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Abstract  

Laser induced ripples (also known as Laser Induced Periodic Surface Structures, LIPSS) have 

gained a considerable attention by both researchers and industry due to their surface 

functionalization applications. These ripples act as diffraction gratings for the visible light 

therefore it is widely used in some optical applications and color marking. In this research, a 

method is proposed for producing holograms by varying the ripples’ orientation along the beam 

path during the laser scanning and thus producing a pattern of ripples orientations. It was 

demonstrated that, by employing this method, it was possible to produce linear and radial 

pattern of gratings by changing the ripples’ orientations following a given periodic function. As 

a result, smooth transitions of diffracted monochromatic light along the beam path were 

achieved, especially in diffracting colors from different locations when changing the azimuthal 

and incident angles of the incident white light. In addition, the reflection of polarized white light 

by such periodic gratings was investigated and it was shown that it was fully dependent on the 

ripples’ orientations in respect to the light linear polarization vector.  

Keywords: LIPSS, ripples, femtosecond laser, diffraction, selective reflection, polarization.  

 

 

1. Introduction 

Since laser induced ripples (also known as Laser Induced Periodic Surface Structures, LIPSS) 

were observed for the first time by Birnbaum [1] five decades ago, they attracted the interest 

of many researchers and industries due to their surface functionalization capabilities.  LIPSS 

are considered the smallest structures that can be generated by using light [2] on most of the 

materials, e.g. metals, semiconductors, glasses and polymers [3, 4], and also in any 

environment, in particular in air, gases, liquids or vacuum [5, 6]. LIPSS have found applications 

in many fields including, but not limited to,  brazing [7], modifying surfaces’ wetting properties 

[8], improving surfaces’ tribological performance [9-11], color marking [12-16], inhibiting 

bacteria attachments and facilitating cell growth [17].  

In general, LIPSS have three main characteristics: depth, periodicity and orientation. The 

capabilities to control them become very important in the effort to produce surfaces with given 

functional responses. Therefore, their formation mechanism has been investigated by many 



researchers in order to understand how the laser processing settings affect these three LIPSS 

characteristics and thus to meet the specific requirements of different applications. However, 

there is still no comprehensive understanding of this phenomenon [3, 4, 18] and the role of 

surface plasmon polaritions is still questionable [19]. From many reported empirical studies, it 

is evident that the LIPSS depth is nonlinearly dependent on laser fluence [20]. Regarding 

periodicity, LIPSS can have either low spatial frequency (LSFL) or high spatial frequency 

(HSFL). HSFL can be achieved using relatively low fluence [19, 21]. The periods of both LIPSS 

types are dependent on the laser wavelength (λ) [15]. For a normal beam incident angle, the 

LSFL period is approximately in the same order as λ, while for HSFL it is much smaller and 

depends on the material refractive index, typically λ/2 [22] or even smaller by one order [23, 

24]. In case of LSFL, an increase in the laser incident angle leads to an increase of  LIPSS 

period [25] (although some researchers have reported that the beam incident angle does not 

affect it [20]).  

LIPSS orientation is dependent on the electric field vector of the laser polarization [20, 26]. 

Generally, their orientation is orthogonal to the linear polarization vector; however, LIPSS 

parallel to the polarization vector have been reported, too [18, 22]. Thus, the laser polarization 

state is very important and has a major impact on laser-matter interaction, especially on the 

absorbed laser energy that directly affects the damage threshold [27] and laser-matter 

interaction results, e.g., the width of the scanning lines [2, 28] and also the LIPSS orientation 

[2, 29] . Consequently, polarization state affects most of the laser-based processes such as, 

drilling [29-31], cutting [29, 32], welding [29] and texturing, e.g., the generation of complex 

surface structures [33]. Hence, the ability to control the polarization state during laser 

processing is important both for ablation and surface texturing applications [26].  

The polarization state can be controlled employing different methods, such as using wave 

plates [30, 31, 34] or by employing diffractive optical elements, e.g. spatial light modulators 

(SLM) and liquid crystal polarizers [26, 35-38]. The effects of changing the polarization state 

were studied in the context of different laser processing applications, in particular, to control 

the orientation of nano gratings by superimposing two pulses  [21]; to generate holograms 

inside glasses [39]; to produce polarization dependent diffraction gratings [40]; to imprint 

images on metallic surfaces [41]; to selectively control the appearance of two [42] or multiple 

symbols [13]; to generate HSFL and LSFL in one field [43]; to superimpose and overwrite 

LIPSS [19]; and also to generate LIPSS with different orientations within one spot using SLM 

[44]. Also, the influence of continuously altering the laser polarization state on drilling, sheet 

metal cutting and texturing operations was reported [26, 30, 31, 33, 35, 45, 46]. Recently, 

Hermens et al. [38] reported a synchronized use of a liquid crystal polarizer, laser scanner and 

5-axis stage to generate LIPSS with different orientations on free form surfaces. 

