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Summary  

The therapeutic potential of mesenchymal stromal cells (MSC) in the treatment of liver 

fibrosis is predominantly based on their immunosuppressive properties, and their ability to 

secrete various trophic factors. This potential has been investigated in clinical and pre-clinical 

studies. Although the therapeutic mechanisms of MSC transplantation are still not fully 

characterized, accumulating evidence has revealed that various trophic factors secreted by 

MSC play key therapeutic roles in regeneration by alleviating inflammation, apoptosis, and 

fibrosis as well as stimulating angiogenesis and tissue regeneration in damaged liver. In this 

review, we summarize the safety, efficacy, potential transplantation routes and therapeutic 

effects of MSC in patients with liver fibrosis. We also discuss some of the key strategies to 

enhance the functionality of MSC, which include sorting and/or priming with factors such as 

cytokines, and also genetic engineering of MSC. 
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Introduction  

Liver disease is a major cause of mortality and morbidity that is rising globally [1, 2]. There 

remain many inflammatory liver conditions for which treatments are not effective and often 

such patients will progress to end-stage liver disease and require liver transplantation. To 

prevent progression to end-stage liver disease and also to treat those with advanced fibrosis 

mesenchymal stromal cell (MSC) therapies have been considered and shown to have 

potential in such liver diseases [3-5].  

MSC have been shown to have beneficial effects in a range of clinical settings including heart 

failure [6], lung injury [7, 8], graft versus host diseases [9] and stroke [10], as well as being 

reported to ameliorate liver injury in the setting of both acute and chronic liver damage [11, 

12]. The pleiotropic effects of MSC represent a potential advantage over pharmacological 

therapies and principally focus on their ability to modulate different components of the 

immune system either directly or by the release of paracrine factors. In addition to these 

immunomodulatory effects, MSC have been shown to reduce liver injury by ameliorating 

oxidative stress through release of antioxidants [12] and also through anti-fibrotic effects [3, 

5]. In addition, MSC have been reported to have an ability to differentiate to hepatocyte-like 

cells which may show promise in augmenting liver regeneration [13, 14]. These encouraging 

pre-clinical data have resulted in many clinical trials [15, 16], and it is therefore timely to 

review the data underpinning these effects and also address the important remaining scientific 

questions so as to establish MSC therapy for patients with liver disease.   

 

MSC: Definition, Biology and Tissue Origins  

MSC were initially described in the 1968 by Friedenstein [17], and are a subtype of adult 
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fibroblast-like cells that have the capacity of self-renewal with high proliferative ability. They 

can undergo tri-lineage differentiation both in vivo and in vitro down connective tissue 

lineages to become osteoblasts, chondrocytes and adipocytes.  

MSC are plastic adherent cells originally identified and isolated from bone marrow but due to 

their limited number (0.01 to 0.001% of total bone marrow cells) [18] and invasive nature of 

their isolation from bone marrow, researchers explored alternative sources. Several studies 

have reported the successful isolation of MSC from different tissues with similar in vitro 

properties, including synovial membrane [19], adipose tissue (AT) [20], umbilical cord blood 

(UCB) [21], amniotic fluid (AF) [22] and placenta [23]. Umbilical cord tissue (UC) has been 

a particularly promising source of MSC - cells can be isolated from several compartments 

within UC including umbilical vein, umbilical arteries, umbilical cord perivascular tissue, 

Wharton’s jelly (WJ) and sub-amniotic tissue. Furthermore, MSC isolated from UC tissue are 

believed to be more primitive than other cells isolated from other tissues and are found in 

higher numbers, ensuring this source is gaining prominence. Notably, MSCs from different 

sources display similar expression profile of MSCs surface markers and morphological 

features in culture, yet they have different levels of tri-lineage differentiation potential [24]. 

In addition, further differences have been related to the culture conditions, especially in the 

isolation procedure and culturing protocols, as well as the experiment protocol used [25]. 

Whereas, direct comparisons of MSCs from different sources have been shown to share 

similar biological properties [26-28], other authors demonstrated differences in 

immunomodulatory properties between BM-MSCs, UC-MSCs, and AT-MSCs [29, 30]. In 

addition, umbilical cord MSCs exhibit a higher proliferative capacity in comparison to MSCs 

populations obtained from other sources [24].   
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MSC from differing sources such as AT, UCB, and BM were found to express a similar 

pattern of surface antigens [31], although there was variation in respect to their differentiation 

potential, morphology and proliferation rate [32]. Moreover, several studies have 

demonstrated that BM MSC have higher expression of pluripotency genes such as Oct-4, 

Nanog, and Sox-2 than those isolated from WJ and AT [33]. 

 

Potential mechanisms of action of MSC in liver disease 

Mechanism of immunomodulation by MSC 

MSC can modulate and repair injured tissue by modulating injurious immune responses 

through a range of mechanisms including direct cell to cell interaction or remotely by 

secretion of paracrine factors (Fig. 1) [34]. Of note, MSC have reduced immunogenicity due 

to a lack expression of class II major histocompatibility (MHC) antigens when unprimed and 

do not express many of the molecules required for immune recognition such as CD80, 

CD86n and CD40 [35].  

 

Immunomodulatory effect of MSC on adaptive immunity 

MSC can inhibit the proliferation of T cells in vitro by either secretion of soluble factors or 

by direct interaction with T-lymphocytes (Fig. 2) [36]. Several different molecules secreted 

by MSC have been reported to have an immunomodulatory effect on T-cell activities, 

including transforming growth factor β (TGF-β), hepatocyte growth factor (HGF) [36], 

prostaglandin E2 (PGE2) [37], and indoleamine 2,3-dioxygenase (IDO) [38]. Notably, the 
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production of these immunomodulatory molecules differs according to the source of MSC, 

for example, WJ-MSC produce higher amounts of TGF-β than BM-MSC [39].  

 

The inflammatory environment is known to have an essential role during the interaction 

between MSC and T cells, for example, the immunosuppressive capacity of MSC is induced 

by treatment with combination of cytokines (IFN-γ, IL-1α, TNF-α, and IL-1β) [40]. These 

cytokines can enhance some chemokines and other immune cells to easily contact the MSC 

and mediate the immune reactions. Another mechanism by which MSC can suppress the 

proliferation of T cells is via secretion of nitric oxide (NO) which causes inhibition of STAT5 

pathways [41]. Another study demonstrated that MSC can secrete matrix metalloproteinases 

(MMP), such as MMP-2 and MMP-9, which suppress T cell activation by cleaving surface 

CD25 from T cells [42].  

