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Characterising the effects of shape on tool path motion

Abstract

This paper presents a methodology for a priori shape characterisation of

tool path motion. Many current methods to describing tool path motion require

explicit knowledge of the motion control algorithms implemented on a specific

machine. Either a method proposes novel algorithms or requires knowledge

of the algorithms currently implemented in a given machine’s controller (e.g.

minimum jerk, harmonic jerk and minimum jounce). This paper provides a

method, that may be applied on any machine, to characterise motion in terms

of a tool path’s intrinsic shape properties. The characterisation identifies the

achievable set of kinematics for a tool path of a given shape without the need

for physical machining and a knowledge of the motion control algorithms. The

characterisation may be employed in a pre-processing manner to inform the

selection of NC file tool path motions. This can therefore help to reduce the

material and energy resources being consumed during iterative machining trials

and so improve the efficiency and productivity of the manufacturing process.

Keywords: tool path; shape; kinematics

1. Introduction

To manufacture computer-aided design (CAD) models, computer-aided man-

ufacturing (CAM) software can produce commands for computer numerically

controlled (CNC) machines. Integral parts of these commands are descriptions

of desired motions of the cutting tool relative to the workpiece. Such descriptions5

are commonly referred to as tool paths. In general, tool paths are discretised

and presented to a machine’s controller as a locus of poses. A single pose defines

a tool’s position and orientation. A tool path can also be considered as a locus

Preprint submitted to International Journal of Machine Tools and ManufactureApril 20, 2018
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of positions when a desired motion does not require changes in orientation.

A controller attempts to interpolate discretised tool paths by coordinating10

motion of independent translational and/or rotational axes. Linear and circu-

lar interpolation has traditionally been employed [1]. Piecewise-impulse and

constant curvature profiles of such interpolated tool paths, can severely impede

realisation of optimal kinematics and quality of the resulting machined compo-

nent [2, 3].15

Consider a tangent discontinuous tool path composed of linear segments.

The tangent vector at the junction of consecutive segments is not unique. A

singularity in the tool paths curvature function exists at such a point. This cor-

responds to instantaneous change in direction, which is not possible in practice.

To follow the path exactly, the cutting tool must come to rest at the junction.20

This intermittent motion requires changes in acceleration. The rate of change

of acceleration, with respect to time, is defined as jerk [4]. The jerk experienced

in such a motion can change resultant forces on the cutting tool, resulting in

deflection marks on the surface of the machined component [5]. Also, fluctu-

ations in feed rate, acceleration and jerk increase numerical control cycle time25

and in turn reduce productivity [6].

To reduce fluctuations in kinematic properties of tool path motion, CNC

controllers can permit the actual path to deviate from tangent discontinuous

junctions by a given tolerance [6]. By accelerating drives that will be active in

the next segment and decelerating drives that are currently moving, the cutting30

tool is able to bypass a junction with a feed rate greater than zero. The greater

the commanded feed rate, the greater deviation required to ensure kinematic

limits of a given machine are not exceeded. The precise nature of the deviating

motion may not be known to the user.

Due to machine manufacturers having ownership to the motion control al-35

gorithms implemented in controllers, their specifics are indeed not generally

accessible to the engineers using the CNC machines [7]. It is for this reason

that the effects of controller regulation on tool path motions are generally iden-

tified after numerous machining trials. To initially specify tool path motion

2
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parameters, such as feed rate and spindle speed, engineers therefore rely upon40

the recommendations of cutting tool manufacturers. These suggested values

are however often based on assumptions of simple components with tool paths

describing simple motions, predominately linear. Paths with varying curvature

profiles, referred to in this paper as free-form paths, place a greater burden on

control algorithms to generate the resulting motions.45

Kinematics imposed by the shape of a free-form path, may exceed the ca-

pabilities of a given machine. For example, to maintain a specified feed rate, a

machine must provide at each point, an acceleration proportional to curvature.