A method for producing holograms on metallic surfaces by dynamically varying the laser 

electric field vector is reported in this paper. In particular, a method is proposed to continuously 

vary the orientation of the neighboring LIPSS along the beam path by dynamically changing 

the orientation of a linear polarization vector during the scanning process.  In this way, the 

LIPSS orientations within single spots or even within smaller areas (depending on the ratio 

between the polarization vector angular velocity and the scanning speed) were continuously 

varied to achieve smooth diffraction transitions along the beam path in the processed field. 

Then, to validate the method, linear and radial pattern of gratings were generated by following 

given periodic functions and scanning strategy.  

 

 



2. Method  

 

Before proceeding with the description of the proposed method, the LIPSS formation and its 

behavior when interacting with a white light is discussed. In particular, when ultrashort pulsed 

laser with fluence close to the ablation threshold interact with metal substrates, periodic ripples 

are generated on the surface. The period, d, of these ripples is mainly dependent on the laser 

wavelength but also on laser incident angle and dielectric constants of both the medium and 

the substrate as shown in Equation 1 [25, 46].  

𝑑 =
λ

𝑅𝑒 (√
𝜀𝑑 ∗ 𝜀𝑚
𝜀𝑑 + 𝜀𝑚

)

 
for normal incident angle (1) 

 

where: λ - laser wavelength, and ϵd and ϵm are the dielectric constants of the dielectric medium 

and the metal substrate, respectively. 

Such ripples act as diffraction gratings when their periodicity is higher than the wavelength of 

the incident light. The diffraction order, angle and sensitivity are all dependent on the ripple 

periodicity and the light incident angle, as depicted in Fig.1.  The functional dependence 

between them is as follows [47]:  

 

𝑚λ = d(sin𝜃𝑚 − sin𝜃𝑖𝑛 cos∅)   (2) 
 

where: m is the diffraction order, θm - diffraction angle of the mth order, θin - light incident angle, 

and ϕ - the azimuthal angle between the grating vector and the light incident vector in the 

grating plane. 

Ripples diffract white light when the azimuthal angle of the incident light meets specific 

conditions. In particular, the light is diffracted when the incident light is normal to the ripples 

(parallel to the LIPSS vector) in the grating plane. The intensity of the diffracted light depends 

on the azimuthal angle and it reaches its maximum when ϕ = 90° and drops down sinusoidally 

to its minimum at ϕ= 0°. Thus, hologram patterns can be generated by a control rotation of 

polarization vector and thus make the ripple orientation dependent on their position along the 

beam path. However, there should also be smooth transitions of ripples’ orientations across 

the fields and therefore the angular speed of the polarization vector rotation should be 

synchronized with the beam scanning speed. In this way, any abrupt changes of ripples’ 

orientation and discontinuities across the holograms can be avoided. Since the light diffraction 

depends on ripples’ orientations, the processed field diffracts the white light from some 

locations within the field but not from others when both the viewing and source angles are 

fixed.  

Let us consider two cases of smooth light reflection across the processed fields by fixing the 

viewing angle. First, if the azimuthal angle of the light source varies, a smooth transition of 

diffracted/reflected light is achieved between neighboring spots across the processed field. 

Another smooth transition of the diffracted/reflected light occurs when the incident angle of the 

source varies. Consequently, rainbow colors associated with the first order of diffraction 

appear one after another because of the varying incident angle that is followed by white light 

reflection with zero and -1 order diffractions, respectively. Hence, changes of incident or 



viewing angles lead to changes of the diffraction locations within the field and also in the 

diffracted colors.    

