading strand of the secondary fork and unligated 

Okazaki fragments of an adjacent fork, that cause DSBs and DNA damage 

checkpoint activation (99). Deregulated origin firing produces ssDNA gaps that 

promote re-replication at these sites, leading to replication fork breakage (107). Re-

replication also causes fork slowing, although it is not clear if this is a consequence 

of head-to-tail collisions or due to normal forks colliding with the re-replication-

induced DSBs. Overexpression of oncogenic RAS, CYCLIN E or MOS upregulate 

CDC6 (2, 94, 83) and in the case of RAS this causes re-replication (94). 

Furthermore, overexpression of a constitutively nuclear mutant form of CYCLIN D1 

induces CDT1 stabilization that promotes re-licensing and re-replication (108).  

 

Transcription 

Transcription-replication conflicts 

DNA transcription is a physiological process that may turn into an intrinsic source 

of GIN upon interference with the replication fork machinery. Transcription-replication 

conflicts (TRCs) impede replication fork progression as a result of head-on or co-
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directional collisions between the two machines or between replication and R-loops 

(Fig. 4). 

TRCs were first visualized by electron microscopy in E. coli, where an inducible 

origin was inserted upstream or downstream of an rRNA operon (109). Organisms 

have developed various strategies to avoid interactions between the two systems. In 

prokaryotes, where DNA is circular and there is a single origin of replication, co-

orientation of the replisome and the transcription machinery is highly favoured (110). 

A similar orientation bias was also described in the human genome (111). In order to 

regulate replication through parts of the genome that are highly transcribed or 

difficult to replicate, both prokaryotes and eukaryotes have developed replication fork 

barriers comprising proteins bound tightly to DNA, which serve to limit TRCs. In 

eukaryotes where replication is mediated through multiple origins, transcription takes 

place throughout the cell cycle and is regulated spatially and temporally so that it 

does not clash with replication (112). Furthermore, in budding yeast, tRNA gene 

transcription is restrained during S-phase by Mec1/Mrc1/Rad53 in order to avoid 

collision with the replication machinery (113). RNApolII has a unique role in 

preventing and resolving TRCs, although it is not clear how this is achieved (114). 

Also, in E. coli the transcription factor DksA interacts with RNA polymerase (RNAP) 

and by altering the transcription elongation complex it prevents TRCs upon nutrition 

stress (115). 

During transcription, RNAP may pause either as part of a regulatory checkpoint 

(promoter-proximal pausing) or in response to obstacles or misincorporated 

nucleotides that cause stalling and polymerase backtracking. Backtracking events 

involve RNAP sliding back and forth across DNA, which dislodges the 3’OH end of 

the RNA from the RNAP active site allowing it to exit through a secondary channel. 
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Backtracked RNAPs can hinder replication, as well as transcription, and cause GIN 

(116) (Fig. 4C, D). To deal with arrested or backtracked RNAPs, cells employ 

various strategies, such as i) cleavage of the misplaced RNA transcript by GreA/B or 

TFIIS, ii) reduction of misincoroporated nucleotides by DksA, iii) RNAP removal by 

the combined actions of ppGpp, DksA, GreA and Mfd or UvrD and NusA (reviewed 

in ref. 117) or iv) transcription regulation by RECQL5 (118). 

 

R-loops 

R-loops are DNA:RNA hybrids that are formed during transcription, when the 

newly synthesized RNA remains tangled around the template DNA, while the 

homologous ssDNA is displaced. Mapping of R-loops in mammals revealed that their 

formation is prevalent, conserved and dynamic across the genome and is favoured 

by increased transcription activity, polyA tracts and unmethylated CpG islands 

(reviewed in ref. 119). Information on R-loop forming sequences across the genome 

of various species can be found online at R-loopDB (http://rloop.bii.a-star.edu.sg). R-

loops associate with specific epigenomic signatures at promoters and terminators 

and are involved in mitochondrial replication (120), transcription regulation (121), IgG 

class switch recombination (122), telomere maintenance in ALT cells (123) and 

homologous recombination-mediated DSB repair (124). Nevertheless, accumulation 

of R-loops can act as an obstacle to replication fork progression either through direct 

collisions (125) or indirectly through increased chromatin compaction (126), which 

leads to CFS formation (127) and GIN (128) (Fig. 4G). The ssDNA part of R-loops 

renders DNA more susceptible to DNA damaging agents, such as activation-induced 

cytidine deaminase (AID), which regulates class switch recombination and somatic 

hypermutation in mammalian B cells (reviewed in ref. 129). AID deaminates cytidine 

http://rloop.bii.a-star.edu.sg/
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only in ssDNA with base or nucleotide excision repair of these alterations, giving rise 

to mutations, chromosomal translocations or breaks that in turn may facilitate 

oncogenic activation.  

