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7

8

9 Abstract

10 Enhancement of energy conversion devices has become an important task to reduce size and cost, and 

11 design efficient systems. In this work, enhancement of heat transfer performance of a two-phase closed 

12 thermosyphon has been investigated by making an internal surface roughness. Thus, a new advanced 

13 machining technique (Electrical Discharge Machining) is employed to modify the surface 

14 characteristics of a TPCT. The experimental work has been carried out at two initial sub-atmospheric 

15 pressures (3 and 30 kPa), heat input range of (90-160 W) and a fill ratio of 50% using water as a working 

16 fluid. The results of the new thermosyphon have been compared with a plain copper TPCT to consider 

17 the enhancement in thermal performance resulting from resurfacing of the thermosyphon wall. The 

18 results revealed that using internal wall roughness in TPCT can enhance its thermal performance by 

19 reducing the evaporator temperature, thereby the total thermal resistance decreasing by about 42% and 

20 13% at initial pressures of 3 kPa and 30 kPa, respectively. On the other hand, the evaporator thermal 

21 resistance decreases and the evaporator heat transfer coefficient increases by about 115% and 68% at 

22 initial pressures of 3 kPa and 30 kPa, respectively. However, the condenser thermal performance 

23 decreases using the resurfaced TPCT compared with plain thermosyphon.   

24 Keywords: Two-phase closed thermosyphon; Surface roughness; Thermal performance enhancement; 

25 Thermal resistance.

26

27

28
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NOMENCLATURE

D Diameter of thermosyphon m Subscripts
h Heat transfer coefficient W/m2 oC av Average
I Current Am c Condenser
K Thermal conductivity W/m oC e Evaporator
Q
R

heat input
Thermal resistance

W
oC/W

i
o

Inside
Outside

T Temperature                            oC t total
V Voltage v

29 1.Introduction

30 Energy demand has increased rapidly worldwide due to inefficient use and conversion of energy in 

31 different applications. Therefore, reduction of losses and enhancing heat transfer processes in energy 

32 systems have become an essential area of research in recent years (Jouhara et al. 2017). Heat pipe offer 

33 an effective way to transfer thermal energy by utilising the latent heat of the working fluid by means of 

34 evaporation and condensation passively in a closed container. Due to their relatively low thermal 

35 resistance, compact and employing a small quantity of the working fluid, they have widely used in 

36 different applications such as solar thermal systems, heat exchangers and electronics cooling. Heat 

37 pipes consist of two main sections: the evaporator where the heat is absorbed by the working 

38 fluid; and the condenser in which heat is rejected. After the heat is added to the evaporator 

39 section, the liquid reaches its saturation temperature and evaporates generating vapour. Due to 

40 the difference in the vapour pressure between the evaporator and the condenser, it rises to the 

41 condenser (with the assistance of the bouncy forces) where it condenses delivering its latent 

42 heat to the coolant at the condenser. At that time, the vapour condenses due to a lower 

43 temperature in the condenser and returns to the evaporator by gravity, if the heat pipe is 

44 wickless (thermosiphon), or by capillary force, if a wick heat pipe is used. A special attention 

45 has been paid to a two-phase closed thermosyphon (TPCT) due to its simplicity and cost-effectiveness 

46 (Alammar et al. 2017).  

47 Electrical Discharge Machining (EDM) is an advanced fully controlled technique that uses the electric 

48 spark to remove small pieces from a metal workpiece forming different shapes or surface roughness. 
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49 This performs by applying a high-frequency electrical current through an electrode which producing a 

50 very high-temperature resulting in erosion of a tiny piece of the metal. The electrode is controlled to 

51 erode a specified thickness of metal from the sample. Both the workpiece and electrode are submerged 

52 in a dielectric fluid for cooling purposes and removing the resulting eroded material (Johnson Waukesha 

53 ).  

54 Several research works have been carried out to investigate enhancing the thermal performance of heat 

55 pipes using two different techniques. The first technique employs addition of nanoparticles to the 

56 working fluid to increase its thermal conductivity and enhance heat pipe performance. Different studies 

57 have investigated the effect of using various nanoparticles with water such as CuO nanoparticles (Yang 

58 et al. 2008; Liu et al. 2010; Manimaran et al. 2012; Cheedarala et al. 2016), Al2O3 nanoparticles (Noie 

59 et al. 2009; Aly et al. 2017), silver nanoparticles (Paramatthanuwat et al. 2010; Ghanbarpour et al. 