If unachievable, a machine’s controller must moderate axes motions to provide

permissible kinematics. In general a reduced feed rate is observed.50

For a given application, the autonomous regulation of kinematics by a con-

troller may produce undesirable and unknown machining conditions. A com-

manded feed rate may have been specified to achieve particular conditions, for

example specific material removal rates or surface finish. NC file tool path mo-

tions may therefore need to be optimised for the given application. In such55

instances machinist experience can be significant [8].

The optimisation methods employed may be iterative and informed by em-

pirical evidence from machining trials. Such a posteriori attempts to obtain

suitable tool path motions are often heuristic and time intensive. Prior knowl-

edge of the effects of specified NC file tool path motions, on the actual machine60

motions, can inform their selection. This in turn may reduce the time and

number of machining trials thereby increasing the efficiency of the machining

process.

It should be noted that knowledge of a specific motion algorithm only en-

ables tool path motion description for the machine upon which it is used. The65

main contribution of this paper is that it proposes a methodology that may

be employed on any machine tool in order to obtain a suitable description of

tool path motion without the need for physical machining or knowledge of the

control algorithms implemented in the given machine’s controller. The resulting

description of tool path motion depends only upon the intrinsic shape properties70
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of a desired tool path and the kinematic limits of the given machine. Both these

parameters are of the few conditions that are indentifiable without undergoing

the iterative machining trial procedure. The paper therefore provides a priori

shape characterisation of tool path motion. The characterisation may be em-

ployed to inform the selection of machining parameters and thereby reduce the75

time and the number of machining trials.

Currently, the primary means of describing tool path motion prior to physical

machining is to acquire knowledge of the motion algorithms implemented in the

machine’s controller. However, as stated above, the algorithms are often not

generally accessible. This has not deterred academia from proposing their own80

novel algorithms.

In general the proposed algorithms moderate both the commanded feed rate

and tool path shape specified in the NC file in order to adhere to the machine’s

kinematic limits [9]. An algorithm may first fit a smoother path that interpolates

the discrete NC file tool path poses whilst still adhering to the desired positional85

tolerances and then schedule an appropriate feed rate profile for the path’s

traversal [9].

Consider again the tangent discontinuous linearly segmented tool path. In

order to combat the impractical kinematic demands imposed by the path’s

shape, a control algorithm may replace the junction between consecutive lin-90

ear segments with a circular arc [6]. The direction of the tangent vector no

longer changes instantaneously, thus enabling a continuous feed rate profile.

Despite the revised tool path improving the motion, in the sense that traversal

no longer requires an infinite acceleration, constant feed rate motion still can-

not be realised. Although the imposed infinite acceleration has been removed,95

the new tool path’s piecewise constant curvature imposes infinite jerk at the

beginning and end of the arc. Attempts to produce these instantaneous changes

in acceleration can excite vibrations in the mechanical structure of a machine

and in turn degrade the dynamic performance of the servomotors [10]. It has

been shown that constraining the permissible jerk experienced by each axis can100

limit the oscillatory behaviour of a machine and thus produce smoother tool

4
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path motions [11]. Thus many motion control algorithms consider limited-jerk,

minimum-jerk and harmonic-jerk movement laws [11–13]. Further by constrain-

ing the magnitude of the resultant jerk vector the cutting tool may follow the

revised tool path exactly [12, 13].105

Non Uniform Rational Basis Spline (NURBS) tool paths can also be imple-

mented directly on many modern controllers. Motion control algorithms may

use NURBS tool paths to avoid the impractical kinematic demands of linear and

circular segments [14–17]. For example, two quartic polynomial splines can be

used to achieve continuous curvature cornering within user specified tolerances110

[14]. A single G2 quintic Bézier can be used to ensure axis acceleration limits

are adhered to [15]. Many other proposed algorithms use B-splines as they offer

flexibility in locally changing the shape of a tool path [16, 17]. However, the

polynomial nature of NURBS means that tool paths can experience undulat-

ing oscillations in curvature which in turn impose fluctuations in the kinematic115

properties of tool path motion [7, 18].