R-loops may inhibit transcription progression (130) and consequently either on 

their own or through stalled or backtracked RNAPs act as additional barriers to 

transcription or replication (Fig. 4D). Their length may vary from a few hundred to 

over 1 kb and recent evidence in S. cerevisiae show that it is not length but histone 

modifications that discriminate between ‘benign’ and ‘malignant’ (131). In particular, 

Garcia-Pichardo et al. proposed a two-step model, where at first R-loop formation is 

facilitated by an altered chromatin configuration, followed by chromatin modifications 

(including H3S10 phosphorylation (126)) that render them culpable for GIN (131). In 

addition, experiments in Drosophila showed that depletion of linker histone H1 

facilitates transcription of heterochromatic transcripts enabling R-loop accumulation 

(132). Similarly, in C. elegans, H3K9 methylation suppresses transcription of 

repetitive elements that enhance R-loops (133). Despite the acquired knowledge of 

R-loop-induced GIN, the exact mechanisms behind it still remain elusive. 

R-loops are regulated by a plethora of molecules. In particular, RNaseH1 (128), 

RNaseH2 (134), SETX (135), DDX19 (136), DDX21 (137), DDX23 (138), DinG (139) 

and Pif1/Rrm3 helicases (140) degrade or unwind R-loops. ASF/SF2 (141), TOP1 

(142), RECQ5 (143), THO/TREX (130), Npl3 (144), AQR (145) and XRN2 (146) 

prevent R-loop formation. Also, BRCA1/2 (147) and Fanconi anaemia proteins 

remove R-loops (148) while BRCA1 forms a complex with SETX at transcription 

termination pause sites, which collaborate to suppress R-loop accumulation (149). In 

addition, the chromatin reorganizing complex FACT facilitates resolution of R-loop-

dependent GIN, most likely through remodelling chromatin at the sites of conflict 
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(150). Moreover, introns were recently identified as an unexpected source of R-loop 

regulation, as their presence within highly transcribed regions of yeast or human 

genomes protects against R-loop accumulation and DNA damage (151). 

Since oncogenes enhance transcription, it is reasonable that they should also 

affect R-loop levels. Only recently, HRASV12 overexpression was shown to increase 

R-loop accumulation that was detrimental to fork progression (97). As part of the 

same study, HRASV12 caused stabilization of RNAseH1, which can be interpreted as 

an intrinsic response to increased R-loop levels. Likewise, CYCLIN E-induced RS 

was rescued upon RNaseH1 overexpression (87). 

 

Orientation of transcription-replication conflicts 

Orientation of TRCs has a profound effect on DNA integrity. Studies in yeast have 

shown that head-on collisions are more detrimental than co-directional ones with 

respect to fork slowing (152). Nevertheless, co-directional collisions also disrupt 

replication (153). Moreover, in bacteria co-directional collisions with backtracked 

transcription complexes cause DSBs, while head-on collisions do not (116). Further 

experiments in bacteria have shown that with both types of collision, the replisome 

resumes elongation after displacing RNAP from the DNA and in the case of co-

directional collision it uses the nascent transcript as a primer (reviewed in ref. 154). 

Using a sophisticated episomal system to induce either head-on or co-directional 

TRCs, Hamperl et al. showed in human cells that replication itself modulates R-loop 

formation depending on the orientation of the TRC. In particular, co-directional TRCs 

resolve R-loops and activate the ATM-CHK2 pathway, while head-on conflicts 

between replication and an R-loop (but not an R-loop-less transcription machinery) 

promote R-loop accumulation and activation of the ATR-CHK1 pathway (125). They 
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also showed that normal replication fork progression suppresses R-loop 

accumulation, so any type of fork slowing increases R-loop levels (125). According to 