60 2015), iron oxide nanoparticles (Huminic et al. 2011; Huminic & Huminic 2013), graphene 

61 nanoparticles (Sadeghinezhad et al. 2016) and multiwalled carbon nanotubes functionalized with ethyl-

62 enediamine EDA-MWCNT nanoparticles (Shanbedi et al. 2012a). It was found that the best 

63 nanoparticles concentration which provided the highest thermal performance was 1.0wt% 

64 (Yang et al. 2008; Shanbedi et al. 2012b), 0.1wt% (Sadeghinezhad et al. 2016), 0.06wt% 

65 (Cheedarala et al. 2016) and 3wt% (Aly et al. 2017). Different studies showed that using 

66 nanofluid increased the heat transfer coefficient by 46% (Yang et al. 2008) and 30.4% (Aly et 

67 al. 2017), increased CHF by 30% (Yang et al. 2008) and 79% (Cheedarala et al. 2016), 

68 increased thermal performance (Liu et al. 2010), by 14.7% (Noie et al. 2009), 70% 

69 (Paramatthanuwat et al. 2010), 93% (Shanbedi et al. 2012b), 37.2% (Sadeghinezhad et al. 

70 2016) and reduced the thermal resistance (Sureshkumar et al. 2013) by 62% (Manimaran et al. 

71 2012), 48% (Sadeghinezhad et al. 2016) and 18.2% (Aly et al. 2017). Also, it was concluded 

72 that some nanoparticles may deposit on the heat pipe wall making a coating resulting in an 

73 increase of the surface wettability (Sadeghinezhad et al. 2016; Cheedarala et al. 2016).
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74 On the other hand, some researchers have implemented different surface characteristics to enhance the 

75 thermal performance of heat pipes. (Han & Cho 2002) investigated the performance of a micro-grooved 

76 thermosyphon heat pipe for different working fluids, number of grooves and operating temperatures. 

77 They found that the number of 60 grooves correspond to the highest condensation heat transfer 

78 performance which was 2.5 times higher than that of a plain thermosyphon. Also, the condensation heat 

79 transfer coefficients of grooved thermosyphons filled with methanol and ethanol were 1.5-2 and 1.3-

80 1.5 times higher compared to the plain one, respectively, and water provides the highest heat transfer 

81 rate. The thermal characteristics of two thermosyphon heat pipes with straight and helical grooves filled 

82 with water have been investigated by (Han & Cho 2005) for different inclinations, fill ratios and 

83 operating temperatures. It is concluded that the fill ratio of 30% exhibits the highest heat flux. In 

84 addition, angles of 25-30o and 40o provide the best thermal performance for helical and straight grooves, 

85 respectively. (Jiao et al. 2005) studied theoretically and experimentally the effect of thin-film 

86 evaporation in a groove heat pipe. They reported that the performance of the grooved heat pipe is highly 

87 affected by the thin film evaporation where the reduction in evaporator temperature is considerably 

88 larger than in condenser temperature. Also, the thin film region is enlarged by the decrease in the contact 

89 angle which increases the heat transfer performance. A similar mathematical study to (Jiao et al. 2005) 

90 has been carried out by (Jiao et al. 2007), but the thin fill region inside the groove was divided into three 

91 different regions instead of one region. A  numerical thermal model has been developed to predict the 

92 thermal performance of a micro-grooved flat plate heat pipe and validated with an experimental study 

93 (Lefèvre et al. 2008). They found that the optimum dimensions of the rectangular groove are 0.36, 0.7 

94 and 0.1 mm corresponding to groove width, height and fin width, respectively. These dimensions 

95 provide a maximum heat flux and lowest thermal resistance. (Yong et al. 2010) investigated the 

96 performance of a heat pipe with micro-grooves manufactured by Extrusion–ploughing process. The 

97 study reported that the heat transfer limit for the grooved heat pipe fabricated by the new technique is 

98 larger than that for the normal grooved heat pipe, thus the low heat transfer limit for axially micro-

99 grooved heat pipe can be resolved. (Wong & Lin 2011) investigated the impact of surface wettability 

100 on the performance of evaporator in a mesh wicked flat plate heat pipe with water, methanol and acetone 

101 as working fluids. They concluded that the heat transfer limit decreases as the contact angle of the 
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102 copper surface with water increases, while it is unaffected by methanol and acetone. (Solomon et al. 

103 2012) studied the effect of nanoparticles coating on the thermal performance of screen wicked heat 

104 pipe. Results revealed that the heat transfer coefficient and thermal resistance of the evaporator 

105 increases and reduces by 40%, respectively, while the thermal performance in the condenser section 

106 decreases compared with an uncoated heat pipe. It is also reported that reduction of 19%, 15%, and 

107 14% is achieved at heat loads of 100, 150 and 200 W respectively. Thermal characteristics of a 

108 horizontal grooved heat pipe with different surface wettability for the three sections, evaporator, 

109 adiabatic and condenser has been investigated by (Hu et al. 2013). The study revealed that significant 

110 decrease is achieved in the total thermal resistance due to the change to the surface characteristics to 

111 hydrophilic, gradient wettability and normal surface for evaporator, adiabatic and condenser sections, 

112 respectively. Also, more than 42% increase in the dry out limit of the grooved heat pipe is obtained. 