As stated above, a key disadvantage of the current approaches is that they

are only applicable to the given machines upon which the algorithms are imple-

mented. The following sections of this paper describe and discuss an approach

that may be employed on any machine in order to obtain a suitable characterisa-120

tion of tool path motion without the need for physical machining or knowledge

of the machine’s motion control algorithms. Section 2 presents a description

of machine motion in terms of tool path shape. Section 3 considers effects of

kinematic limits on resulting motion. A Hermle C600U machine tool is then in-

vestigated as an example. First, in section 4, its kinematic limits are established125

by considering circular motions. Next, in section 5, planar spirals are traversed

to consider the Hermle’s behaviour to free-form path traversal. Section 6 de-

tails effects of shape in light of research undertaken. Finally, section 7 draws

conclusions from key findings and suggests an area for future research.

5
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2. Shape properties of motion130

2.1. Local frame

The path traversed by a specified point on a cutting tool during a given

motion can be represented as a parametric space curve, r(u), where u is an

arbitrary parameter [19]. Assuming the path is continuous and differentiable,

analysis of motion can be simplified by expressing it as a vector valued, time,135

t, parameterised function, in three dimensional Euclidean space, E3. r(t) =

〈x(t), y(t), z(t)〉, 0 ≤ t ≤ T , x(t), y(t) and z(t) ∈ R and T is the total time for

the motion.

Employing a local coordinate system called the Frenet frame may facilitate

describing each point in terms of shape properties of a tool path [18]. Consider-140

ing changes in frame orientation as time increases can provide insight into effects

of shape on tool path motion. As time increases it is assumed that the distance

travelled along the path, arc length, s, increases monotonically. By reparame-

terising the path to arc length, frame motion may be expressed in terms of the

path’s intrinsic shape properties. Also a reparameterisation does not change145

the shape of the tool path. It then follows that r(s) ≡ r(t), assuming s = s(t)

is differentiable and the inverse t = t(s) exists. By letting s(t) =
∫ ∥∥ṙ(t)

∥∥ dt be

such a parameterisation,

dt̂(s)

ds
= κ(s)n̂(s) , (1)

dn̂(s)

ds
= −κ(s)̂t(s) + τ(s)b̂(s) , (2)

and

db̂(s)

ds
= −τ(s)n̂(s) . (3)

In Eqs. 1, 2 and 3, t̂(s), n̂(s) and b̂(s) are defined as the unit tangent, prin-150

cipal normal and binormal vectors respectively and functions κ(s) and τ(s) refer

to shape properties curvature and torsion respectively [20]. Formally κ(s) and

6
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τ(s) are defined by Eqs. (1) and (3) respectively. They can also be considered

to describe frame motion and in turn any object that moves with the frame,

for example a cutting tool. As a Frenet frame traverses a path, κ(s) and −τ(s)155

describe the angular velocities of unit tangent and binormal vectors [18]. Fur-

ther, curvature and torsion are independent of path parameterisation. They are

euclidean invariants and more over, they uniquely define a tool path’s shape.

Arc length parameterisation of tool paths provides a means of describing tool

path motion in terms of intrinsic shape properties, curvature and torsion. Such160

descriptions are machine independent. The corresponding kinematic demands

on a machine’s motors can therefore be expressed without reference to a ma-

chine’s coordinate system. Only tool path shape and commanded feed rate are

required to describe the velocity, v(t), acceleration, a(t) and jerk, j(t), imposed

on a machine’s servo motors.165

2.2. Velocity vector

The derivative of position vector, r(s), with respect to time, t, produces the

velocity vector, v(t),

v(t) =
d

dt
{r(s)} .

The magnitude of this vector quantifies the rate at which the arc length of

a tool path changes with respect to time. In the context of machining, the170

magnitude of velocity is perhaps more appropriately referred to as feed rate.

The vector describes the rate at which a tool is moving relative to a tool path

in the direction of a linear curve, having first order contact with the tool path.

In general, an arc length parameterised curve of order n, having nth order of

contact to the tool path at a given point, is defined as a nth order osculant [20].175

For the velocity vector, the osculant is a line that best approximates the path

in the vicinity of a given point

v(t) =
ds

dt

dr(s)

ds
.

