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The mammalian carotid body (CB) is the primary arterial chemoreceptor that responds
to acute hypoxia, initiating systemic protective reflex responses that act to maintain
O2 delivery to the brain and vital organs. The CB is unique in that it is stimulated
at O2 levels above those that begin to impact on the metabolism of most other cell
types. Whilst a large proportion of the CB chemotransduction cascade is well defined,
the identity of the O2 sensor remains highly controversial. This short review evaluates
whether the mitochondria can adequately function as acute O2 sensors in the CB.
We consider the similarities between mitochondrial poisons and hypoxic stimuli in their
ability to activate the CB chemotransduction cascade and initiate rapid cardiorespiratory
reflexes. We evaluate whether the mitochondria are required for the CB to respond
to hypoxia. We also discuss if the CB mitochondria are different to those located in
other non-O2 sensitive cells, and what might cause them to have an unusually low
O2 binding affinity. In particular we look at the potential roles of competitive inhibitors
of mitochondrial complex IV such as nitric oxide in establishing mitochondrial and CB
O2-sensitivity. Finally, we discuss novel signaling mechanisms proposed to take place
within and downstream of mitochondria that link mitochondrial metabolism with cellular
depolarization.

Keywords: carotid body, hypoxia, mitochondria, nitric oxide, arterial chemoreceptor, O2 sensor, metabolism,
mitochondrial inhibitors

INTRODUCTION-THE CAROTID BODY AND HYPOXIA

The mammalian carotid body (CB) is a highly specialized sensory organ derived from the neural
crest. The sensory units of the CB are the ‘glomus’ or ‘type I’ cells that respond to a variety
of stimuli including hypoxia, hypercapnia, acidosis and hormones thereby allowing the CB to
function as a polymodal receptor (Kumar and Bin-Jaliah, 2007; Ribeiro et al., 2013; Thompson
et al., 2016). Type I cell activation leads to stimulation of adjacent chemoafferent fibers that
relay sensory information into the central nervous system. The physiological consequence of
CB stimulation is therefore the initiation of series of systemic protective reflexes characterized
by increased ventilation, tachycardia, systemic vasoconstriction and adrenaline release from the
adrenal medulla (Kumar, 2009).
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There is now a general consensus that a series of key
processes contribute to the CB hypoxic chemotransduction
cascade. These include attenuation of outward K+ current,
type I cell depolarization, Ca2+ influx through L-type Ca2+

channels, neurosecretion and chemoafferent excitation (Kumar
and Prabhakar, 2012; Lopez-Barneo et al., 2016). Single type
I cells are exquisitely sensitive to O2 and rapid (within ms)
activation of the hypoxic chemotransduction cascade initiates
at PO2s of between 20–40 mmHg (Biscoe and Duchen, 1990;
Buckler and Vaughan-Jones, 1994; Buckler and Turner, 2013); a
level considerably greater than that at which cell metabolism is
affected in O2-insensitive cells.

What remains highly controversial is the molecular identity of
the specific O2 sensor within the type I cell. We would argue that
the physiological O2 sensor should exhibit certain key features:
(1) expression in the type I cell permitting intrinsic O2 sensitivity;
(2) the ability to bind O2; (3) its binding of O2 occurs over
the physiological range at which the type I cell is stimulated;
(4) it is required for the CB to be stimulated by hypoxia; and
(5) it is able to activate the CB transduction cascade within
milliseconds. Many proposed sensors fit one or two of these
criteria but few have been shown to adequately comply with all
five.

In mammalian cells, O2 is the terminal electron acceptor in
the mitochondrial respiratory chain. Continuous binding and
reduction of O2 in the CuB/haem a3 (cytochrome a3) binuclear
center of complex IV drives mitochondrial electron transport
and promotes activation of the mitochondrial ATP synthase. The
long-established, mitochondrial hypothesis for chemoreception
proposes that CB excitation induced by hypoxia is initiated by
a reduction in O2 dependent mitochondrial energy respiration.
This review will briefly critique the current evidence as to whether
the mitochondria can be considered the functionally relevant O2
sensors within the CB.