 

MSC have also been shown to promote the generation and development of regulatory T cells 

(Tregs), which can positively influence balance of immune damage during tissue injury [43].  

The induction of CD4+ CD25+ FOXP3+ Treg was mediated by secretion of TGF-β [44] and 

is accompanied by an inhibition of the proliferation and differentiation of Th1 and Th17 

helper T cells which can further trigger activation of regulatory T cells. This mechanism was 

associated with an increased production of IL-10 by MSC [45].  

 

MSC can also inhibit the proliferation of B cells, and reduce their production of 

immunoglobulin. Glennie et al used CD40 and IL-4 to increase the proliferation rate of 

murine B cells and demonstrated that subsequent co-culture with MSC significantly inhibited 
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their proliferation [46]. In addition, MSC resulted in a significant stimulation in 

immunoglobulin production after co-culture of B cells in trans-well experiment [47]. MSC 

may also alter surface expression of chemokine receptors on B cells; co-culture with MSC in 

1:1 ratio resulted in a significant reduction of expression of CXCR4, CCR7 and CXCR5 on B 

cells [48]. CXCR4 was found to significantly reduced even with 1:10 ratio when cultured 

with MSC, suggesting that MSC can specifically target CXCR4 which has a role in homing 

and fate of MSC [49].   

 

Natural killer cells (NK) represent a critical component of the immune response against viral 

infections and tumor cells [50] - Sotiropoulou et al demonstrated that MSC reduced IL-15 

secretion from IL-2 induced NK cells. This reduction was presumed to be due to either cell-

to-cell interaction or release of soluble factors such as PGE2 and TGF-β [35]. In addition, 

another group reported that MSC can suppress NK cells after stimulation with IL-5 [50]. In 

models of acute liver injury MSC ameliorated hepatotoxicity of NKT cell in an indoleamine 

2,3-dioxygenase (IDO) dependent manner, by reducing the number of IL-17 cells and 

stimulation of FOXP3 and IL-10 resulting from increased numbers of NK Treg in the injured 

liver [51].  

 

Immunomodulatory effect of MSC in innate immunity 

Macrophages can be classified into classical pro-inflammatory macrophages (M1) or 

alternative macrophages (M2) that secret anti-inflammatory cytokines (Fig. 2) [52]. MSC 

have been reported to trigger polarization of M1 toward M2 both in vivo and in vitro. This 

polarization is driven by the ability of MSC to secrete soluble factors such as interleukin (IL)-
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10 and IL-1Ra which have been shown to attenuate liver injury by promoting number of M2 

macrophages [53]. In addition to the IL-10 mediated ability of MSC to promote switching 

phenotype of macrophages from M1 to M2, MSC can also help to promote survival of 

monocytes through upregulation of CCL18, which was found to indirectly mediate ability of 

MSCs to induce Tregs formation [44] as demonstrated in animal models of sepsis and colitis 

[54]. In this study murine adipose derived MSC significantly increased the proportion of M2 

like cells by increased production of IL10 and arginase1 activities [54].  

MSC can also regulate, and interact with, dendritic cell function (DC) by blocking 

differentiation of antigen presenting cells (APC) to monocytes and decreasing their 

expression of anti-inflammatory molecules such as IL12, TNF-α, and IFN-γ, whilst also 

enhancing their secretion of IL-10 which may induce regulatory T cell numbers (Fig. 2) [55]. 

Notably, WJ-MSC can also inhibit the differentiation of monocytes to mature dendritic cells 

when cultured with CD14+ monocytes, indicating an indirect effect of WJ-MSC on the 

allogeneic response of T cells [56]. There is now therefore a greater recognition of the 

importance of the microenvironment on the immunomodulatory capacity of MSC [40], 

prompting a need for a better understanding of the microenvironment associated with specific 

diseases so as to develop more effective therapeutic efficacy of MSC.  

 

Anti-fibrotic activities of MSC 

Inflammation and fibrosis have a very close relationship in liver disease. In response to liver 

injury, pro-fibrotic factors such as TGF‐β, platelet‐derived growth factor (PDGF), IL-13 and 

IL-4, which are secreted by resident or infiltrating immune cells, play important roles in the 

activation and proliferation of hepatic stellate cells (HSC), which are important cells for the 
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production of ECM in the liver [57-60]. Therefore, the anti-fibrotic activities of MSC can be 

distinguish the direct or indirect effects on HSC. The indirect anti-fibrotic effects on HSC are 

achieved by MSC controlling immune cells and sequentially inhibiting the activity of HSC, 

whereas the direct anti-fibrosis effects on HSC are mediated by MSC inhibiting the activity 

of HSC. 

As the indirect anti-fibrotic effects of MSC on HSC, MSC can regulate the activities of HSC 

by modulating immune cell activity mentioned above. MSC can migrate towards injured sites 

of inflammatory reaction where they are exposed to inflammatory cytokines such as IFN-γ 

and IL-1β [61, 62]. These MSC secrete various soluble mediators (e.g. NO, PGE2, IDO, IL-6, 

IL-10, and HLA-G), thus resulting in the suppression of the proliferation and activation of a 

variety of immune cells as well as the induction of Treg cells [63]. Thus, suppression of 

immune cell activities by MSC can also reduce fibrogenic processes and ameliorate ECM 

accumulation in liver disease. In particular, macrophages play a central role in both fibrosis 

and fibrotic resolution in the liver [64, 65] - during hepatic fibrogenesis, pro-inflammatory 

M1 macrophages located near the activated hepatic myofibroblasts secrete pro-fibrogenic 

factors such as TGF-β, PDGF, and CCL2. This secretion leads to increased fibrogenic 

responses of the myofibroblasts through the promotion of their activation, proliferation, and 

chemotaxis [64, 66]. However, macrophages co-cultured with MSC are polarized into anti-

inflammatory M2 states, which show higher phagocytic activity through increased expression 

of IL-10 and decreased expression of tumor necrosis factor (TNF)-α and IL-12p40 [67, 68]. 