7
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Therefore,

v(t) =
ds

dt
t̂(s) . (4)

2.3. Acceleration vector

The derivative of velocity vector, v(t), with respect to time, t, produces the180

acceleration vector, a(t). Therefore,

a(t) =
d

dt

{ds
dt

t̂(s)
}

=
d2s

dt2
t̂(s) +

{ds
dt

}2 dt̂(s)

ds
.

Substituting Eq. (1) into the above equation produces an expression for the

acceleration vector in terms of its tangent and normal components:

a(t) =
d2s

dt2
t̂(s) +

{ds
dt

}2

κ(s)n̂(s) . (5)

The tangential component describes the rate of change of feed rate with respect

to time. The normal component may be interpreted geometrically in terms of185

curvature. Its magnitude is proportional to the rate at which the unit tangent

vector changes direction with respect to arc length. At a given point the normal

component acts towards the centre of the circle of curvature [20]. This circle is

a second order osculant at each point on the path. Its derivatives, up to and

including order two, agree with those of the path [20]. The normal acceleration190

component is therefore commonly referred to as centripetal (centre seeking)

acceleration [21]. Eq. (5) shows that it consists of a time dependent and a

shape dependent element, feed rate, ds/dt, and curvature, κ(s), respectively.

To illustrate the effect of each element on centripetal acceleration, an(t), the

normal component of Eq. (5) may be visualised as a surface expressed explicitly195

in terms of ds/dt and κ(s), an(t) = (ds/dt)2κ(s) (Fig. 1). For a constant

feed rate, ζ, centripetal acceleration increases linearly with curvature, an(t) =

8



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 1: Centripetal acceleration surface

ζ2κ(s) (Fig. 1). For a constant curvature, K, centripetal acceleration increases

parabolically with feed rate, an(t) = (ds/dt)2K (Fig. 1).

2.4. Jerk vector200

Jerk has perhaps received comparatively little attention since it does not

appear in mathematical expressions of fundamental engineering concepts likes

energy, force and momentum. However, trends of high speed machining and

increased part shape complexity, have lead to jerk becoming an important pa-

rameter that should be well considered [7]. Jerk has been shown to influence205

vibrations of industrial high-speed systems [22]. Significant research has been

conducted to consider jerk when planning machine tool motion [9, 23–25]. The

affects of shape on this kinematic property are therefore described below.

Taking the derivative of Eq. (5) with respect to time and making substitu-

tions with Frenet-Serret formulae it can be shown that jerk can be described as210

the sum of three orthogonal components (See Appendix B).

j(t) = jt(t)̂t(s) + jn(t)n̂(s) + jb(t)b̂(s) ; (6)

where

9
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jt(t) =
d3s

dt3
−
{ds
dt

}3

{κ(s)}2 ,

jn(t) = 3
ds

dt

d2s

dt2
κ(s) +

{ds
dt

}3 dκ(s)

ds
,

and

jb(t) =
{ds
dt

}3

κ(s)τ(s) .

Just as the normal component of acceleration can be expressed in terms of

curvature, the normal component of jerk can be expressed in terms of a higher215

affine differential invariant of plane paths, namely aberrancy [26]. Aberrancy

is a measure of local asymmetry of a path with respect to a path’s normal at

a given point [26]. It can be shown that the normal component of jerk, at a

given point on a path, is related to a third order osculant called the osculating

parabola. This is a unique parabola whose Cartesian derivatives, up to and220

including order three, agree with those of the path [4].

2.5. Kinematic demands

This section shows, curvature and torsion are intrinsically related to veloc-

ity, acceleration and jerk. It follows that tool path shape imposes particular

kinematic demands on a machine’s motors [7]. In practice, a given machine’s225

motors are only supplied with finite amount of electrical energy. Some of this

electrical energy is converted, with losses, into mechanical energy in order for

the motors to produce limited power and torque in their attempt to provide

the desired motion. For example, motors must provide sufficient power to over-

come machine inertia, cutting forces and friction [2]. The kinematic demands230

resulting from tool path shape also correspond to specific energy requirements.

If these requirements exceed physical capabilities of motors, specified motions

may be compromised.