113 (Rahimi et al. 2010) changed the surface characteristics of the evaporator and condenser to investigate 

114 their influence on the thermal performance of a two-phase closed thermosyphon using water as a 

115 working fluid. The study showed that the thermosyphon efficiency can be increased by 15.27%, 

116 whereas a decrease of 2.35 times in the thermal resistance is obtained compared with the plain TPCT. 

117 Another surface modification study has been carried out by (Solomon et al. 2013) to test the heat transfer 

118 performance of an anodized Aluminium thermosyphon charged with acetone. It is found that a 

119 maximum reduction in thermal resistance and increase in heat transfer coefficient of the TPCT 

120 evaporator is 15% compared with non-anodized thermosyphon.  In addition, a negligible effect of 

121 anodized TPCT is observed on the condenser thermal performance.  (Hsu et al. 2014)  employed 

122 different surface characteristics in terms of contact angle in the evaporator and condenser sections to 

123 investigate the thermal performance of a TPCT. Experimental results showed that when evaporator and 

124 condenser are superhydrophilic and superhydrophobic, respectively, the highest performance of the 

125 TPCT is obtained where the maximum reduction in the thermal resistance is 26.1% compared with plain 

126 one. Also, the worst thermal performance of the thermosyphon is observed when the whole inside wall 

127 of the TPCT is superhydrophilic. The effect of internal helical microfin on the condensation heat 

128 transfer performance in a TPCT has been investigated by (Wang et al. 2012). They reported that the 
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129 existence of the internal helical microfin provides a better thermal response and increases the heat 

130 transfer coefficient of condensation by 116.87% at high heat load. Also, A correlation for predicting the 

131 condensation heat transfer coefficient of the TPCT was proposed. (Nair & Balaji 2015) investigated 

132 numerically using Fluent and Matlab the effect of internal fins inside the condenser section on the 

133 performance of a two-phase closed thermosyphon. They concluded that adding 8 fins in the condenser 

134 section increases the thermal conductivity of the TPCT by about 43%. It is also reported that additional 

135 condensate mass of 22% and 32% can be produced using 8 and 12 fins, respectively, which would be 

136 helpful to avoid the dry out during the operation of the thermosyphon. A similar study to (Nair & Balaji 

137 2015) has been carried out experimentally by (Naresh & Balaji 2017), but for various fill ratios and two 

138 working fluids, water and acetone. They concluded that at low heat load, reduction of 17% and 35.48% 

139 is obtained in the temperature and thermal resistance of TPCT due additional condensate mass resulting 

140 from inserting six internal fins in the condenser section. It is also reported that the optimum thermal 

141 performance of the TPCT is achieved at a fill ratio of 50%. In addition, acetone exhibits higher 

142 performance at low heat loads, while water provides better performance at high heat inputs.          

143 Many researchers have carried out numerous experimental investigations to enhance the thermal 

144 performance and increase the heat transfer limit of heat pipes. This has been achieved by implementing 

145 different means namely, using nanoparticles to improve the thermal characteristics of fluids or changing 

146 the surface features of the wall using coatings or making micro-grooves. However, the preparation and 

147 using of nanofluids would be complex and occupied by instability and agglomeration of the 

148 nanoparticles. In addition, surface coatings can be a difficult process, making additional conduction 

149 thermal resistance, time-consuming and expensive, whereas making micro-grooves may reduce the 

150 boiling heat transfer limit of heat pipes.

151 In contrast, making a roughness on the internal wall of a TPCT implementing a new technique does not 

152 need any use of such additional coatings or materials. This would produce an effective energy 

153 conversion device that can be used in many applications. Therefore, the objective of this work is to 

154 enhance the thermal performance of thermosyphon heat pipe by making an internal wall roughness 

155 employing a new advanced machining technique named as Electrical Discharge Machining (EDM). To 
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156 achieve this goal, a copper tube was machined to make the wall roughness, manufactured and tested to 

157 compare its thermal performance with a plain copper thermosyphon at two different initial sub-

158 atmospheric pressures (3 and 30 kPa) and various heat loads.