MITOCHONDRIAL INHIBITORS MIMIC
ALL ASPECTS OF THE CAROTID BODY
HYPOXIC CHEMOTRANSDUCTION
CASCADE

All mitochondrial poisons induce chemoafferent excitation
(Krylov and Anichkov, 1968; Mulligan et al., 1981; Obeso et al.,
1989; Donnelly et al., 2014; Holmes et al., 2016, 2017) leading to
rapid increases in ventilation (Owen and Gesell, 1931), heart rate
and arterial blood glucose (Alvarez-Buylla and de Alvarez-Buylla,
1988). Chemoafferent responses are rapid, dose dependent and
reversible (Donnelly et al., 2014; Holmes et al., 2016) and the
magnitude of the rise in chemoafferent frequency caused by
saturating concentrations is consistent with those evoked by
severe hypoxia or anoxia (Krylov and Anichkov, 1968; Mulligan
et al., 1981; Obeso et al., 1989). Furthermore, mitochondrial
inhibitors and uncouplers augment neurotransmitter secretion,
confirming an action through the type I cell rather than the
afferent nerve endings (Obeso et al., 1989; Rocher et al., 1991).
Despite the strong consistency between all of the different types

of mitochondrial poisons (both in the older and more recent
studies), it should be noted that some of the pharmacological
agents used may not have acted selectively on the mitochondria
and so the conclusions should be viewed with a certain degree of
caution.

Mitochondrial poisons cause fast (within ms) type I cell
depolarization and increases in [Ca2+]i. The size and timing of
the [Ca2+]i rise observed using many different mitochondrial
inhibitors or uncouplers closely resembles that seen in hypoxia
(Biscoe et al., 1989; Biscoe and Duchen, 1990; Wyatt and Buckler,
2004; Buckler, 2011). As with hypoxia (Buckler and Vaughan-
Jones, 1994; Urena et al., 1994), the increases in [Ca2+]i are
dependent on cellular depolarization and extracellular Ca2+

influx through voltage gated Ca2+ channels (Wyatt and Buckler,
2004). TASK1/3, TREK-1, BKCa, Kv4.1, and Kv4.3, have all been
shown to be expressed in the CB and inhibited by hypoxia
(Buckler et al., 2000; Sanchez et al., 2002; Williams et al., 2004;
Yamamoto and Taniguchi, 2006; Kim et al., 2009; Kreneisz
et al., 2009; Turner and Buckler, 2013; Wang et al., 2017b). Of
these, TASK1/3 and TASK-like K+ currents are diminished by
a multitude of mitochondrial inhibitors leading to membrane
depolarization (Barbe et al., 2002; Wyatt and Buckler, 2004;
Buckler, 2011; Turner and Buckler, 2013; Kim D. et al., 2015).

Recent evidence has revealed the presence of TRP and other
non-selective Ca2+-activated cation currents in type I cells that
are activated by hypoxia (Kumar et al., 2006; Kang et al., 2014;
Kim I. et al., 2015; Wang et al., 2017a). Although intriguing, the
full functional relevance of these currents in type I cell O2-sensing
remains to be further characterized, and in particular whether
these currents can be upregulated to preserve O2 sensing in the
absence of TASK channels (Turner and Buckler, 2013). Current
evidence suggests that mitochondrial inhibitors are also capable
of increasing these inward depolarizing currents (Kim I. et al.,
2015; Wang et al., 2017a).

MITOCHONDRIA ARE NECESSARY FOR
THE CAROTID BODY TO RESPOND TO
HYPOXIA

The presence of functional mitochondria does appear necessary
for the CB to respond fully to hypoxia. For instance, cyanide,
rotenone and FCCP all attenuate TASK channel currents in
such a way that prevents any further reduction by hypoxia
(Wyatt and Buckler, 2004). In intact CB preparations oligomycin,
cyanide and azide all reduce or abolish subsequent chemoafferent
responses to hypoxia (Mulligan et al., 1981; Donnelly et al.,
2014). Some of the attenuation observed in these experiments
may have been due to impairment of oxidative phosphorylation
in the chemoafferent fibers, limiting their excitability. Any
such impairment is not apparent in response to physiological
levels of hypoxia, since the PO2 that activates the type I
cells occurs at a much higher level than those which would
decrease mitochondrial function in the chemoafferent fibers. As
such, chemoafferent responses to sustained hypoxia are better
maintained than those in response to sustained high doses of
mitochondrial inhibitors (Mulligan et al., 1981).
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In a recent study the importance of mitochondrial complex I
was tested by developing mice deficient in Ndufs2 (a gene coding
for NADH dehydrogenase [ubiquinone] iron-sulfur protein
2- a component of complex I that participates in ubiquinone
binding) in tyrosine hydroxylase positive cells (Fernandez-
Aguera et al., 2015). Type I cells isolated from these mice
were insensitive to hypoxia; they lacked any hypoxia-induced
K+ current attenuation, [Ca2+]i elevation or neurotransmitter
release. Furthermore, these mice failed to increase respiratory
frequency when breathing 10% O2. This work supported a
previous study in which type I cell hypoxic chemosensitivity
was abolished in the presence of rotenone (Ortega-Saenz et al.,
2003). The authors propose a mechanism whereby exposure to
hypoxia promotes reverse electron transport and ROS/NADH
generation via complex I which is driven by a high rate of
succinate oxidation at complex II. Accordingly, they have recently
shown that genetic and pharmacological deactivation of complex
II completely blocks type I cell hypoxic sensitivity (Gao et al.,
2017).