their proposed model, head-on TRCs cause fork slowing, which leads to increased 

R-loops levels that in turn activate ATR, while co-directional TRCs resolve R-loops, 

but the replisome may collide with backtracked RNAPs left by the R-loops that 

causes DSBs and ATM activation. Similar results were obtained in B. subtilis, where 

head-on TRCs induce R-loop formation, which stall replication, increase 

mutagenesis and prevent fork restart (155). These findings were further corroborated 

in S. cerevisiae, where in unchallenged conditions, a mutation in the MCM2-7 

complex modulates replication and causes accumulation of R-loops in S-phase 

(156). Taken together, these data disclose a conserved and complex mechanism 

that protects the genome from TRC-related GIN. 

 

Topological stress 

Topological constraints may also develop between the replication and 

transcription machines as they move along DNA, causing positive or negative 

supercoiling, that may act as an obstacle to fork progression (157) (Fig. 4E). 

Furthermore, it has been suggested that nascent RNA can become tangled around 

template DNA and form a loop during nuclear export (Fig. 4F). These loops can 

obstruct the release of torsional stress from incoming replication forks and thus 

impede fork progression (158). Torsional stress is released by the activity of 

topoisomerases I and II, which relax positive supercoiling by creating nicks in DNA 

(159). RECQ5 facilitates SUMOylation of TOP1 which enables TOP1 binding to 

RNAPolII and at the same time compromises its activity, indicative of a regulatory 

mechanism of TOP1-induced genotoxicity (143). Also, in yeast Mec1 and Rad53 
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phosphorylate nucleoporin Mlp1 and resolve the topological stress (158). Finally, 

according to a recent study, p53 loss causes stabilization of TOP2A on DNA, as well 

as fork retardation, suggesting a possible role in preventing torsional stress between 

the two machines (160). 

 

G-quadruplexes 

G-quadruplexes are four-stranded structures held by G-G base pairs that are 

formed co-transcriptionally and impede replication fork progression leading to 

breakage (Fig. 4H). G-quadruplexes can form within the displaced ssDNA part of an 

R-loop of an active transcription bubble (161), where they facilitate R-loop 

stabilization (162). G-quadruplexes are also found within start sites of highly 

transcribed genes such as MYC (163), KRAS (164) or PTEN and regulate 

transcription (165). Moreover, the ORC complex has been suggested to bind to G-

quadruplexes at putative origin sites of replication initiation (166). In order to avoid 

potential collisions with the replication machinery, helicases such as Pif1, RTEL1 or 

DHX9 bind G-quadruplexes and unwind them to maintain genomic stability (reviewed 

in ref. 167). 

 

TRCs-associated DNA damage response 

Certain areas of the genome are more susceptible to TRCs. Barlow et al. 

identified highly unstable regions of the genome, named early replication fragile sites 

(ERFSs) that are more prone to breakage upon RS than CFSs (168). ERFSs are 

usually found within highly transcribed gene clusters and although they may break 

during normal replication, their fragility is increased in response to hydroxyurea-

induced RS, ATR inhibition, c-MYC expression or increased transcription (168). 



23 

 

Additionally, long genes are more prone to TRCs, with frequent R-loop accumulation 

and induction of CFSs instability (127).  

In response to DNA damage or TRCs, the cell tends to shut off transcription to 

reduce further collisions and facilitate replication restart. This is evident in yeast, 

where genotoxic-induced RS causes tRNA gene transcription repression by Maf1 

(113) and through the synergistic effect of checkpoint sensor Mec1-Ddc2, the 

chromatin remodelling complex INO80C and transcription complex PAF1C, RNAPolII 

is evicted from chromatin and degraded (169). Accordingly, Dcr1 releases RNApolII 

from highly transcribed genes that are sites of replication-transcription collisions to 

prohibit further instability (170). Moreover, in response to transcription-blocking DNA 

damage, R-loop-dependent ATM activation triggers spliceosome displacement from 

chromatin, causing widespread splicing changes that presumably facilitate DNA 

repair (171). Interestingly, the de Bruin lab has shown that the cell responds to RS 

by upregulating transcription of E2F target genes that maintain checkpoint activation 

and facilitate DNA damage tolerance (172, 173). These data suggest that there 

needs to be a fine tuning between decreasing deleterious transcription and retaining 

and/or upregulating levels of checkpoint proteins.  