159  2.Experimental work

160     2.1. Manufacture of the rough surface

161 Electrical Discharge Machining (EDM) or Spark Erosion Machining (SEM) was used to make a surface 

162 roughness inside a tube with a 200 mm length, 12.7 mm outside diameter and 1.6 mm thickness. This 

163 machine generates an electrical spark between a cutting wire (electrode) and a sample material. The 

164 spark indicates the flowing of the electrical power through the wire. Thus, the material (workpiece) 

165 starts melting due to the intensively produced heat which produces a very high temperature. The spark 

166 is controlled and positioned cautiously in order to machine only the material surface. Deionized water 

167 is always used as a dielectric medium for the spark in the case of the wire EDM. Water not only 

168 functions as a coolant but also to remove the eroded material away from the surface. The wire diameter 

169 is between 0.1-0.3 mm and is made either from brass or copper. Also, the electrode (wire) must not be 

170 in direct contact with the sample material and the workpiece must be electrically conductive. The 

171 minimum eroded thickness is 0.00254 mm and the maximum is 0.051 mm per one pass (Johnson 

172 Waukesha). 

173 The resulting roughness was measured using Mitutoyo Surftest SJ-310 tester in terms of two 

174 parameters. The first is Ra which represents the average distance between the peaks and valleys and the 

175 deviation from the mean line throughout the surface and along the length of the surface. The second is 

176 Rz which represents the average of five sampling lengths by indicating the vertical distance between 

177 the highest peak and the deepest valley for each sampling length. The two roughness parameters Ra and 

178 Rz are illustrated in Fig.1a and Fig.1b, respectively. The surface roughness was measured at five 

179 different positions on the sample surface, Table 1 illustrates these values. Also, two actual zoomed 

180 photos for rough and plain surfaces are presented in Fig.2a and Fig.2b, respectively. To report the 

181 wettability of the two surfaces, an optical tensiometer-contact angle meter was used to measure the 
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182 contact angle employing the sessile drop technique. The measured contact angles for the rough and 

183 plain surfaces are shown in Fig.3a and Fig.3b, respectively. 

184
(b)

(a)

185 Fig.1 Sketch shows: (a)- Ra, arithmetical mean roughness and (b)- Rz, mean roughness depth

186

187

188

189                             Table 1. Values of Ra and Rz
Rough surface Plain surface

Item Ra (µm) Rz (µm) Ra (µm) Rz (µm)

1 2.935 15.256 0.289 1.89

2 3.658 22.268 0.278 1.764

3 3.675 20.460 0.275 1.687

4 3.664 21.568 0.275 1.67

5 3.639 21.376 0.281 1.82

190

191

192                                           

193                             Fig.2a Rough copper surface                               Fig.2b Plain copper surface

194
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195                                                   

196 Fig.3 Measured contact angle for: (a) Rough and (b) plain copper surfaces

197

198 2.2. Test set up and procedure 

199 An experimental apparatus was developed to investigate the effect of the surface roughness on the heat 

200 transfer performance of the TPCT at a range of heat inputs and two initial pressures.

201 After the roughness was made on the entire internal wall of the TPCT, the resulting rough tube and 

202 another plain copper tube were employed to fabricate two thermosyphon heat pipes. The process starts 

203 by rinsing the two tubes many times with the ethanol to remove any grease or other Contaminants, then 

204 washing with deionised water to ensure that all ethanol was removed. After that, the two proposed 

205 thermosyphons were evacuated to a desired pressure (3 kPa or 30 kPa) using a vacuum pump, then they 

206 were charged with deionised water to fill the half of the evaporator (50%) using a syringe as shown in 

207 Fig.4a. The thermosyphon is 200 mm long and consists of two sections, the evaporator and condenser 

208 with 100 mm length each, 12.7 mm outside diameter and 1.6 mm thickness. The condenser section is 

209 surrounded by a brass water jacket of 16 mm inside diameter and 28 mm outside diameter to remove 

210 the heat from the condenser using water as a cooling liquid. Eight type T surface thermocouples were 

211 fixed on the outer surface of the TPCT to measure the wall temperature, five thermocouples at the 

212 evaporator and three at the condenser. In addition, two type T probe thermocouples were fitted in the 

213 inlet and outlet of the water jacket to measure the inlet and outlet temperatures of the cooling water. 

214 Before using the thermocouples, All the ten thermocouples were immersed in water at a constant 

215 temperature to be calibrated with an RTD thermocouple where the maximum deviation from the RTD 

216 reading was found to be ±0.4oC at steady state. Fig.4b illustrates the TPCT dimensions and the positions 

217 of thermocouples.   

(a) (b)
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218
219  1-Heat pipe, 2-Electrical heater, 3-Thermocouples positions, 4- Water jacket, 5-Syringe, 6-Pressure gauge, 7-Three-way valve, 8-Vacuum 
220 pump, 9-Constant temperature water bath, 10- Flow meter 11-Computer, 12-Data logger, 13-Variable transformer, 14-Multimeter, 15-Power 
221 meter.

222                        Fig.4: (a)- Test rig schematic diagram and (b)- Dimensions and thermocouples positions      

223                                                                  

224 An electrical heater with a maximum power of 160 W was used to supply the heat to the evaporator 

225 section where it was wrapped evenly to distribute the heat input equally on the evaporator surface. 