This intriguing and elegant hypothesis does, however,
show some discrepancies with evidence from earlier reports.
For instance, similar experiments performed on CBs with
heterozygous Sdhd knock out displayed an augmented, rather
than depressed basal activity and had a completely preserved
hypoxic response (Piruat et al., 2004). Furthermore, when rat type
I cells were exposed to tetramethyl-p-phenylenediamine (TMPD)
and ascorbate in the presence of rotenone, there was still a robust
elevation in Ca2+ upon hypoxic stimulation (Wyatt and Buckler,
2004). This would suggest that feeding electrons into cytochrome
c is sufficient to sustain type I cell hypoxic sensitivity even when
complex I activity (and ROS generation) is inhibited. Complex IV
activity rather than complex I and II may therefore be necessary
for hypoxic chemotransduction. The same report also showed
that application of H2O2 was unable to excite the type I cell
directly. This observation is consistent with the lack of effect of
multiple anti-oxidants used in other CB preparations and animal
species (Sanz-Alfayate et al., 2001; Agapito et al., 2009; Gomez-
Nino et al., 2009). Interestingly, using novel ex vivo CB culture
techniques combined with FRET based ROS sensors, Bernardini
et al. (2015) deduced that type I cell ROS actually decreases
in hypoxia due to reduction in NADPH oxidase activity (an
alternative ROS source). Clearly there is a need for reconciliation
between these findings.

THE CAROTID BODY MITOCHONDRIA
ARE UNIQUE AND HAVE A LOW
THRESHOLD FOR O2

The evidence that mitochondria are required for CB O2
chemotransduction and that mitochondrial inhibitors can cause
chemoexcitation, is not enough to define them as the O2-sensors
in the CB. Clearly, mitochondria are able to bind O2. However,
the Km of the cytochrome a3 for O2 is reported to be <1 mmHg
in isolated mitochondria and between 1–5 mmHg in dissociated
cells and tissue preparations, with little variation existing between
different cell types (Wilson et al., 1988; Tamura et al., 1989). This

is far lower than the PO2 at which the CB type I cells begin to be
activated and, for this reason, is a common argument against the
mitochondrial hypothesis.

However, there is now a substantial body of evidence
indicating that the CB type I cell mitochondria are unique.
Experiments performed by Mills and Jobsis (1970, 1972), were
the first to identify an unusually low affinity cytochrome a3
within the CB. Using absorbance spectra, they estimated that 43–
67.5% of total cytochrome a3 within the intact CB preparation
had a remarkably low O2 affinity. This fraction was reported
to be almost 100% reduced at PO2s between 7–9 mmHg and
50% reduced at a PO2 as high as 90 mmHg. In contrast,
the remaining fraction was only 50% reduced at a PO2 of
approximately 0.8 mmHg, comparable to cytochrome a3 found
in other tissues (Gnaiger, 2001). Thus, the CB appeared to
express both low and high affinity subtypes of cytochrome a3.
At that time, the specific cellular location(s) of each was unclear.
Later experiments utilized the photolabile binding of CO, to
deduce that saturation of cytochrome a3 with CO prevented any
additional chemoafferent excitation during hypoxia, implying
that not only was the cytochrome a3 in the CB unusual, it was also
required for O2-sensing (Wilson et al., 1994; Lahiri et al., 1999).
It should be pointed out that the concentrations of CO used in
these studies could have directly modified the activity of the BKCa
channel (Williams et al., 2004, 2008) and the generation of H2S
(Yuan et al., 2015) and as such some of the observations could be
related to mechanisms independent of the mitochondria.