Various proteins, especially helicases, preserve genomic stability by preventing or 

resolving TRCs. Amongst them, RECQL5 has a dual role in resolving conflicts 

between replication and RNApolI/RNApolII-dependent transcription by either 

promoting RAD18-dependent PCNA ubiquitination or through its helicase activity 

resolves RAD51-dependent replication intermediates at these sites (174). In S. 

pombe, Pfh1, a member of the Pif1 family of helicases, facilitates replication across 

highly transcribed RNApolII- and RNApolIII-dependent genes (175). Likewise, in S. 

cerevisiae, another Pif1 family member, Rrm3 allows replication through TRCs (152). 
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Moreover, in E. coli, helicases DinG, Rep and UvrD collaborate to promote 

replication through transcription units (139). 

In response to oncogenic signalling, transcription activity is enhanced (176-178, 

38, 179, 180) and collisions between replication and transcription are more likely to 

occur. This is usually attributed to point mutations in the promoter region of proto-

oncogenes that increase transcription activity. c-MYC is itself a transcription factor 

that under normal conditions drives a transcriptional programme that controls cell 

growth and division. Mitogenic growth signalling may deregulate c-MYC which can 

directly enhance RNApolI- (178), RNApolII- (179) and RNApolIII-dependent 

transcription (177). c-MYC increases transcription indirectly, by up- and/or 

downregulating selective target genes that in turn modify the cellular state and 

enable global RNA production (181). This transcription amplification has been 

documented in patient-derived tumours with elevated c-MYC thus establishing a link 

to tumorigenesis (179). CYCLIN E overexpression enhances both transcription 

activity and origin firing, causing increased TRCs and subsequent RS that can be 

rescued by either transcription or CDK inhibition (87). This is not the case with RAS 

overexpression, which causes RS, which can be rescued by transcription but not 

origin firing inhibition (97). RAS-induced enhanced transcription is driven through 

upregulation of transcription factors such as TBP, which is required for transcription 

of all promoters (97). Interestingly, overexpression of TBP alone causes RS, DNA 

damage, senescence and contributes to oncogenesis (182, 97). 

A very recent report shed light on the mechanisms underlying oncogene-induced 

TRCs and GIN. Using sensitive seq-based assays Macheret and Halazonetis 

mapped replication initiation sites in human cells (183). They showed that under 

physiological conditions, transcription suppresses intragenic origin firing, but upon 
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overexpression of CYCLIN E or MYC, G1-phase shortening drives earlier S-phase 

entry before completion of transcription. This allows origin firing within transcribing 

genes which leads to TRCs, fork collapse and DSB formation specifically at these 

sites. Moreover, this study revealed that fork collapse at oncogene-induced 

intragenic fired origins causes chromosomal translocations in a transcription-

dependent manner both in their experimental setup as well as in a large cohort of 

human cancers (183). This highlights the importance of TRCs amongst the other 

mechanisms in inducing GIN. 

 

Nucleotide metabolism 

Nucleotides are the building blocks of the replication machine, therefore any 

dysregulation of their structure or levels has an immediate effect on fork progression. 

In mammals, dNTPs are either synthesized through the de novo pathway in the 

cytoplasm or by recycling nucleosides and nucleobases from nucleotide degradation 

through the salvage pathway, which acts both in the cytoplasm and in mitochondria 

(Fig. 5). The crucial step in dNTP synthesis is the reduction of ribonucleoside 

diphosphates to deoxyribonucleoside diphosphates, which is catalysed by the 

ribonucleotide reductase (RNR). RNR is a tetrameric protein composed of two 

catalytic (RRM1) and two regulatory (RRM2, RRM2B) subunits. RRM2 levels are 

rate-limiting for RNR activity and consequently dNTP levels, so in order to retain 

balanced dNTP pools, RRM2 expression increases in S-phase and is low during G1, 

G2 and M-phases (184). There is increasing evidence that part of RNR associates 

with the replication fork and that in response to DNA damage RNR components re-

localize towards repair foci to increase dNTP availability (reviewed in ref. 185). In 

addition, ATR regulates dNTP pools by increasing RRM2 levels in response to DNA 
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damage (11, 49). Similarly, MEFs from mice carrying an extra allele of RRM2 display 

increased RNR activity, which reduces chromosomal fragility following ATR inhibition 