226 Consequently, the value of the heat input applied to the evaporator wall can be changed by changing 

227 the input voltage using a variable transformer. Also, a wattmeter and multimeter were used to measure 

228 the heat load. Comparing the readings of the wattmeter, multimeter (volt and ampere) and the value of 

229 the output heat, it is found that the maximum uncertainty in the input energy is about 3.2%. A high-

230 temperature superwool blanket insulation of 50 mm thickness was used to reduce the thermal losses 

231 from the evaporator wall of the TPCT, so, the heat losses were neglected. This was also proved by 

232 comparing the heat output which was found to be more than 93% in all tests.  Also, a rotameter was 

233 employed to measure the coolant mass flow rate at the condenser section with the uncertainty of 

234 measuring the flow rate value of 2.8%. In addition, to ensure that all tests are performed at the same 

235 inlet temperature of the cooling water, a constant temperature water bath was used to maintain the 
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236 coolant inlet temperature at the desired temperature. All thermocouples were connected to a data taker 

237 to send their temperature readings into a computer to be saved and analysed. 

238 After the test rig was built, it was ready to examine the TPCT performance. Firstly, the water bath is set 

239 at a desired cooling temperature (20oC). Then, the globe valve before the rotameter is opened to allow 

240 the cooling water to circulate throughout the water jacket at the condenser section. Also, the rotameter 

241 is adjusted to a specified flow rate of 0.0025 kg/s using the globe valve to be fixed for all tests. Before 

242 power is supplied to the rope heater, enough time is provided to ensure that all thermocouples readings 

243 reach approximately a value of 20oC which is another proof of thermocouples consistency and accuracy 

244 in temperature measurement.  Then, the power is supplied to the electrical heater by adjusting the 

245 variable transformer to a certain value which equivalent to the desired heat input needed to the 

246 evaporator section. This heat input can be obtained by multiplying the voltage times the current as well 

247 as the reading of the wattmeter. After all temperatures reach the steady state, the data is saved and the 

248 power is switched off. Some runs were repeated three times to prove the repeatability and accuracy of 

249 the test facility and the procedure used. The measured quantities are the heat load, operating pressure, 

250 coolant mass flow rate, inlet and outlet temperatures of the cooling water and wall temperatures of the 

251 evaporator and condenser sections.

252

253

254 2.3. Data reduction

255 Parameters such as evaporator and condenser thermal resistances, total thermal resistance and the 

256 evaporator heat transfer coefficient need to be determined to obtain and compare the heat transfer 

257 characteristics of the plain and modified TPCTs.

258 The evaporator and condenser thermal resistances can be obtained from the following equations: 

259                 …………….(1)𝑅𝑒 =
𝑇𝑒,𝑎𝑣 ‒ 𝑇𝑠𝑎𝑡

𝑄
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260                ……………...(2)𝑅𝑐 =
𝑇𝑐,𝑎𝑣 ‒ 𝑇𝑠𝑎𝑡

𝑄

261 Where Re and Rc are the evaporator and condenser thermal resistances, respectively, Tsat is the 

262 saturation temperature which corresponds to operating pressure at each heat input, and Q is the heat 

263 input calculated from: 

264                 …………….(3)𝑄 = 𝐼𝑉

265 Where I and V are the circuit current and voltage, respectively.

266 Te,av and Tc,av are the average wall temperatures of the evaporator and condenser, respectively and can 

267 be obtained as follow:

268               ………………..(4)𝑇𝑒,𝑎𝑣 =
𝑇0 + 𝑇2 + 𝑇4 + 𝑇6 + 𝑇8

5

269                  ………………….(5)𝑇𝑐,𝑎𝑣 =
𝑇13 + 𝑇16 + 𝑇19

3

270 Therefore, the total thermal resistance of the TPCT can be calculated from:

271                ……………….(6)𝑅𝑡 =
𝑇𝑒,𝑎𝑣 ‒ 𝑇𝑐,𝑎𝑣

𝑄

272 Where Rt is the total thermal resistance of the thermosyphon.

273 The evaporator heat transfer coefficient can be obtained from the following equation:

274               ………………(7)ℎ𝑒 =
𝑄

𝜋𝐷𝑖𝐿𝑒(𝑇𝑖,𝑎𝑣 ‒ 𝑇𝑠𝑎𝑡)

275 Where he is the evaporator heat transfer coefficient, Di and L are the inside diameter and length of the 

276 evaporator and Ti,av is the inside surface average temperature of the evaporator and can be determined 

277 from:

278                 …………….(8)𝑇𝑖,𝑎𝑣 = 𝑇𝑒,𝑎𝑣 ‒
𝑄

2𝜋𝐿𝐾𝑙𝑛(𝐷𝑜

𝐷𝑖
)

279 Where Do is the outside diameter of the evaporator and K is the solid thermal conductivity.
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280 3- Results and discussion

281 3.1. Temperature distribution

282 A TPCT with internal wall roughness made using the EDM technique was tested and compared 

283 with a smooth TPCT to investigate the enhancement in the heat transfer at a range of heat loads 

284 and two different initial pressures.   