These results suggest that MSC can induce changes in the cytokine profile of activated 

macrophages promoting resolution of fibrosis. PGE2 has also been reported as a major 

immunomodulatory molecule when MSC are co-cultured with macrophages [69-71].  
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As the direct anti-fibrotic effects of MSC on HSC, MSC can inhibit proliferation and ECM 

production potential of HSC and also induce apoptosis of HSC. MSC can secrete IL-10, HGF, 

TGF-β3 and TNF-α, inhibit the proliferation of HSC, and decrease ECM synthesis [72, 73]. 

TGF-β3 and HGF induce G0/G1 cell cycle arrest of HSC by upregulating p21
Cip1

 and p27
Kip1

 

and downregulating cyclin D1, which leads to HSC growth inhibition [73]. Similarly, 

neutralization of secretion of TNF-α and IL-10 from MSC inhibits activated HSC 

proliferation and ECM synthesis [72]. Moreover, MSC-derived HGF can also accelerate the 

rate of HSC apoptosis [72] and MSC cultured with HGF improve serum albumin level and 

reduce liver fibrosis in rats [74]. The Notch pathway is activated during direct co-culture of 

MSC and HSC through a cell–cell contact mode and results in significant suppression of the 

proliferation and α-SMA expression of HSC [75]. In liver fibrosis, activated HSC can express 

the tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2, specific inhibitors of MMP 

[76], whereas MSC have been reported to increase the expression of MMP (e.g. MMP-2, -9, -

13 and -14) [77-79] or decrease TIMP-1 expression [80], which are generally associated with 

fibrosis resolution in experimental models. 

 

Hepatocyte-like differentiation of MSC 

Since hepatocytes have been reported to improve liver function and mitigate fibrosis in 

preclinical and clinical studies, hepatocyte transplantation has been considered an alternative 

therapy to replace liver transplantation. Several factors influence the hepatic differentiation of 

MSC. It has been reported that the treatment of MSC with a combination of several growth 

factors, cytokine, and chemical compounds (i.e., HGF, fibroblast growth factor [FGF]-2/-4, 
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epidermal growth factor [EGF], oncostatin M [OSM], leukemia inhibitory factor [LIF], 

dexamethasone [Dex], insulin-transferrin-selenium [ITS], and/or nicotinamide [NTA]) 

increases the expression of hepatocyte markers such as HNF-3β, GATA4, CK19, 

transthyretin, α-fetoprotein, albumin, and CK18 [81]. In addition, when MSC are co-cultured 

with liver cells [82] or grown by pellet culture [83], they can be differentiated into 

hepatocyte-like cells. The differentiation of MSC into hepatocytes has been reported in rats 

[84], mice [85], sheep [86] and humans [87]. Moreover, hepatic stem/progenitor cells isolated 

from the adult human liver have been reported to be much better at being able to differentiate 

into hepatocytes when compared with MSC isolated from other tissues than liver [88]. 

Several groups have also reported that MSC differentiated into hepatocytes can help improve 

liver function and histopathologic grade, although they are less effective than adult 

hepatocytes [89]. There still remains uncertainty in the literature about the characterisation of 

MSC-derived hepatocytes which requires further evaluation, and indeed it is unclear if this 

will be a major means by which MSC are utilised. 

 

Clinical trials using MSC in liver disease 

Many clinical studies have been conducted on the treatment of liver disease using MSC, 

focusing on clinical trial design, cell sources, injection route, patient groups, and efficacy of 

therapies [15, 16, 90-104]. Based on these viewpoints, we addressed 17 articles to summarize 

MSC-based therapy for liver disease from 2007 to July 15, 2017 (Table 1). With regard to 

study design for the treatment of liver disease using MSC, there was one case series, six case 

control studies, five cohort studies, and five randomized clinical trials (RCTs) (Table 1). 

Cohort and case control studies have been performed in the early clinical trials [15, 16, 90-92, 
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94, 96-100, 104], and RCT studies seem to be mainly conducted recently to evaluate the 

efficacy of MSC [93, 95, 101-103]. In the reported studies, a marked heterogeneity was found 

in injected cell dosage, stem cell source, graft type, injection route, and study design, but 

significant adverse effects were not reported in the included studies. The diseases of the 

patients included acute-on-chronic liver failure (ACLF), liver failure including cirrhosis due 

to alcohol, HBV, or HCV, and primary biliary cholangitis. A total of 688 patients were 

enrolled in the clinical studies, with a range of four patients in the case series design [94] to 

158 patients in the case control design [99]. In the clinical studies [99], BM-derived MSC 

(BM-MSC) were used in 14 studies and UC-MSC were used in the remaining three studies. 

In five studies allogenic MSC were used to treat liver disease; two were derived from the BM, 

and three were from UC [15, 16, 96, 100, 102]. Moreover, autologous BM-derived 

hepatocytes were reported to improve Child-Pugh score, MELD score, fatigue scale, and 

performance status over the controls, although no comparison was made with any 

undifferentiated MSC transplantation groups [97]. However, in recent animal studies, it has 

been reported that undifferentiated MSC can more effectively improve liver function than 

MSC differentiated into hepatocytes [89]. Jang et al. analyzed the liver function improvement 

after repeated MSC injections at 4 and 8 weeks [91]. In pilot studies, hepatic fibrosis was 

found to be ameliorated or reduced in six of 11 patients (54.5%) and the Child score 

improved in ten patients (90.9%) [91]. However, in the inter-group comparison (one-time 

injection versus two-time injection), two-time BM-MSC transplantation was not found to 

improve fibrosis over a single transplantation [101]. When three studies using two injection 

routes were analyzed separately [92, 97, 104], the peripheral vein (PV) was found to be most 

commonly used as a transplantation route in 11 cases; the hepatic artery (HA) was used in 

four cases, intra-splenic (IS) injection was used in three cases, intrahepatic (IH) injection in 
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one case, and portal vein in one case. There was no difference in the efficacy of MSC based 

on the route of administration (PV, IS, portal vein or IH) [92, 97, 104] and in the incidence of 

HCC or mortality in hepatic failure patients with hepatitis B between the autologous MSC-

infused and the control groups [99]. In an efficacy analysis after MSC transplantation, 15 

studies reported benefits of using MSC, but two did not.  