(186). 

dNTP levels are inversely related to origin firing and are key determinants of 

replication fork speed (90, 86, 91). Increased RNR activity accelerates fork 

progression, while reduced nucleotide pools instigate a transition to a slow 

replication mode with reduced origin usage, minutes after entry into S-phase (86, 

91). RRM2/RRM2B-induced increase in replication fork speed causes 

misincorporated uracil into DNA and breaks at fragile sites and it has been 

suggested that dUTPase can sanitize this to avoid GIN (187). Nevertheless, dNTPs 

need to be regulated within certain levels, as increased dNTP pools will cause 

aberrant replication and lead to mutations (188).  

With regards to the effect of oncogenes on nucleotide metabolism, BCL2 binds to 

RRM2 and disrupts the RRM1/RRM2 complex inhibiting RNR activity, which reduces 

nucleotide pool levels and leads to fork slowing (189). Moreover, overexpression of 

RAS downregulates RRM2 through binding of transcription repressor E2F7 to the 

RRM2 promoter, causing dNTP pool depletion, RS and senescence (190). In 

addition, CYCLIN E or HPV-16 E6/E7 overexpression activate cell proliferation but 

do not affect nucleotide biosynthesis, resulting in dNTP pool depletion and impaired 

fork progression (86). In contrast, c-MYC upregulates genes involved in nucleotide 

biosynthesis, increasing dNTP pools and enabling cell proliferation (191).  

Upon reduced dNTP levels, there is increased incorporation of ribonucleotides 

(rNTPs) into DNA during replication. Since rNTPs are more prone to hydrolysis than 

dNTPs, their integration into DNA affects fork progression and may lead to GIN. 

Misincorporated rNTPs can be detrimental to genomic stability, as depletion of 
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RNaseH2 that removes rNTPs causes RS (192). Despite the fact that there is no 

record of oncogenes promoting misincorporation of rNTPs on DNA, it seems quite 

likely that this may occur during the hyper-proliferation stage following oncogenic 

activation. 

The integrity of dNTPs is another critical factor that may cause GIN. Reactive 

oxygen species (ROS) can oxidize nucleotides that when incorporated into DNA 

trigger breaks, mutations and senescence (193). Oxidized dNTPs trigger fork 

slowing in X. laevis, but this is attributed to a protein kinase C-mediated reduction in 

DNA replication and not to an actual fork retardation (194). So, although it seems 

reasonable for oxidized dNTPs to cause fork slowing it still has not been shown 

definitively (Fig. 5). A hint towards this view lies with MTH1, which is a non-essential 

enzyme that sanitizes oxidized dNTPs, hindering them from being incorporated into 

DNA, thus preserving genomic integrity.  

 

Reactive oxygen species metabolism 

ROS are an assorted class of free radical species produced under normal 

conditions as byproducts of aerobic metabolism (reviewed in ref. 195). ROS include 

superoxide anion (O2
ˉ), hydrogen peroxide (H2O2) and hydroxyl radicals (OH•) and 

their biological effects are proportional to their levels. Basal ROS levels uphold 

physiological cellular functions as part of redox biology, while increased levels of 

ROS cause oxidative stress by damaging lipids, proteins and DNA or upregulating 

protein kinase Cδ and inducing senescence or apoptosis. O2
ˉ is produced either by 

oxidation of nicotinamide adenine dinucleotide phosphate (NADPH) by NADPH 

oxidase enzymes (NOXs) or through aerobic respiration in mitochondria. H2O2 is 

generated from O2
ˉ by superoxide dismutases and exerts its effect on redox biology 
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or oxidative stress or may be converted to H2O by antioxidant proteins. Finally, OH• 

are produced from H2O2 in the presence of Fe+2 (196) (Fig. 5). 