As mentioned above, to generate LIPSS gratings with smooth transitions along the beam 

paths and thus across the processed fields, it is necessary to synchronize the angular speed 

of the polarization vector rotation with the beam scanning speed. The rest of the laser 

processing settings remain the same, in particular the scanning speed, scanning strategy, 

pulse repetition rate and pulse energy. It should be noted that the process settings that affect 

the scanning strategy (i.e., the beam scanning direction and hatch distance) also affect the 

resulting LIPSS gratings. The polarization vector rotation (i.e., the rotational speed of the λ/2 

wave plate) could be constant, continuously varied (in particular by accelerating or 

decelerating it by any rate within one full revolution) or a combination of both; also, this could 

be implemented by setting specific time delays at every revolution or at a given number of 

them. Thus, by using any of the above process settings, a periodic function would be defined 

to repeat the LIPSS orientations at regular intervals. This function will have two variables, the 

ratio between the λ/2 wave plate angular speed and the beam scanning speed, and the hatch 

distance. A program in MATLAB was created to predict the resulting orientations along the 

beam path when one of these two variables is varied in the applied periodic function. The 

results are orientations’ -matrices covering the processed field that can be depicted as images.  

Since the resulting LIPSS grating is periodic, one of the variables driving this periodicity can 

be determined by applying the Fourier analysis. In particular, the consecutive LIPSS 

orientations along the beam path within the processed field would depend on the selected 

scanning strategy and could be represented as a vector. Then, the Fourier transform of the 

resulting vector can be computed to determine the respective Fourier series and periodic 

 

Figure 1. Interaction of white light with diffraction gratings  

 

 



function. Ultimately, this function could be used to generate the digital signal that would control 

the λ/2 wave plate rotation.  

 

3. Experimental setup 

To experimentally validate the proposed method, a micro processing laser platform is used; 

this platform integrates an Yb-doped femtoseconds laser source from Amplitude Systemes 

with 310 fs pulse duration, a central wavelength of 1030 nm, maximum repetitions rate of 500 

kHz, and maximum pulse energy of 10 µJ. The beam delivery sub-system includes a 3D scan 

head (RhoThor RTA) from Newson Engineering and a 100 mm telecentric focusing lens. In 

particular, the input beam diameter of 5mm is focused to an irradiation spot size of 30 µm and 

maximum peak power of 32MW.  

A setup with a motorized polarizer was designed to rotate the λ/2 wave plate with a predefined 

angular speed. It was implemented employing a λ/2 wave polarizer, high-precision rotation 

mount from Thorlabs and a NEMA 17 stepper motor to drive the polarizer through a timing 

belt and pulleys. The motor has 200 steps per revolution (1.8° per step) and can be controlled 

for up to 6400 sub-steps/revolution using a controller (TB6600) from SODIAL(R). The control 

signals are generated by a C programme for a Raspberry-pi3 single board computer (SBC).  

Fig. 2 depicts the laser processing setup used in this research and a diagram showing the 

polarization control sub-system.   

Mirror polished stainless steel grade 304 substrates were used. The samples were 

ultrasonically cleaned in water and acetone and dried with hot air prior to laser processing. 

The processed samples were analysed employing a focus variation microscope, Alicona G5 

Infinite Focus system, and a scanning electron microscope, SEM JSM-6060. Images were 

captured using a Nikon D3300 camera.  

 

 

  

 

Figure 2. The laser processing platform including the implemented motorized polarizer.  



 

3.1 Processing parameters 

The most important factor affecting the ripples’ generation is the laser fluence, which has to 

be close to the ablation threshold of the processed material. The other process settings that 

affect their generation are the pulse repetition rate, scanning speed and hatch distance. Some 

initial trials were performed to identify a suitable processing window to generate ripples’ 

gratings on stainless steel 304 substrates. In particular, the following processing domain was 

identified: fluence in the range from 0.4 to 0.8 J/cm2, number of pulses from 10 to 150 per 

spot, and hatch spacing in the range from 8 to 22 µm. The trials conducted showed that a 

higher fluence combined with a higher number of pulses and a smaller hatch distance led to 

darkening of the processed surface, while the opposite led to pale diffracted colors. A fluence 

of 0.56 J/cm2 (a peak power of 13.5MW) and 20 pulses per spot were found to be the best to 

produce colorful ripples’ gratings and, therefore, they were used to produce all samples in this 

research.  

To validate the proposed method for linear pattern of ripples’ orientation, a number of 10 x 10 

mm2 fields were processed with a varying ratio between stepper motor rotation and beam 

scanning speeds (see Supplementary Fig. S1). All the fields were produced by applying a 

linear zigzag scanning strategy and the process settings used to produce one of them, (see 

Fig 3a) are discussed further in this section 4.1. In particular, the following process settings 

were used to produce this field: a constant stepper motor speed of 7.8125 rev/sec achieved 

by sending control signals with 20 µs delays between them; and a scanning speed of 100 

mm/s that resulted in a speed ratio of 28.125 deg/mm. Consequently, the ripples’ orientation 

was repeated periodically along the beam path at every 12.8 mm within this field. The laser 

pulse repetition rate was kept the same, 100 KHz, and thus to maintain the number of pulses 

per spot at 20. Another field with a linear pattern of ripples’ orientation is selected to be 

presented to show the selective reflection of polarized white light in section 4.3, this field was 

produced with a stepper motor speed to scanning speed ratio of 159.8 deg/mm along the 

beam path.  