Taken together, the results of all these studies can be summarized to say that MSC treatments 

for patients with liver disease are safe and may improve liver function, although robust 

randomised clinical studies are required to gain confidence with regard to the clinical efficacy 

of MSC. However, to improve the efficacy of MSC therapy for liver disease, pre-clinical and 

clinical studies are necessary to standardize the best delivery route of MSC, to optimize the 

sufficient number of MSC, and to elongate the survival duration of engrafted MSC. 

Furthermore, in order to understand the therapeutic mechanism and fate of MSC more clearly, 

it is required to develop a specific biomarker with low toxicity so that the transplanted MSC 

can be accurately tracked. 

 

Future perspectives  

Whilst conventional unmanipulated MSC have been the mainstay of therapeutic studies thus 

far there have been extensive efforts to try and enhance their efficacy. This section will 

review some of the key strategies which include sorting MSC to enrich for greater 

functionality, priming of MSC with factors such as cytokines and finally genetic engineering 

of cells (Fig. 3). The main driver for these approaches is to enhance efficacy and/or organ 

homing although there is also often a need to create/protect intellectual property so as to 

generate a viable business model. The challenge therefore is to balance the additional costs 
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and potential logistical/safety concerns associated with such perturbations against 

improvements in efficacy. 

 

MSC enrichment 

MSC represent heterogeneous populations of cells, therefore, sorting approaches are highly 

considered to achieve homogenous populations of MSC, resulting in enriched subsets which 

could crucially produce various selected populations with different therapeutic functions and 

open new strategies for the modification of MSC for more beneficial effects.  

MSC are phenotypically diverse both morphologically and functionally and thus sorting cells 

based on marker expression may allow for the selection of cells with greater efficacy. This 

does require definition of which function is being focused on, and often markers of stemness 

or proliferation are reported, whereas immunomodulatory action may be the most important. 

Sorting of cells for pre-clinical studies is relatively straightforward and can use a range of 

modalities including flow cell sorting which should result in high purity yields. It is more 

challenging however when such approaches are attempted in clinical practice as they need to 

adhere more closely to good manufacturing practice (GMP) which can restrict the modality 

used. Clinically approved modalities such as the CliniMACS are clinically accredited but 

may not result in high purities of rare populations and thus the use of GMP fluorescence cell 

sorting analysis is encouraging. 

CD146+ is expressed on various cells types including endothelia cells [24] and can contribute 

to biological functions such as cell migration, proliferation and differentiation [105, 106]. 

CD146 expression is correlated with cellular senescence of MSC and markedly affects the 
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proliferation, differentiation, and stemness of hUCB-MSC. Sorted CD146
+
 MSC have 

delayed cellular senescence which is mediated by regulation of Bmi-1, id1, and Twist1 

expression, which can regulate the cellular senescence process [107]. This suggested that 

CD146+ could be a novel marker responsible for control of senescence of MSCs and hence 

improve the therapeutic efficacy of MSCs. 

In a recent study, sorting MSC sub-populations based on CD73
+
 expression has demonstrated 

greater self-renewal and differentiation properties [108]. These sorted cells (CD73
+
) 

exhibited high levels of colony forming unit ability in contrast with an absence observed with 

CD73- cells.  

Another study has characterized populations of MSC using several markers, including 

CD271
+
, known as nerve growth factor receptor and proposed as a marker of BM stromal 

cells, adhesion molecule (CD56), and MSCA-1
+
 (mesenchymal stem cell antigen-1) [109]. 

Sorted dual-positive MSCA-1+ and CD56+ MSC were reported to have 2-4 greater clonal 

efficiency than MSCA-1+ CD56-. However, MSCA-1+ CD56- were shown to have potential 

ability to differentiate into adipocytes, whereas MSCA-1+ CD56+ were restricted to 

chondrogenic and pancreatic like cells differentiation. Similarly, other reports indicate that 

enrichment of synovium-derived-MSC using CD271 in combination with THY-1 (CD90) 

results in greater chondrogenic differentiation ability and colony forming potential in the 

CFU-F assay compared to CD271
+
 CD90

+ 
BM-MSC. Thus, this combination could be a good 

candidate for the isolation of MSC from different tissue sources for cartilage regeneration 

[110]. 

Sherman et al. [111] have proposed aldehyde dehydrogenase (ALDH) as a marker for MSC 

which defines an enhanced ability to contribute to revascularization. MSC isolated from 
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human bone marrow and purified into ALDH
hi 

and ALDH
lo

 populations had identical 

expression of MSC surface makers and ability to differentiate into adipocytes, osteoblasts, 

and chondroblasts in vitro. Notably though conditioned medium from ALDHhi MSC was 

shown to promote endothelial cell expansion in vitro and enhance recruitment of endogenous 

vascular cells after subcutaneously implanted in NOD/SCID mice, which was mediated by 

up-regulation of lectin [111].   

Positive selection on the basis of expression of the Stro-1 specific marker has also been 

proposed and such MSC are enriched with respect to CFU-F progenitors [112]. Stro-1+ 

expanded MSC were reported to have better migratory capacity in various tissues when 

compare to Stro-1- [113]. Other research groups were able to increase expression of cytokines 

related cardiovascular which can be mediated through using Stro-1
+ 

enriched MSC [114].  

Expression of CD200 has also been used to purify MSC [115], with its expression inhibiting 

osteoclast formation via inhibition of RANKL signalling pathways, which consequently 

reduce expression of osteoclast associated genes such as tartrate resistance acid phosphatase 

(TRAP) and nuclear factor of activated T cells cytoplasmic 1 (NFARC1) [116]. Another 

study has clearly shown that CD200+ BM-MSC can modulate the immune response of 

macrophages by inhibition of TNF-α secretion when compared to CD200low BM-MSC [117]. 

Consisting with its role in immunomodulation, MSC have been identified to drive the 

expression of CD200 in T cell subsets following co-culture with MSC [118]. This 

upregulation was reported in both CD4+ and CD8+ T lymphocyte.  