Cancer cells exhibit abrupt alterations in their metabolism to support their rapid 

growth. These include ATP generation to maintain energy levels, increased 

synthesis of macromolecules and maintenance of cellular redox status. Oncogenes 

are known to induce ROS and cause DNA damage. Expression of activated RAS 

increases intracellular and mitochondrial ROS and leads to senescence (197), which 

is partially achieved by upregulating NOX4-p22phox (198). c-MYC overexpression 

also induces ROS and causes DNA damage (199). A comparative study between 

RAS and MYC showed that both oncogenes evoke changes in the cellular 

metabolism patterns and induce different degrees of oxidative stress and RS, 

highlighting again that different oncogenes follow different mechanisms to cause RS 

(200). Moreover, in response to KRASG12D, B-RAFV619E and MYCERT2 primary murine 

cells respond by upregulating transcription factor Nrf2 that regulates an antioxidant 

program used to detoxificate the organism (201). In addition, expression of E6/E7 

promotes NOX-dependent generation of ROS and subsequent DNA damage in head 

and neck cancer cells (202). 

It is unclear how ROS affect fork progression. According to the D’adda di Fagagna 

lab, RAS induces ROS and this triggers the hyper-proliferation that leads to RS and 

senescence (94, 197, 203). On the other hand, CYCLIN E-induced hyper-

proliferation is independent of ROS (2). Another case involves ROS oxidizing 

dNTPs, as was covered in the previous chapter. 

 

CONCLUDING REMARKS 
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Oncogene-induced RS has long been recognised as an early driver of cancer and 

investigating the mechanics of this process has been established as a field in its own 

right. Understanding RS has accelerated cancer diagnosis and assisted the 

development of more sophisticated anticancer treatments. Nevertheless, the 

mechanics of how oncogene activation lead to RS present a complicated 

kaleidoscope of intertwined pathways and to make matters worse, various 

oncogenes may differentially affect these pathways based on the cell type or the 

time point their effect is assessed. So, the consensus that different oncogenes exert 

a different effect at different time points needs to be more widely adopted.  

Despite the importance of each of the different mechanisms of oncogene-induced 

RS presented here, oncogene-induced deregulation of transcription appears to play 

the most significant role in cancer development, in part, due to its multifaceted nature 

in inducing GIN. The role of TRCs is especially intriguing, as currently little is known 

regarding the proteins and pathways involved in their detection and repair, as well as 

the implication of oncogenes in them. Although there is growing interest in R-loops 

and their involvement in GIN, there are a lot to be explored on their regulation and 

role in genome wide RS and telomere erosion and potential connections between 

them. Finally, there are still unanswered questions on the role of G-quadruplexes, 

rNTP missincorporation and oxidized nucleotides in oncogene-induced RS that need 

to be addressed.  
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TABLE LEGENDS 

Table 1. List of oncogenes and their effect on replication stress-related 

response. §: Indirectly, ↑: Positive effect, ↓: Negative effect, X: No effect, tr: 

translocation, pm: point mutation, oe: overexpression, kd: knockdown. 

 

FIGURE LEGENDS 

Figure 1. DNA replication and replication stress response. A, in late mitosis and 

throughout G1-phase, the pre-replicative complex comprised by the ORC complex, 

CDC6 and CDT1 is recruited to replication origins to facilitate loading of the MCM2-7 

complex. During G1-phase, retinoblastoma (Rb) is bound to E2F rendering it 

inactive. Phosphorylation of Rb by the Cyclin D-CDK4 complex alleviates its 

inhibitory effect on E2F. APC/C activity is high from late M- to late G1-phase 

regulating CDK activity. Upon entry in S-phase, APC/C is inhibited and CDKs are 

activated throughout S, G2 and early M-phase. CDKs form complexes with E2F-

regulated cyclins that collaborate with CDC7 to phosphorylate TRESLIN and MCM2-

7 complex, activating the CMG (CDC45-MCM2-7-GINS) helicase complex. 

Simultaneously, clamp loader RFC and sliding clamp PCNA are recruited and enable 

polymerases δ and ε to initiate replication in the lagging and leading strands 

respectively. B, when a replication fork is stalled, ssDNA is generated as the CMG 

complex unwinds DNA. ssDNA binds RPA that recruits ATR (through ATRIP), 

RAD17-RFC and 9-1-1 complexes at the stalled fork. ATR is then activated by 

TOPBP1/RAD17/9-1-1 and ETAA1 and phosphorylates Η2AX, while through 

TIMELESS/TIPIN/CLASPIN phoshoprylates CHK1. CHK1 then organises the RS 

response by arresting the cell cycle, inhibiting new origin firing, enabling dormant 

origin firing and stabilizing the fork, which can then be reversed by various proteins 
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in a chicken foot structure. An unprotected reversed fork is susceptible to nucleolytic 

degradation by MRE11, EXO1 and DNA2. A stalled fork can restart through 

homologous recombination, re-priming, template switching, translesion synthesis or 

break-induced replication. Alternatively, it will collapse into DSBs by the combined 

activity of MUS81-EME1, XPF-ERCC1, EXO1 and SLX4 that will drive the cell to 

senescence.  