In dissociated rabbit type I cell clusters, mitochondrial
electron transport begins to be inhibited at a high PO2 value
of approximately 40 mmHg (Duchen and Biscoe, 1992a).
PO2-NADH response curves demonstrate a significant ‘right
shift’ in type I cells compared to sensory neurons, indicative
of a heightened and distinctive O2 sensitivity. In addition,
mitochondrial depolarization occurs at higher PO2s compared
to O2-insensitive cells (Duchen and Biscoe, 1992b). More recent
work has verified the “right shifts” in both PO2-NADH and
PO2-rh-123 response curves in rat type I cells, confirming
that the unusually low mitochondrial O2 affinity is conserved
in multiple species (Turner and Buckler, 2013). By isolating
complex IV activity with a cocktail of mitochondrial inhibitors
plus TMPD and ascorbate, the authors were able to reveal that
complex IV activity is a component of the mitochondria with
the exceptionally low O2 affinity. Importantly, type I cell hypoxic
response curves for electron transport inhibition, mitochondrial
depolarization and complex IV run-down display considerable
overlap with the rise in Ca2+, indicating that these processes
are intimately linked. Therefore, it does appear that type I cell
mitochondria have a highly specialized low affinity for O2 due to
an altered function/subtype of cytochrome a3 in complex IV that
predisposes CB energy metabolism to being impaired at high O2
tensions. It is likely that the high affinity cytochrome a3 in the CB
described by Mills & Jöbsis is located in the non-O2 sensing tissue
such as the, nerve endings, blood vessels and type II cells.

Understanding the mechanism linking a fall in mitochondrial
O2 consumption with K+ channel inhibition (or cation channel
activation) is contentious. As previously mentioned, there could
be a role for elevated mitochondrial ROS generation but this
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is still to be validated (Fernandez-Aguera et al., 2015). Another
possibility is an alteration in cytosolic nucleotides. Switching
from a cell attached to inside-out patch configuration diminishes
background K+ channel activity, suggesting that a basal level of
an intracellular factor(s) activates TASK channels in normoxia
(Varas et al., 2007). Addition of 5 mM MgATP in the inside-
out configuration can restore about 50% of this background
K+ channel activity. Both mitochondrial inhibition and hypoxia
also significantly elevate free Mg2+, consistent with a decrease
in MgATP. Thus, the fall in MgATP during hypoxia is likely
to attenuate a significant proportion of TASK-current leading
to depolarization. However, the remaining modulators that
account for the other 50% of TASK current are still to be
identified.

Another proposed mediator of TASK channel activity that
is sensitive to changes in cytosolic nucleotide concentrations is
AMPK (Wyatt et al., 2007). However, initial favorable studies
based on pharmacological evidence have since been challenged
by the finding that the AMPK-α1α2 deficient CB retains complete
O2-sensitivity (Mahmoud et al., 2016). Other groups have
also shown that pharmacological targeting of AMPK does not
impact on the hypoxia-induced K+ channel inhibition (Kim
et al., 2014). Discrepancies may arise from the non-selectivity
of the drugs used to evaluate AMPK function and potential
redundancy mechanisms known to develop in genetic animal
models (Nowak et al., 1997). A final hypothesis is that a build-
up in lactate upon mitochondrial inhibition in hypoxia activates

the olfactory receptor Olfr78 (Chang et al., 2015). However,
the concentration of lactate necessary to elevate Ca2+ in an
intact CB preparation appears to be quite high (30 mM) and
whether local levels reach this threshold during hypoxia is
uncertain. We await a mechanism demonstrating how activation
of Olfr78 (a G-protein-coupled receptor) modulates TASK or
cation channel activity. A summary of the proposed O2-sensitive
mitochondrial signaling pathways in the CB is presented in
Figure 1.

WHAT DETERMINES THE LOW O2
AFFINITY OF THE CAROTID BODY
MITOCHONDRIA?

We propose that there are 2 potential means to account for
the extraordinary O2 sensitivity of type I cell mitochondria.
First, there could be a high level of production of a cytosolic
factor that is able to freely diffuse into the mitochondria and
then compete with O2 binding in complex IV (Figure 2).
We predict that this competition would render mitochondrial
electron transport more susceptible to subsequent falls in O2.
We recently tested this by applying exogenous nitrite to CBs
and subsequently measuring hypoxic sensitivity (Holmes et al.,
2016). Nitrite is reduced within the mitochondria to generate
local NO, a recognized competitive inhibitor of complex IV
(Brown and Cooper, 1994; Cleeter et al., 1994; Castello et al.,