More recently, CD362
+
 (Syndecan-2) marker has been identified as a novel marker to select a 

homogeneous population of MSC with enhanced immunomodulatory properties (patent 

number WO 20131177661 A1). This marker has recently investigated for its ability to reduce 
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immunogenicity and enhance the immunomodulatory ability in liver inflammation [119, 

120]. Syndecan-2 found to be expressed in hematopoietic cells and myeloid cells [121]. And 

functionally reported to upregulate upon T cell activation and play significance role in CD3 

downregulation through degradation of T-cell receptor (TCR) [122]. These findings strongly 

suggest that enrichment of syndecan-2 expression in MSC could play an essential role in 

immune modulation in injured tissue.  

The potential benefits of the various markers that have been used to select/enrich MSC are 

detailed in Table 2.  

 

MSC priming 

As with selection of MSC, priming of cells before use is intended to enhance their biological 

properties for whichever clinical indication is being considered (Table 3). This may include 

improvements in MSC immunomodulatory effects, homing to injured organs and/or greater 

expansion of cells. 

 

Enhancing immunomodulatory properties of MSC 

Pre-treatment of MSC with the pro-inflammatory cytokines IL-1β, IL-23 and IL-6 for 96 

hours [123] was found to enhance secretion of TGF-β and reduce production of IL-4 by 

MSC, although notably no changes were reported in production of IFN-γ and TNF-α. In 

addition, cytokine-treated MSC exhibited superior multi-lineage differentiation capacity 

compared to untreated MSC, with no associated changes in their morphology. IL-1 appears to 
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be important for pre-conditioning of MSC, as combined treatment with IL-1α and IL-1β 

increases production of granulocyte-colony stimulating factor (G-CSF) and secretion of anti-

inflammatory mediators such as IL-10. Moreover, microglial cells incubated with conditioned 

medium from IL-1 primed MSC increase expression of anti-inflammatory cytokines such as 

IL10 and decrease secretion of pro-inflammatory cytokines as reported in TNF-α and IL-6 

[124].   

Duijvestein et al. [125] showed that stimulation MSC with IFN-γ enhanced the anti-

inflammatory response of MCS in experiment colitis animal model. In addition, IFN-γ 

primed MSC exhibit a significant reduction in TNF-α and IL-6 in colon homogenates, while 

normal MSC had no effect. In the same model, activation of MSC with IFN-γ further promote 

the immunomodulation via enhance production of IL-17 and IL-4, which therefore inhibit the 

Th1 and reduce T cell activation [125]. Under similar conditions, pre-stimulation of BM-

MSC with IFN-γ and TNF-α stimulate production of IL-6, HGF, TGF-β [126]. More 

interestingly, an in vivo GVHD model, administration of MSC pre-treated with IFN-γ have 

the capability to enhance survival rates of mice with GVHD, resulted in 100% survival [127]. 

More recently, data from de Witte and colleagues have demonstrated that pre-treatment of 

UC-MSC with different treatments such as TGF-β, IFN-γ, IFN-β or in combinations (TGF-β, 

IFN-γ and retinoic acid) suppress expression of CD107a on NK cells, enhancing MSC 

immunomodulation. In addition, MSC treated with IFN-γ and the multiple cytokine 

combination were found to significantly upregulate IDO activities which subsequently 

suppressed CD4 and CD8 proliferation when compare to untreated MSC. Notably, following 
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infusion into mice injured with a single dose of CCl4, a higher percentage of TGF-β treated 

MSC homed to the injured liver (25%) compared with untreated MSC (13%) [119].  

In another liver injury studies, IL-7 treated MSC had a superior therapeutic effect on liver 

injury mediated in part through increased activation of iNOS. IL-17 down-regulates gene 

expression of ARE/poly(U)-binding/ degradation factor 1 (AUF-1) in MSC which is a protein 

known to regulate immune related molecules [128] and has a key role in regulation stromal 

cell fate [129]. Thus, AUF1 could have a novel role to enhance the effect of IL-17 on 

immunosuppression. Similarly, IL-17a modified MSC have been reported to suppress 

proliferation of T cell in vitro via mechanisms such as inhibition of Th1 cytokines (IFN-γ, 

TNF-α, IL-10, and IL-2), enhance production of IL-6 and induction of regulatory T cells 

[130]. 

IL-6 priming of MSC infused into an acute model of CCl4 injury resulted in improved 

viability of isolated hepatocytes as well as a reduction in expression of pro-apoptotic markers 

such as BAX, Caspase-3 and LDH activities. This finding was not observed when MSC or 

IL-6 treatment were applied alone [131]. In addition, administration of IL-6 with MSC was 

found to enhance repair of liver injury in a mouse model of liver fibrosis with reductions in 

fibrosis, improvements in liver synthetic function, promote hepatocyte survival, and decrease 

apoptosis in fibrotic liver [131].   

 

Enhancing homing of MSC 

A study demonstrated that adhesion molecules such as ICAM and VCAM can be highly 

expressed on MSC following priming with a combination of IFN-γ, TNF-α and IL-1. This 
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upregulation of expression of ICAM and VCAM led to increased recruiting of MSC to 

vascular endothelium, this close contact of MSC with immune cells could enhance the 

immunosuppressive properties of MSC [132, 133]. Similarly, MSC pre-treated with IFN-γ, 

TNF-α can induced regulatory T cells more efficiently than non-treated MSC. Furthermore, 

MSC pre-incubated with IFN-γ, TNF-α induced secretion of CCR6 and therefore increase the 

adhesion of Th17 cells to MSC, resulting in promote the generation of regulatory T cells 

(FOXP3+ cell) from Th17 cells and consequently improve their immunosuppressive 

properties [134]. 

Priming with CXCL9 has also been shown to enhance adherence of MSC to endothelial cells 

as well as increase spreading of MSC on the endothelial cells as characterized by the 

extension of pseudopodia in multiple directions [135]. Further characterization of the 

beneficial effect of chemokines on MSC behaviour was reported in the same study using 

trans-well migration experiments, in which MSC migrated across endothelial layers in the 

presence of chemokines such as CXCL9, CXCL16, and CXCL20, and CXCL25. Of note no 

migration was observed in the presence of TNF-α alone.  