10
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3. Bounded motion

3.1. Kinematic limits235

The specific nature of how a given machine may regulate its kinematic per-

formance is often the intellectual property of machine and controller manufac-

turers. This section characterises, in terms of intrinsic shape properties, possible

planar motion (τ(s) = 0) behaviour a machine may adopt in order to adhere to

kinematic limits. Two distinct phases of kinematic behaviour are considered.240

First, motion at the commanded feed rate, Ψ1, is considered. Such motion is

defined as velocity limited phase motion. Second, the magnitude of the cen-

tripetal acceleration vector is constrained to Ψ2. The resulting effects on the

kinematics vectors of tool path motion are defined as acceleration limited phase

motion. For example, Fig. 2 shows that at (κα,Ψ1) the commanded feed rate is245

no longer achieved and as a result of the enforced constraint on the centripetal

acceleration vector, the feed rate must decrease.

3.2. Velocity limited phase

To maintain a specified feed rate, Ψ1, along a tool path, a machine must

produce the required kinematics (velocity, acceleration, jerk, etc.). A constant250

feed rate implies the velocity vector is

v(t) = Ψ1t̂(s) . (7)

If ds/dt = Ψ1 it follows that,

d2s

dt2
=
d3s

dt3
= 0 .

There is therefore no tangential acceleration for constant feed rate traversal. The

acceleration vector then lies solely normal to the direction of travel. Eq. (5) thus

becomes,255

a(t) = Ψ2
1κ(s)n̂(s) . (8)

11
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Given constant feed rate, the jerk vector (Eq. (6)) becomes,

j(t) = Ψ3
1

[dκ(s)

ds
n̂(s)− {κ(s)}2t̂(s)

]
. (9)

3.3. Acceleration limited phase

To prevent a machine’s centripetal acceleration exceeding it’s bound, Ψ2,

the controller may regulate motion. A possible action is to continue to provide

maximum centripetal acceleration despite curvature imposing a greater magni-260

tude. The curvature at which kinematic behaviour transitions between phases,

referred to in this paper as transition curvature, κα, can be identified from the

normal component of Eq. (5). It follows κα = Ψ2/Ψ
2
1. During the acceleration

limited phase:

{ds
dt

}2

κ(s(t)) = Ψ2 ,

and so,265

ds/dt =
√

Ψ2/κ(s) . (10)

The magnitude of velocity is thus inversely proportional to the root of curvature,

v(t) =
√

Ψ2/κ(s)̂t(s) . (11)

A tangential deceleration must occur if feed rate reduces. The second deriva-

tive of arc length with respect to time provides an expression of the necessary

tangential deceleration,

d2s

dt2
= −1

2

√
Ψ2

{κ(s)}3
dκ(s)

ds

ds

dt
.

Because of Eq. (10), the tangential acceleration component can be expressed as270

d2s

dt2
= −1

2
Ψ2

1

{κ(s)}2
dκ(s)

ds
. (12)

12
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Thus the complete acceleration vector is given by

a(t) = Ψ2

[
n̂(s)− 1

2

1

{κ(s)}2
dκ(s)

ds
t̂(s)

]
. (13)

The normal component of acceleration is constant by definition and Eq. (12)

shows that the magnitude of the tangential component is inversely proportional

to the square of the curvature of the tool path.

An expression for tangential jerk, jt(t), requires evaluation of the third275

derivative of arc length with respect to time (See Eq. (6)). It can be shown

that (See Appendix C),

d3s

dt3
= −1

2
Ψ2

√
Ψ2

√
κ(s)

1

{κ(s)}3

[
d2κ(s)

ds2
− 2

1

κ(s)

{
dκ(s)

ds

}2
]
.