Another set of fields were produced but with a different processing strategy, in particular, with 

a circular hatching rather than the linear zigzag one. In this way, fields with a radial repetition 

of LIPSS orientations can be created (see Supplementary Fig. S2). One of these circular fields 

is shown in Fig 5a and is discussed further in this section 4.2. The diameter of the field is 10 

mm and the circular hatch distance used is 12 µm. A constant stepper motor speed of 56.25 

deg/sec was applied to produce this field and this was achieved by setting a delay of 1 ms 

between the control signals. Laser scanning speed was set at 500 mm/sec, while the pulse 

repetition rate was 500 KHz.  LIPSS orientations are repeated along the circular path at every 

3200 mm. since the scanning speed is relatively high, the processing time for this circular field 

was approximately 13 sec only . Another field with a circular  pattern of ripples’ orientation is 

selected to be presented to show the selective reflection of polarized white light, this circular 

field was processed with a varying stepper motor speed to scanning speed ratio, especially 

starting with 159.8 deg/mm and then decelerating it with a rate of 10 deg/mm. 

 

 

 

 

 

4. Results 



  

Two sets of periodic patterns with linear and radial orientations were used to validate the 

proposed method and then to demonstrate a selective reflection of polarized white light in the 

sub-sections below.  

 

4.1. Linear periodic ripples’ gratings 

The effects of changing azimuthal and incident angles are clearly depicted in Fig. 3a. With the 

change of the azimuthal angle the diffracted light is shifted from a given location to its 

neighboring one in both X and Y directions. This shift is due to the LIPSS orientation effect 

discussed in Section 2; in particular, the incident light is diffracted predominantly from LIPSS 

with grating vectors parallel to the light source in the LIPSS plane and not from those normal 

to it. The effect of the incident angle on the appearance of the field is also depicted in Fig 3a, 

where three different diffracted colors are shown together with the reflected white light (near 

to the zero order). The effect of changing the light incident angle can be seen in the 

supplementary video S1. It is worth noting that the used white light source has a higher 

divergence; therefore, more than one color is diffracted within the same viewing angle. the 

modelled distribution of the LIPSS orientations across this field (referred to as an orientations’ 

matrix in Section 2) is shown in Figure 3b.  

 

 

Figure 3. A ripples’ field with periodic orientations: (a) the effect of azimuthal and incident 
angles on the diffracted light from the processed field. (b) the modelled distribution of LIPSS 
orientations across the field. 

 

 



 

An SEM image of an area of 66 x 48 µm2 within the processed field showing the changing 

LIPSS orientations within this field of view is given in Fig. 4. The theoretical LIPSS period 

should be less than the laser wavelength, approximately 1 µm (see Equation 1 above). As 

expected, the measured period was approximately 810 nm. Thus, the LIPSS periodicity to 

wavelength ratio is approximately 0.78, closed to reported ratios of 0.71 to 0.81 provided by 

other researchers [46]. This LIPSS periodicity of 810 nm leads to only first diffraction order of 

visible light wavelength spectrum (see Equation 2 above). 

The overall processing time for producing the field was around 50 seconds and this could be 

reduced further by increasing the beam scanning and stepper motor rotational speeds or by 

employing a high-speed servomotor with a position feedback. 

 

 

 

4.2. Radial periodic ripples’ gratings  

 

The effects of changing the azimuthal and incident angles are depicted in Fig 5a, while Fig. 

5b represents the modelled distribution of LIPSS orientations across the circular field. As it 

can be seen in Fig. 5a, the shifting of the diffracted light is radial rather than cartesian. 

Although, the change in the polarization vector is periodic (a constant motor speed), the 

repetition of LIPSS orientations within the circle beam path is nonlinear. In particular, it is 

inversely proportional to the square of the circle radius and thus, with the increase of the 

radius, the frequency decreases. Also, the light diffracted from the field does not appear to be 

 

Figure 4. A SEM image of the field shown in Fig. 3a that depicts different LIPSS orientations 
along the beam path. 



symmetrical due to the fact that the circular scanning is not maintained across the field, in 

particular, it starts as circular at the field periphery and then transforms into an octagon at the 

centre. This can provide an additional effect to the holograms as shown in the figure. The 

effect of changing the source incident angles can be seen in the supplementary video S2. 