285 Variation of the wall temperature of the plain and rough thermosyphons with distance along the wall at 

286 a heat load of 100 W is shown in Fig.5a and Fig.5b for initial pressures of 3 and 30 kPa, respectively. 

287 Fig. 5a shows that a significant reduction in the evaporator wall temperature is achieved for the TPCT 

288 with roughness compared to the plain TPCT. This can be explained by the increase in the nucleation 

289 sites density (as confirmed by Fig. 2a), thereby increasing the frequency of bubbles generation 

290 (Solomon et al. 2013) resulting from a rough surface, which transfers heat efficiently from the TPCT 

291 wall reducing noticeably the wall temperature. Another reason causing the decrease in the evaporator 

292 wall temperature is the hydrophilic characteristics of the modified wall [25, 27] which make the surface 

293 wetted with liquid instead of vapour as illustrated in Fig.3a. However, in the condenser section, it is 

294 observed that the condenser wall temperature of the plain TPCT is higher than that for the TPCT with 

295 roughness, but the difference is much lower compared with the evaporator. This also may be attributed 

296 to the wettability feature of the rough surface which provides opposite effect on the condensation heat 

297 transfer in the condenser. This results in increasing the condensate film thickness which leads to 

298 additional heat transfer resistance, thereby lower condenser wall temperature. Fig.5b presents a similar 

299 trend as Fig.5a in the evaporator section for both plain and modified TPCTs. However, a lower 

300 difference in evaporator temperature is obtained between the two thermosyphons due to the higher 

301 pressure. The reason behind that may be attributed to the activation of small surface cavities of the plain 

302 TPCT when the pressure increases (Khodabandeh & Palm 2002) which reduces the wall temperature 

303 of the plain TPCT. On the other hand, most cavities of the rough surface are already activated, so the 

304 increase in pressure produces relatively less temperature reduction compared with the plain TPCT, but 

305 the evaporator wall temperature of the rough TPCT is still lower than that of the plain TPCT due to the 
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306 roughness effect. Also, a different trend of the condenser wall temperature is observed at a pressure of 

307 30 kPa compared with that at 3 kPa for both TPCTs. The reason will be explained in the discussion of 

308 Fig.7a and b. 
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310 Fig.5 Comparison of thermosyphon wall temperature between plain and rough TPCT at heat load 100 W and 
311 initial pressures: (a)-3 kPa and (b)-30 kPa 

312

313 Figs.6a and b also show the temperature distribution along the wall of the two TPCTs at 3 and 30 kPa, 

314 respectively, but at a heat input of 160 W. It is observed that the difference in the evaporator wall 

315 temperature between the plain and modified thermosyphons is higher compared with that at a heat load 

316 of 100 W. This could be explained as: before reaching the critical heat flux, when the heat load 

317 increases, the heat transfer mechanism is enhanced due to the generation of more bubbles transferring 

318 further heat from the heating surface to the fluid, thereby further reduces the evaporator wall 

319 temperature. On the other hand, approximately the same difference in the condenser wall temperature 

320 as in the case of 100 W is obtained when the pressure is 3 kPa (Fig.6a). However, when the pressure is 

321 30 kPa (Fig.6b), a higher difference in the wall temperature of the condenser is noticed between the two 

322 TPTCs compared with that at 100 W, especially at the upper part of the rough thermosyphon. This can 

323 be explained that the rate at which the vapour is generated at 160 W is higher than that at 100 W in both 

324 plain and rough TPCTs. Therefore, the rate of the condensate removal is smaller than the rate of droplets 

325 growth, which leads to thickening the condensate film thus reducing the condenser wall temperature 

326 (Attinger et al. 2014). This effect is higher in the case of the rough condenser due to the wettable 
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327 characteristics of the rough surface compared with the smooth surface, so that the difference at 160 W 

328 is higher than that at 100 W.
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330 Fig.6 Comparison of thermosyphon wall temperature between plain and rough TPCT at heat load 160 W and 
331 initial pressures: (a)-3 kPa and (b)-30 kPa

332

333 Effect of two initial pressures of 3 and 30 kPa on the wall temperature distribution is presented in Fig.7a 

334 and Fig.7b for rough and plain thermosyphons, respectively, at a heat input of 160 W. It can be seen 

335 that for both TPCTs, using the pressure of 3 kPa provides a lower evaporator wall temperature compared 