Given that,

{ds
dt

}3

{κ(s)}2 = Ψ2

√
Ψ2

√
κ(s) ,

it then follows that tangential jerk can be expressed as

jt(t) = −
Ψ2

√
Ψ2

√
κ(s)

2{κ(s)}3

[
d2κ(s)

ds2
− 2

1

κ(s)

{dκ(s)

ds

}2

+ 2{κ(s)}3
]
. (14)

In general, the magnitude of the tangential jerk at the end of the velocity280

limited phase, V , is not equal to the magnitude of the tangential jerk at the

beginning of the acceleration limited phase, A, V 6= A. This implies the

jerk profile is discontinuous. The magnitude of this discontinuity, |V − A|, is

dependent on kinematic limits of the given machine, feed rate and the rate at

which curvature changes with respect to arc length.285

Substituting Eqs. (10) and (12) into the expression for the normal component

of jerk (Eq. (6)) replaces the time dependent elements (ds/dt and d2s/dt2) with

corresponding shape elements (κ(s) and dκ(s)/ds). It then follows that,

jn(t) = −
Ψ2

√
Ψ2

√
κ(s)

2{κ(s)}2
dκ(s)

ds
. (15)

13
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Having described the characteristics of bounded tool path motion in terms

of shape, Eqs. (7–9), (11) and (13–15) are consolidated into a series of diagrams,290

referred to in this paper as shape schematics (Figs. 2, 3, 4 and 5).

Curvature alone describes the shape of a planar tool path [20]. By plotting

the magnitude of each kinematic vector with respect to curvature, each of the

shape schematics provide a complete illustration of the effects of planar tool

path shape on a given kinematic vector. Further, by considering a constant295

curvature derivative, the shape of the profiles are independent of any derivative

of curvature with respect to arc length, dnκ(s)/dsn, n ≥ 1. Within the context

of the schematics, these derivatives simply correspond to the rates at which

the profiles are rendered. For simplicity, it is assumed that the schematics are

rendered at a constant rate, specifically dκ(s)/ds = 1⇒ dnκ(s)/dsn = 0, n ≥ 2.300

In Fig. 3, γ1 denotes the value of the instantaneous deceleration required

tangential to the path as the motion transitions into the limited acceleration

phase. γ1 can be found by substituting κα into Eq. (12). Since d2s/dt2
∣∣
κ(s)=κα

≡

γ1 and dκ(s)/ds = 1,

γ1 = −1

2
Ψ2

1

κ2α
.

In Fig. 4, γ2 denotes the value of the instantaneous jerk required opposite to305

the direction of the principal unit normal vector, as the motion transitions into

the limited acceleration phase. γ2 can be found by evaluating Eq. (15) when

κ(s) = κα. It then follows that,

γ2 = −
Ψ2

√
Ψ2
√
κα

2κ2α
.

In Fig. 5 both γ3 and γ4 denote values of the tangential jerk at the transition

curvature. If a given motion transitions from the velocity limited phase to the310

acceleration limited phase, the schematic shows the magnitude of tangential

jerk changes instantaneously from |γ3| to |γ4|. If a motion transitions from

the acceleration limited phase to the velocity limited phase, the magnitude

of tangential jerk changes instantaneously from |γ4| to |γ3|. Considering the

14



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

tangential component of Eq. 9 it follows that,315

γ3 = −Ψ3
1κ

2
α .

γ4 can be found from Eq. (14). Since dκ(s)/ds = 1 ⇒ d2κ(s)/ds2 = 0,

therefore at the transition curvature, κα,

γ4 = Ψ2

√
Ψ2

{√
1

κ7α
−
√
κα

}
.

γ5, in Fig. 5, denotes the point at which the direction of the tangential jerk

vector changes again. This can be found by equating Eq. (14) to zero and

accounting for κ ≥ κα.320

Discontinuities present in the schematics arise from the idealised assumption

of removing acceleration and deceleration from and to rest. In practice these

discontinuities, that occur at the transition curvature, refer to the discrete time

period where the machine transitions from one limited phase to another. The

actual curvature at which this transition begins must therefore be less than the325

theoretical transition curvature.