 
Figure 2. Repair of a stalled fork. Upon encountering an obstacle, replication 

machine arrests and the CMG complex unwinds DNA ahead of the stalled fork, 

leaving ssDNA behind. Replication can resume through various mechanisms, such 

as translesion synthesis, template switching, re-priming, break-induced replication or 

homologous recombination. If this fails, the stalled fork is cleaved by MUS81-EME1 

during G2-phase and upon entrance in metaphase RAD52, POLD3 and MUS81-

SLX4 collaborate to facilitate replication of the under-replicated DNA through MiDAS. 

In the absence of MiDAS and during chromosomal segregation in anaphase, UFBs 

are formed at the CFSs, which will appear as micronuclei or 53BP1 bodies in the 

daughter cells. 

 
 
Figure 3. Oncogene-induced genomic instability. A, germline mutations in DNA 

repair genes lead to GIN. Activated oncogenes elicit genomic instability by causing 

defects in DNA repair, telomere erosion or replication stress; see text for details. B, 

activated oncogenes induce a multifaceted set of intertwined activities that 

deregulate fork progression leading to under-replicated DNA and genomic instability. 

In particular, through deregulation of the Rb/E2F pathway licensing factors are 

increased which instigates origin re-firing that decreases fork speed in response to 

head-to-tail fork collisions. Deregulation of CDK activity can decrease or increase 
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origin firing. In the first case, fork speed is initially increased, but the cell ends up 

with under-replicated DNA due to its inability to rescue endogenous RS by firing 

dormant origins. Increased origin firing raises the possibility of TRCs and 

simultaneously may cause depletion of dNTPs, histones or RPA. Oncogene-induced 

ROS either increase origin firing or oxidize nucleotides that potentially may affect 

fork progression. Oncogenes also increase transcription activity that either directly or 

through R-loops enhance TRCs. 

 
 
Figure 4. Transcription-associated replication stress. A, upon head-on conflicts 

between replication and transcription, R-loop formation is increased and ATR/CHK1 

are activated. B, upon co-directional conflicts between replication and a stalled or 

backtracked RNAP, DSBs are formed that activate ATM/CHK2 and R-loops are 

resolved. C, in response to any obstacle an RNAP may pause and backtrack and act 

as an impediment to fork progression; D, this can also occur as a result of an 

encounter with an R-loop. In both cases, this will cause accumulation of arrested or 

backtracked RNAPs that hinder fork progression. E, while the replication and 

transcription machineries move, positive supercoiling develops in front of them, that 

can impede progression of both. F, transcribed RNA may get trapped in the nuclear 

pore complex generating obstacles to fork progression. G, R-loops can cause 

chromatin condensation, marked by H3 phosphorylation at Ser-10, that impedes fork 

progression. H, G-quadruplexes can be formed co-transcriptionally or within the 

ssDNA part of an R-loop and act as obstacles to fork progression. 

 
 
Figure 5. Nucleotide and ROS metabolism as a cause of replication stress. dNTPs 

are formed either through the de novo pathway from glutamine, glycine, folic acid, 
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aspartate, 5-phosphoribosyl-1-pyrophosphate or by nucleoside degradation through 

the salvage pathway. The reduction of ribonucleosides to dNTPs is catalysed by the 

ribonucleotide reductase (RNR), which is compromised by two catalytic (RRM1) and 

two regulatory (RRM2, RRM2B) subunits. Oncogenes may target RNR activity or 

induce hyper-proliferation that will both reduce dNTP pool affecting fork progression. 

Oncogenes also induce production of ROS, including O2
ˉ, H2O2 and OH•. O2

ˉ is 

produced either by oxidation of NADPH by NOX enzymes or through aerobic 

respiration in mitochondria. H2O2 is generated by O2
ˉ which is converted by 

superoxide dismutase (SOD), while OH• are produced from H2O2 in the presence of 

Fe+2. It is not clear if oxidized dNTPs affect replication fork speed. 
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