Genetic modification of MSC (Gene editing) 

Beside enrichment and priming MSC in vitro, transplantation of MSC after genetic correction 

or modification (gene editing) represents a powerful approach to use of MSC in regenerative 

medicine (Table 4). This section will review progress with genetic engineering approaches 

that have reported with MSC, including viral and non-viral manipulations. Viral transfection 

of MSC can be achieved with several approaches including lentivirus, adenovirus and 

retrovirus [136].   
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MSC have also been genetically modified to increase expression of CXCR4, thereby 

improving their homing to the injured liver and reducing liver damage [137]. Similarly, the 

same finding was reported in a rat model of lung injury, with increased expression of CXCR4 

on MSC resulting in enhanced hepatic migration and improvement of their 

immunomodulatory properties mediated by increased production of IL-10 and reduction in 

TNF-α. Notably, these findings suggest that overexpression of CXCR4 not only enhanced 

MSC homing but also increased their immunosuppressive effects [138].  

Further examination of the beneficial effects of genetic modified MSC was reported in a 

mouse model of liver fibrosis, following overexpression of insulin growth factor like-1 (IGF-

1) [139]. After systemic administration, IGF-1 modified MSC were able to significantly 

reduce the degree of fibrosis, likely through the down regulation of α-SMA, TGF-β and 

COL1A2 in animal treated with IGF-1 MSC when compare with animal treated with normal 

MSC [140]. Over-expression of HGF in MSC was also found to reduce liver fibrosis, 

seemingly mediated by a reduction in TFG-β, platelet-derived growth factor-bb (PDGF-bb), 

and metalloprotease-14 (MMP-14) [141]. HGF overexpressed MSC also act on hepatic 

stellate cells to reduce α-SMA and desmin expression, indicating that MSC that overexpress 

HGF decreased both the activation and number of hepatic stellate cells more greater level 

than MSC. This could have therapeutic effect to prevent diseases progression and foster liver 

restoration. 

Another reprogramming approach showed that over-expression of miR-27b in adipose tissue 

derived MSC resulted in reduction in a rat model of ischemic liver injury in rat with 

improvements in ALT, AST, TNF-α, and IL-6 as well as significance suppression in TGF-β 
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[142]. Moreover, these transfected cells were shown to have anti-fibrotic ability with 

suppression of MMP-2 and MMP-9 in liver tissue.  

Further study linked between the genetic modified MSC and their capacity to express 

endothelial cell (EC) markers with similar function. For example, silencing MMP-2 and 

MMP-14 with endothelial growth medium can induce the MSC differentiation into EC by 

enhance production of endothelial markers, such as PECAM and VE-cadherin. These 

markers were increase from 4 to 15% and from 4 to 30% after silencing MMP-2 and MMP-

12, respectively. This observation was in comparison with MSC that treated with endothelial 

growth medium only [143].  

In other work, the expression level of HO-1 was genetically modified in MSC and shown to 

have resistance to cell death under oxidative stress condition and enhance their anti-apoptotic 

properties [144]. Moreover, HO-1 overexpressed MSC have shown to have more surviving 

cells following exposure to H2O2 and hypoxia, indicating that HO-1 may shape the stress 

responsive and cytoprotective properties of MSC. Notably, in the murine model of 

myocardial infarction, overexpression of HO-1 resulted in diminished oxidative stress and 

apoptosis as well as an enhanced effect on angiogenesis. This was associated with a 2.1 fold 

up-regulation of VEGF levels compared to normal MSC [145].   

 

Conclusions and outlook 

MSC therapy is generally regarded as a safe and potentially relevant therapeutic strategy for 

patients with chronic liver disease, including ACLF, liver failure including cirrhosis due to 

alcohol, HBV, or HCV, and primary biliary cholangitis. However, in order for MSC therapy 
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to be established as a clinical therapeutics for those of liver diseases, further robust 

randomised clinical studies are required to increase the reliability of the clinical efficacy of 

MSC. In addition, further studies on optimal delivery route, sufficient number of MSC, and 

extension of survival of engrafted MSC are needed to enhance the efficacy of MSC therapy. 

However, several concerns still remain, including the low migration and fibrogenic potential 

of MSC, the optimal sources, and the risk of oncogenesis and viral transmission. Whilst, 

conventional unmanipulated MSC have constituted the mainstream of therapeutic clinical 

studies so far, there have been extensive efforts to enhance their efficacy, including 

enrichment and/or priming of MSC along with genetic engineering of cells. The main driver 

for these approaches is to enhance efficacy and/or organ homing although there is also often a 

need to create/protect intellectual property so as to generate a viable business model as well 

as balancing the additional costs and potential safety issues against enhanced efficacy.      
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Figure legends 

Figure 1. Modes of MSC-based therapy. 

Figure 2. Potential mechanisms of the MSC interactions with immune cells. 

Figure 3. Schematic diagram illustrating the future of using modified MSCs for tissue/organ 

regeneration. 
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Table1. Clinical studies of MSC in chronic liver diseases 

Study Year Design, 

F/U (month) 

Patient cohort Source of 

MSC 

Injection route Primary endpoint Main improvement 

Mohamadnejad 

et al. [94] 

2007 Case series 

12 

Decompensated liver 

cirrhosis (n=4) 

Autologous 

BM 

Peripheral vein Safety and feasibility Creatinine and MELD score  

Kharaziha et al. 

[92] 

2009 Cohort 

6 

Liver cirrhosis (n=8) Autologous 

BM 

Portal vein (n=6) 

Peripheral vein 

(n=2) 

Feasibility, safety, and 

efficacy (LFT and MELD 

score) 

Creatinine, prothrombin time and 

MELD score  

El-Ansary et al. 

[104] 

2010 Case control 

6 

Decompensated liver 

cirrhosis due to HCV or HBV 

(n=12) 

Autologous 

BM 

Intra-splenic (n=6) 

Peripheral vein 

(n=6) 

LFT and MELD score 

improvement 

Creatinine, prothrombin time, 

albumin, bilirubin and MELD 

score 

Amer et al. [97] 2011 Case control 

6 

Decompensated liver 

cirrhosis due to HCV (n=40) 

Autologous 

BM 

Intra-splenic (n=10) 

Intra-hepatic (n=10) 

Safety and short-term 

efficacy (LFT, MELD 

improvement) 

Ascites, peripheral oedema, 

albumin, MELD score, and Child-

Pugh score 

Peng et al. [99] 2011 Case control 

1, 48 

ACLF caused by HBV 

(n=158) 

Autologous 

BM 

Hepatic artery Improvement of MELD 

and LFT (short term) or 

Prothrombin time, albumin, 

bilirubin and MELD score 
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development of HCC and 

mortality (long term) 

El-Ansary et al. 