336 with 30 kPa due to corresponding low saturation temperature which leads to earlier evaporation start-

337 up, thereby a lower evaporator wall temperature  (Yang et al. 2008), (Lee et al. 2014). On the other 

338 hand, a higher condenser wall temperature is obtained employing 3 kPa at the middle and upper parts 

339 of the condenser (T16 and T19), while it is lower at the lower part (T13). This may result from the rising 

340 of the saturated vapour to the upper part of the condenser and the small condensate film thickness, 

341 resulting in a low thermal resistance, thereby higher heat transfer coefficient between the hot vapour 

342 and the wall leading to a higher condenser wall temperature at the upper part compared with the lower 

343 part (Alizadehdakhel et al. 2010). In contrast, in the case of 30 kPa, the upper part of the condenser wall 

344 exhibits a lower wall temperature compared to the lower part for both TPCTs. This may be attributed 

345 to the presence of non-condensable gases in the case of 30 kPa which blocks the upper part of the 

346 condenser preventing the hot vapour to reach this part and deteriorating the heat transfer mechanism 

347 leading to a lower condenser wall temperature compared with the lower part at 3 kPa. Thus, a smaller 

348 condensate quantity is produced making the wall temperature of the lower part of the condenser (T13) 
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349 for both TPCTs at 30 kPa higher than that at 3 kPa. In addition, the difference in the wall temperature 

350 between the two pressures is higher in the case of modified TPCT compared with plain one for the same 

351 reasons explained in the discussion of Fig.5a-b and Fig.6a-b.      

352  
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354 Fig.7 Comparison of thermosyphon wall temperature between initial pressures 3 and 30 kPa at heat load 160 W 
355 and: (a)-TPCT with roughness and (b)-Plain TPCT 

356

357 3.2. Thermal performance of the Thermosyphon 

358 Variation of evaporator thermal resistance (Re) with the heat load for the plain and rough TPCTs are 

359 shown in Fig.8a and Fig.8b at two different initial pressures of 3 and 30 kPa, respectively. They show 

360 that a considerable decrease in the evaporator thermal resistance is achieved when the rough 

361 thermosyphon is used compared with the plain one for both pressures. It is found that the reduction in 

362 the evaporator thermal resistance varies with the heat load from about 51-68% and from 68-115% for 

363 pressures of 30 and 3 kPa, respectively (30.4% (Aly et al. 2017), 40% (Solomon et al. 2012), 15.01% 

364 (Solomon et al. 2013)). This reduction in Re may result from the presence of the roughness in the 

365 evaporator wall which creates additional nucleation sites leading to generate more bubbles, thereby 

366 more heat is released from the evaporator internal surface.  Also, the rough surface increases the wall 

367 wettability by decreasing the contact angle making the liquid in continuous contact with the evaporator 

368 wall removing the vapour away from the wall surface. In addition, it is observed that the Re for the plain 

369 TPCT increases at a heat input of 140 W, while for the TPCT with roughness, it increases at 150 W 

370 indicating an increase in the CHF for the rough TPCT.
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372 Fig.8 Comparison of evaporator thermal resistance versus heat input between plain and rough TPCTs at initial 
373 pressures: (a)-3 kPa and (b)-30 kPa

374

375 However, Fig.9a and Fig.9b show that the condenser thermal resistance (Rc) increases when the 

376 modified TPCT is employed compared with the plain one which worsens the heat transfer performance 

377 in the condenser section ((Solomon et al. 2012) also reported higher Rc for coated TPCT and (Solomon 

378 et al. 2013) reported no reduction in Rc for anodised TPCT). This may be attributed to the fact that the 

379 high surface wettability produced from the rough surface can form a liquid film on the condenser wall 

380 which prevents the vapour to be in direct contact with the condenser inner wall resulting in additional 

381 thermal resistance. The maximum increase in the Rc is about 22% compared with plain TPCT. It is also 

382 seen from Fig.9a 3 kPa initial pressure that Rc of the rough and plain TPCTs decreases steadily with the 

383 heat load, while Fig.9b for initial pressure of 30 kPa shows that Rc of both TPCTs decrease sharply with 

384 the heat load. This may be explained by a larger amount of vapour generated at the low pressure 

385 compared with the high pressure. This increases the liquid film thickness, thereby the condenser thermal 

386 resistance reducing the effect of heat input on the thermal resistance at the low pressure. The film 

387 thickness on the rough wettable condenser wall is higher (at 3 kPa), so that a higher difference is noticed 

388 between the two thermal resistances at a pressure of 3 kPa (Fig.9a) compared with that at 30 kPa 

389 (Fig.9b) and they both decreases with the input energy.     
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391 Fig.9 Comparison of condenser thermal resistance versus heat input between plain and rough TPCTs at initial 
392 pressures: (a)-3 kPa and (b)-30 kPa.