FIGURE 1 | Carotid body mitochondrial signaling mechanisms activated during hypoxia. Hypoxia-induced mitochondrial inhibition is proposed to increase lactate
generation (Chang et al., 2015), augment mitochondrial complex I reactive oxygen species (ROS) production (Fernandez-Aguera et al., 2015) or reduce
mitochondrial ATP synthesis (Buckler and Turner, 2013). These changes are proposed to directly or indirectly (e.g., via Olf78 receptor activation, reduced MgATP
concentration or stimulation of AMP-activated protein kinase; AMPK) modify ion channel function leading to resting membrane potential (RMP) depolarization. This
causes opening of L-type Ca2+ channels, neurosecretion and an increase in discharge frequency of the adjacent chemoafferent fibers. TRP, transient receptor
potential channel; NSC, non-selective cation channel; BKCa, large conductance Ca2+-activated K+ channel; TASK, TWIK-related acid-sensitive K+ channel; TREK,
TWIK-related K+ channel; AP, action potential.
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FIGURE 2 | Potential mechanisms underlying the unique low O2 affinity mitochondria in the carotid body. Inhibition of mitochondrial function in the carotid body type
I cell occurs at PO2 values well above those that inhibit metabolism in other O2 insensitive cells. This activates a number of proposed signaling pathways (shown in
blue). The unique low O2 affinity of the carotid body mitochondria could be due to (1) a unique mitochondrial gene expression profile or (2) the presence of a
competitive inhibitor such as NO (Holmes et al., 2016). The impact of lower mitochondrial O2 affinity is to cause a right-shift in the PO2-chemoafferent response
curve, thereby enhancing the functional O2 sensitivity and allowing the carotid body to respond over a more physiological range of arterial PO2s. RET, reverse
electron transport.

2006, 2008; Basu et al., 2008). Moderate basal inhibition of
the CB mitochondria by nitrite exaggerated the subsequent
chemoafferent excitation during hypoxia signifying an increase
in CB O2 sensitivity. Therefore, we validated the idea that
CB hypoxic sensitivity could be adjusted by a factor capable
of competing with O2 in the mitochondria and suggested a
physiological role for endogenous NO in establishing type I
cell mitochondrial O2-sensitivity. Measurable amounts of NO
have been detected in mitochondrial of type I cells (Yamamoto
et al., 2006). A possible source is nitric oxide synthase 3 (NOS-
3) given its location within the type I cell (Yamamoto et al.,
2006). Interestingly, mice with reduced NOS-3 have a dampened
hypoxic ventilatory response and a depressed CB function (Kline
et al., 2000). One explanation for this is an adaptation to
chronic hypoxia brought about by reduced CB blood flow.
However, this is unlikely as there is no significant type I cell
hyperplasia/hypertrophy (McGregor et al., 1984; Tatsumi et al.,
1991). Instead, the blunted CB activity could be due to the lack of
NO acting on the CB mitochondria. Consideration of the precise

compartmentalization of NO should also be taken into account.
Whilst NO in the mitochondria induces chemostimulation, its
action in other regions is likely to have opposing effects via
modulation of soluble guanylate cyclase and L-type Ca2+/BKCa
channels (Summers et al., 1999; Iturriaga et al., 2000; Silva and
Lewis, 2002; Valdes et al., 2003). In addition, other diffusible
cytosolic factors have been implicated in CB O2 sensing including
H2S and CO (Peng et al., 2010; Yuan et al., 2015). Both of these
gasses are capable of inhibiting type I cell mitochondria (Wilson
et al., 1994; Lahiri et al., 1999; Buckler, 2011). Future experiments
are required to evaluate if these substances act by setting type I
cell mitochondrial O2 sensitivity.

A second explanation for the low O2-affinity of the type I
cell mitochondria is that it has a unique gene expression profile
(Figure 2). Exploring gene expression in the CB is challenging
due to its relatively small size and heterogeneity. However,
advances in molecular biology techniques now make it possible
to perform whole genome analysis using just micrograms of
tissue or even single cells. RNA-sequencing analysis has now
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revealed a number of mitochondrial related genes that have
a particularly high expression in the type I cell (Zhou et al.,
2016). Of these Ndufa4l2 and Cox4i2 have been shown to be
more highly expressed in the CB compared with tissue from the
superior cervical ganglion (Gao et al., 2017). Whether these two
genes contribute to the low mitochondrial O2 affinity remains
to be determined but these findings do support the idea that
CB mitochondria have a unique genetic signature encoding their
mitochondrial complexes. We would expect many more genetic
studies to probe this further until the type I cell mitochondria can
be accurately modeled to pinpoint the structural conformation
underlying its low O2 affinity. An interesting comparator may
be the mitochondria isolated from guinea pig CB which does not
appear to have any inherent O2 sensitivity (Gonzalez-Obeso et al.,
2017).

CONCLUSION

On current evidence, it is very hard to disprove the mitochondrial
hypothesis of CB O2 sensing. The mitochondria seem to fulfill
all five criteria that we have proposed for adequate O2-sensors.
What is less clear is a mechanistic understanding of how the
low O2 sensitivity of the CB mitochondria is achieved and if
mitochondria are involved in establishing pathological changes
in CB function.
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