[98] 

2012 Case control 

6 

Decompensated liver 

cirrhosis due to HCV (n=25) 

Autologous 

BM 

Peripheral vein  Improvement of MELD 

and LFT 

Albumin and MELD score 

Shi et al. [100] 2012 Case control 

12 or 18 

ACLF associated HBV 

(n=43) 

Allogeneic 

UC 

Peripheral vein  LFT and MELD 

improvement, adverse 

events, and survival rates 

Albumin, prothrombin time, 

bilirubin, ALT, survival rates and 

MELD score 

Zhang et al [16] 2012 Case control 

12 

Decompensated liver 

cirrhosis due to HBV (n=45) 

Allogeneic 

UC 

Peripheral vein  Safety and efficacy (LFT 

and MELD) 

Albumin, bilirubin, MELD score 

and ascites 

Amin et al. [90] 2013 Cohort 

6 

Post-HCV 

(n=20) 

Autologous 

BM 

Intra-splenic Safety and efficacy Albumin, prothrombin time, 

bilirubin, AST, ALT and MELD 

score 

Mohamadnejad 

et al. [93] 

2013 RCT 

12 

Decompensated liver 

cirrhosis (n=25) 

 

Autologous 

BM 

Peripheral vein  Safety and efficacy None 

Wang et al. [15] 2013 Cohort UDCA-resistant PBC Allogeneic Peripheral vein  Safety and efficacy Alkaline phosphatase and γ-
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ACLF, acute-on-chronic liver failure; BM, bone marrow; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; LFT, liver function 

test; MELD, model for end-stage liver disease; PBC, primary biliary cholangitis; RCT, randomized controlled trial; UC, umbilical cord; UDCA, 

ursodeoxycholic acid 

12 (n=7) UC glutamyltransferase (GGT) levels 

Jang et al. [91] 2014 Cohort 

6 

Alcohol related liver cirrhosis 

(n=11) 

Autologous 

BM 

Hepatic artery Safety and efficacy MELD score and liver histology 

Salama et al. 

[95] 

2014 RCT 

6 

Post-HCV end-stage liver 

disease (n=40) 

Autologous 

BM 

Peripheral vein  Safety and efficacy MELD score and Child-Pugh 

score 

Wang et al. [96] 2014 Cohort 

12 

UDCA-resistant PBC (n=10) Allogeneic 

BM 

Peripheral vein  Safety and efficacy ALT, AST, GGT and IgM 

Suk et al. [101] 2016 RCT 

12 

Alcohol related liver cirrhosis 

(n=72) 

Autologous 

BM 

Hepatic artery Safety and efficacy Histologic fibrosis and Child-

Pugh score 

Lanthier et al. 

[103] 

2017 RCT 

1 

Decompensated alcoholic 

hepatitis (n=58) 

Autologous 

BM 

Hepatic artery Safety and efficacy None 

Lin et al. [102] 2017 RCT 

6 

ACLF associated HBV 

(n=110) 

Allogeneic 

BM 

Peripheral vein  Safety and efficacy Bilirubin, MELD score and 

survival rates 
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Table 2. Reported markers for selection and purification of MSC 

MSC 

Source 

Species 

Markers 

expressed 

Purification/ 

selection methods 

Experimental 

Models 

Target/ Mechanism Ref. 

BM Human 

CD271
+ 

and 

CD56
+
 

Cell Sorting In vitro 

• Increase clonogenic and proliferation potential. 

• Increase chondrocyte and pancreatic like cells 

differentiation. 

[105] 

BM Rat CD73+ Cell Sorting 
In vitro 

Lewis rats 

• Enhance self-renewal and differentiation. 

• Increase engraftment. 
[24] 

BM Human CD200
+
 

Magnetic 

separation 

In vitro 

• Enhance regulation of bone resorption. 

• Inhibit osteoclast formation via inhibition of 

RANKL signaling pathway. 

[112] 

BM Human CD200+ Cell Sorting In vitro • Suppress TNF-α secretion in macrophage like [113] 
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cells (Immunosuppressive activity) 

UP, AT, 

and BM 

Human αSMA
+
 FACS In vitro 

• Improve MSC fate through regulation of 

YAP/TAZ activation. 
[146] 

PAM Human CD34+ FACS 
TAA (liver 

fibrosis model) 

• Reduce hepatic fibrosis and restore liver 

function by reduce collagen level and deactivate 

the hepatic stellate cells. 

[147] 

BM Human CD271
+
 

Magnetic 

separation 

In vitro (model of 

wound healing) 

• Significant potential in wound healing [148] 

UCB Human CD 146
+
 FACS In vitro • Reduce MSC senescence. [107] 

BM Human ALDH FACS 

In vitro and in 

vivo (NOD/SCID 

mice) 

• Promote endothelial cell expansion. 

• Enhance recruitment of endogenous vascular 

cells in vivo by upregulation of lectin. 

[114] 
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SYN and 

BM 

Human 

LNGFR and 

THY-1 

FACS In vitro 

• Greater chondrogenic differentiation ability and 

colony forming potential than BM-MSC. 
[110] 

UC Human 

C362+ 

(Syndecan-2) 

FACS ALF 

• Improve immunomodulatory properties and 

clonogenicity. 
[119] 

BM Human STRO-1 FACS In vitro 

• Increase expression of cardiovascular relate 

cytokines. 
[116] 

Bone Marrow (BM), Umbilical cord (UC), Umbilical cord blood (UCB), Synovium (SYN), Placenta amnion membrane (PAM), Adipose tissue 

(AT), Umbilical perivascular (UP), Aldehyde dehydrogenase (ALDH). Stromal Precursor antigen-1 (Stro-1), Acute liver failure (ALF), Receptor 

activator of nuclear factor kappa-B ligand (RANKL) 
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Table 3. Reported factors and their effect in priming of MSC for tissue repair. 

MSC 

source 

Molecule 

name 

Time of 

treatment 

Biological Function Ref. 

Human 

BM 

Human 

AT 

IL-1β, IL-23, 

IL-6 

96 hours 

• Enhance secretion of TGF-β. 