393

394 Despite the increase in condenser thermal resistance for the rough TPCT, a noticeable decrease in the 

395 total thermal resistance (Rt) of the rough TPCT is shown in Fig.10a and Fig.10b at 3 and 30 kPa, 

396 respectively, due to the high reduction in the evaporator thermal resistance. The reduction in the Rt 

397 varies with the input energy from about 9-13% and 28-42% compared with the plain TPCT at 30 and 3 

398 kPa respectively (18.2% (Aly et al. 2017), 19% (Solomon et al. 2012), 125% (Rahimi et al. 2010), 15% 

399 (Solomon et al. 2013), 26.1% (Hsu et al. 2014), 35.48% (Naresh & Balaji 2017)). In addition, Fig.10a 

400 (3 kPa) shows a same trend as the Re in Fig.8a, and almost a same rate of decrease in the Rt for both 

401 TPCTs with the heat load is observed at a pressure of 30 kPa (Fig.10b). 
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403 Fig.10 Comparison of total thermal resistance versus heat input between plain and rough TPCTs at initial 
404 pressures: (a)-3 kPa and (b)-30 kPa.

405

406 Fig. 11a and Fig.11b show a significant enhancement in the evaporator heat transfer coefficient (he) for 

407 the TPCT with roughness at 3 and 30 kPa, respectively. The increase in the he is about 68-115% and 
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408 51-68% at 3 and 30 kPa, respectively (40% (Solomon et al. 2012), 50-100% for methanol and 30-50% 

409 for ethanol (Han & Cho 2002), maximum of 116.87% (Wang et al. 2012)). In addition, at a pressure of 

410 3 kPa (Fig.11a), he generally increases as the heat load increases for the both TPCTs. However, the rate 

411 of increase in he is higher for the modified TPCT compared with the plain one and it becomes 

412 approximately constant after a heat load of 130 W for the plain TPCT. Therefore, the difference in he 

413 between the two TPCTs increases as the input energy increases. This is also true at a pressure of 30 kPa 

414 (Fig.11b), but with a lower difference in he and a lower rate of increase for the rough TPCT.    
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416 Fig.11 Comparison of evaporator heat transfer coefficient versus heat input between plain and rough TPCTs at 
417 initial pressures: (a)-3 kPa and (b)-30 kPa.

418

419 4- Conclusions

420 Thermal performance of a TPCT with an internal surface roughness produced using a new 

421 technique of EDM was tested to investigate the enhancement of heat transfer characteristics. 

422 This was carried out by comparing the modified TPCT with a plain TPCT at various heat loads 

423 and two different initial pressures (sub-atmospheric pressures). It is concluded that a significant 

424 decrease in the evaporator wall temperature is achieved using the resurfaced thermosyphon at 

425 both initial pressures 3 and 30 kPa. It is also seen that the reduction increases as the input 

426 energy increases. In addition, less reduction is obtained at a pressure of 30 kPa compared with 

427 3 kPa and the difference in Te,av between the two pressures for the rough TPCT is higher than 

428 that for the plain. Accordingly, a considerable decrease in the evaporator thermal resistance 
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429 and enhancement in the evaporator heat transfer coefficient of 115% and 68% are obtained at 

430 3 and 30 kPa, respectively. However, the condenser wall temperature for the rough TPCT is 

431 noticed to be lower than that for the plain one. Likewise, the thermal resistance of the condenser 

432 section for the rough TPCT is higher, but the difference in the condenser much lower than that 

433 at the evaporator. Thus, the total thermal resistance for modified TPCT is decreased by about 

434 42% at a pressure of 3 kPa, whereas it is reduced by 13% at 30 kPa compared with the plain 

435 TPCT despite the increase in the condenser thermal resistance. More enhancement in the 

436 performance of the TPCT may be achieved if another proved enhanced surface is employed in 

437 the condenser rather than the rough surface or using a nanofluid such as Ti/H2O which was 

438 proved to enhance the hc by 2-3 times (Baojin et al. 2009) with the rough TPCT. This may need 

439 to be investigated by a further research study and can be included as a future question: how can 

440 enhance the heat transfer characteristics in the condenser to achieve more enhancement in the 

441 thermal performance of the TPCT? 

442 Therefore, making a roughness in the internal wall surface of the TPCT using EDM provides 

443 a simple and inexpensive technique to enhance the heat transfer performance of the TPCT. This 

444 would offer an efficient energy conversion and heat removal device for different systems in 

445 many applications.   
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-Heat pipe performance is enhanced by making a wall roughness using a new technique. 

-A significant reduction in evaporator thermal resistance of 115% is obtained.

-A significant increase in evaporator heat transfer coefficient of 115% is achieve.

-A considerable reduction of 42% in the total thermal resistance is obtained. 