 

 

 

 

 

 

4.3. The effect of white light polarization 

The fields produced employing the proposed method have another interesting optical property. 

In particular, they reflect the polarized white light depending on the relative orientations of 

different areas within the field with respect to the polarization vector. This behavior is illustrated 

with the two fields in Fig. 6, one processed with a zigzag linear scanning strategy and the other 

with a circular one. The fields were viewed under the microscope using horizontal and vertical 

linear polarized light as shown in Fig. 6a and Fig. 6b, for the linear and in Fig. 6c and Fig. 6d 

for the circular, respectively. The change of the polarization vector direction led to a change 

of the LIPSS grating reflection. This is due to the fact that the gratings only reflect light when 

their polarization vector is parallel to the gratings’ vector. This effect is clearer in the centre of 

the second circular field in Fig. 6c and 6d; in particular, the change of the polarization vector 

led to reflection or no reflection at the centre.  

   

 

 

Figure 5. A grating field with radial periodic ripples’ orientations: (a) the effect of azimuthal 
and incident angles on the diffracted white light from the same processed filed; (b) the 
modelled distribution of the ripples’ orientations across the circular field. 

 

 



 

4.4. Applications 

The applications of surfaces with LIPSS gratings in which orientations are varied with a given 

periodic function are not limited to holograms and surface color marking. Other possible 

applications that can be explored are the potential use of such gratings in micro fluidic systems 

for selective modification of wetting properties [48], in particular to create super hydrophobic 

tracks on surfaces and thus to direct the liquid flow along pre-defined paths. Another avenue 

to explore is the possibility to apply such periodic gratings in antibacterial applications [49] as 

some bacteria have the tendency to move along grooves. Thus, this could be inhibited by 

varying the LIPSS orientation with a predefined periodic function. In addition, cell migration 

surfaces can benefit from varied LIPSS orientations [17] and this can also be beneficial in 

aerodynamic and tribological applications. 

Another aspect that is worth noting is that the LIPSS gratings produced with femtosecond 

lasers can be considered a cost-effective surface processing technology in the context of the 

application areas mentioned above. Bonse et al. [9] have calculated that the cost per unit area 

 

Figure 6. The fields’ reflection behavior when interacting with a polarized white light: (a & b) 
a field processed with zigzag linear strategy reflecting vertical and horizontal linear polarized 
white light, respectively; (b& c) a field processed with a circular strategy reflecting vertical and 
horizontal linear polarized white light, respectively. 



covered with LIPSS is approximately 0.1 €/cm2. This considers the capital investment and 

maintenance costs associated with the use of state of the art femtosecond laser processing 

systems. Recently, Gnilitskyi et al. [50] reported that it was possible to produce highly regular 

LIPSS with a throughput 2.5 times’ faster than that reported by Bonse et al. and thus the 

processing time and cost could be even lower. At the same time should be noted that the 

relative processing cost could be reduced further if the advantages and benefits of using such 

functionalized surfaces are taken into account in the context of specific applications. For 

example, the cost of using such LIPSS gratings for improving the tribological performance of 

products was calculated to go down to 0.002 €/ (cm2 × %) as the friction reduction was 

approximately 50% [9]. 

 

5. Conclusions  

A method for producing holograms on metallic surfaces by using ripples’ gratings is proposed 

in this research. Especially, gratings were generated where the LIPSS orientation was varied 

with a predefined periodic function. By applying the proposed method, linear and radial 

periodic ripples’ gratings with angular periodicity were produced that exhibited a smooth 

diffraction of monochromatic light along beam path, especially reflecting different colors when 

changing the azimuthal and incident angles. In addition, the reflection of polarized white light 

by such gratings was investigated and it was shown that it was fully dependent on the LIPSS 

orientations in respect to the light linear polarization vector. In particular, the light was reflected 

only when the linear polarization vector was parallel to the LIPSS grating vector. The proposed 

method for producing periodic ripples’ gratings could find applications in different areas, e.g. 

anti-counterfeiting, tribology, self-cleaning, bactericidal and cell growth enhancing surfaces, 

and optical applications. 
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Figure S1. Fields of linear periodic pattern of ripples orientations processed with different 
stepper motor rotation to beam scanning speeds ratios.  

 

 



 

 

 

 

 

Figure S2. Fields of radial periodic pattern of ripples orientations processed with different 
stepper motor rotation to beam scanning speed ratios.  

 

 