• Reduce production of IL-4. 

• Exhibit significance multi-lineage. 

differentiation capacity. 

[121] 

Human 

BM 

 

IL-1 24 hours 

• Increase production of G-CSF. 

• Increase production of IL-10. 

[122] 

Human 

BM 

IFN-γ and 

TNF-α 

24 hours 

• Enhance osteogenic formation via 

expression of ALP. 

• Increase expression of bone matrix 

proteins. 

[124] 

Human 

UC 

IFN-γ, TGF-β, 

or multiple 

cytokine 

cocktail (IFN-

γ, TGF-β, and 

retinoic acid) 

72 hours 

• Multiple cytokines cocktails improve the 

immunomodulatory properties of MSC. 

• TGF-β treated MSC increased 

recruitment of MSC to the liver injury in-

vivo. 

[119] 

Mouse 

BM 

IFN-γ + TNF-

α with IL-17 

12 hours 
• Mediate liver injury through activation of 

iNOS. 

[125] 
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Human 

BM 
IL-17 

24, 48, 

and 120 

hours. 

• Induction regulatory T cells. 

• Inhibition of Th1 cytokines. 

• Enhance production of IL-6. 

[126] 

Mouse 

BM 

IL-6 24 hours 

• Improve viability of hepatocytes treated 

with CCL4. 

• Decreased expression of pro-apoptotic 

markers (BAX, caspase-3, and LDH). 

• Reduced liver fibrosis in vivo. 

[127] 

Mouse 

BM 

IFN-γ or (TNF-

α and IL-1) 

Not sure 
• Increase upregulation of ICAM and 

VCAM. 

[128] 

Mouse 

BM 

(IFN-γ + TNF-

α + IL-1α) or 

(IL-1β + IFN-

γ) 

24 hours 

• Increase ability of MSC to inhibit T cell 

proliferations. 

• Enhance secretion of chemokines such as 

CXCL-9 and CXCL-10. 

[40] 

Mouse 

BM 

CXCL9 

30 

minutes 

• Ameliorate the adhesion of MSC to 

murine endothelial cells. 

[130] 
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Table 4. Genetically modified MSC 

MSC 

source 

Example of 

associated 

genes 

Condition 

Viral 

vector 

Representative 

biological activities 

Ref. 

Mouse 

BM 

IGF-1 

overexpression 

Liver 

cirrhosis 

Adenovirus 

• Ameliorate liver fibrosis 

by significant reduction 

in α-SMA, collagen 

deposition, and TGF-β1. 

[140] 

Mouse 

BM 

Let-7a       

Knockdown 

IBD and 

GVHD 

siRNA 

• Significant improvement 

in both models, by 

suppress T cell 

proliferation (decreased 

in CD3+), increase 

MCP-1 secretion, and 

enhancing expression of 

Fasl/Fas. 

[149] 

Human 

BM 

CXCR5 

overexpression 

CHS Lentiviral 

• Increase migration and 

engraftment of MSC to 

the site of injury. 

• Enhance 

immunomodulatory 

effects of MSC in vivo 

through inhibit of T cell 

[150] 
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proliferation and supress 

production of IFN-γ and 

IL-17. 

Human 

BM 

CXCR4 

overexpression 
ALF Lentiviral 

• Enhance migration and 

improve liver 

regeneration. 

[144] 

Rat 

BM 

CXCR4 

overexpression 

Lung 

injury 

Lentiviral 

• Improve migration and 

suppress inflammation 

of lung tissue by 

upregulation of IL-10 

and downregulation of 

TNF-α. 

[145] 

Rat AT 

miR-27b 

overexpression 

Partial 

hepatectomy 

Micro 

RNA 

• Enhance liver 

regeneration through 

reduction in ALT, TNF-

α, and IL-6 in serum. 

• Reduce expression of 

TGF-β, MMP2, and 

MMP9. 

[142] 

Rat 

MB 

CAMKK1             

over 

expression 

AMI siRNA 

• Reduce scar formation 

and improve cardiac 

function in vivo. 

[151] 
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Porcine 

AT 

MMP-2 and 

MMP-14 

knockdown 

In-vitro siRNA 

• Enhance differentiation 

of MSC into endothelia 

cells by production of 

PECAM and V-

cadherin. 

• Increase the formation 

of capillary like cells 

and Sc-LDL uptake. 

[143] 

Human 

BM 

HO-1   

overexpression 
In-vitro Adenovirus 

• Enhance MSC survival 

and resistant to 

oxidative stress. 

• Enhanced anti-apoptotic 

and anti-oxidative 

capabilities of MSC 

[144] 

Rat 

BM 

HO-1   

overexpression 

MI Plasmid 

• Enhanced anti-apoptotic 

and anti-oxidative 

properties and improved 

angiogenesis level. 

[145] 

Human 

BM 

HGF     

overexpression 

Liver 

Fibrosis 

(MDN 

model) 

Adenovirus 

• Promote liver function 

and reduce liver fibrosis 

via significant reduction 

in TGF-β and PDGF-bb. 

[141] 
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Mouse 

BM 

COUP-TF1 

knockdown 

Streptozocin-

induced 

diabetic mice 

siRNA 

• Increase ability of BM-

MSC to differentiate 

into IPCs. 

[152] 

Rat 

BM 

Aqp1 

overexpression 

Tibia fracture 

Model 
Lentiviral 

• Enhance MSC migration 

in vitro and in vivo 

through modulation 

expression of FAK and 

β-catenin. 

[153] 

Insulin growth factor like-1 (IGF-1), Inflammatory bowel disease (IBD), graft versus host 

disease (GVHD), Contact hypersensitivity (CHS), acute liver failure (ALF), amniotic fluid 

(AF), calcium/calmodulin-dependent protein kinase kinase-1 (CAMKK1), acute myocardial 

infarction (AMI), matrix metalloproteinases (MMPs), heme oxygenase-1 (HO-1), hepatocyte 

growth factor (HGF), Di-methylnitrosamine (DMN), platelet-derived growth factor-bb 

(PDGF-bb), chicken ovalbumin upstream promoter transcriptional factor I (COUP-TFI), 

Insulin producing cells (IPCs), Aquaporin 1 (Aqp1), focal adhesion kinase (FAK). 
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