4. Identifying kinematic limits

4.1. Strategy

Differences between requested and achieved kinematics for specified tool

paths can be analysed to establish a given machine’s limits. Circular motion330

is deemed appropriate to identify these limits. Since the paths are of con-

stant curvature, kinematics imposed by shape remain constant throughout mo-

tion. Analysis of requested motion is further simplified as the paths are closed

and so motion is periodic and can be characterised as simple harmonic motion

(SHM). For constant feed rate (ds/dt = vc) traversal of circular tool paths (let335

κ(s) = κc), Eqs. (4), (5) and (6) reduce to v(t) = vct̂(s), a(t) = v2cκcn̂(s) and

j(t) = v3cκ
2
c t̂(s) respectively. The magnitudes of velocity, acceleration and jerk

can thus be quantified by establishing the feed rate achieved for a test tool path

of a given curvature.
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√

1
κ

Figure 2: Velocity schematic

4.2. Data acquisition340

As an example, the kinematic behaviour of a Hermle C600U machine tool

(Fig. 6) is investigated. Using the machine’s maximum feed rate (35m/min)

for testing, ensures the highest kinematic demands are enforced on the machine

for each circular path. It then follows that the achieved kinematics, on a given

circular path, are the maximum attainable for the corresponding curvature.345

The machine has a combination of 3 linear axes configured in a Cartesian

coordinate system and a tilting rotary table. Circular motions are performed

through simultaneous motion of 2 linear axes. The specific two linear axes

chosen are immaterial. Each linear axis is orthogonal to the other two, therefore

assuming each axis has the same kinematic capabilities, the kinematic properties350

of each axis form Cartesian components of the resultant kinematic properties of

tool path motion. Technical data, presented in the literature for the machine,

indicates that indeed all axes have the same kinematic specification [27].
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Figure 3: Acceleration schematic
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Figure 4: Normal jerk schematic
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Figure 5: Tangential jerk schematic
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Figure 6: Hermle C600U

Performing multiple revolutions of a circular path can provide sufficient time

for the digital read-out (DRO) of feed rate from the controller (TNC430A) to355

stablise. The DRO is therefore used as a preliminary indication of feed rate,

vDRO.

An inertial sensor, specifically a tri-axial accelerometer is used as an indepen-

dent source of measurement. The main principle upon which the accelerometer

operates is the piezoresistive effect [28]. This is a phenomenon whereby the360

application of mechanical stress causes a change in the electrical resistivity of a

semiconductor material [29]. A Wheatstone-bridge configuration of piezoresis-

tors measure and amplify this change in resistance and produce a voltage that is

proportional to the acceleration experienced by the accelerometer and in turn,

any object attached to it [30].365

Figure 7: Tri-axial accelerometer
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A SoMat eDAQ-lite data acquisition system (Fig. 8) is used to draw signals

from the accelerometer and process data [31]. SoMat Test Control Environ-

ment (TCE) software is the interface through which setup, calibration and data

retrieval is preformed [32].

Figure 8: SoMat eDAQ-lite set up

4.3. Analysis370

To remove contributions of accelerations from and to rest, multiple revolu-

tions (5 revolutions) are preformed of each circular path and initial and final

revolutions are ignored from analysis. Three different methods of quantifying

kinematics for a given test are employed as a means of improving reliability of

data.375

From the controller’s DRO of feed rate, vDRO, the acceleration, aDRO =

v2DROκc and jerk, jDRO = v3DROκ
2
c , are deduced.

Using time data from the accelerometer, an average of the time periods, Tt,

for intermediate revolutions is taken and since the length of each path, S, is

known, an estimate to feed rate, vt = S/Tt, can be obtained. Thus a measure380

of acceleration, at = v2t κc and jerk, jt = v3t κ
2
c , can be made. Similar approaches

to quantify the kinematics of tool path motion from timings have also been

employed in industry [33–35].

Output of the accelerometer is axes accelerations and motion times. The ac-

celeration signals of a given test result from many contributing factors, including385

tool path shape. It can be shown that a given signal can be represented as a
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collection of sinusoids [36]. Fourier analysis is used to identify characteristics

(amplitude A, phase φ, frequency f) of each component sinusoid. This infor-

mation is used to calculate time period, TF = 1/f , of a given circular motion

and thus obtain the feed rate, vF = S/TF. The associated acceleration, aF, and390

jerk, jF, are given by aF = v2Fκc and jF = v3Fκ
2
c .

To demonstrate Fourier analysis, consider traversal of a circular path of

1mm radius at a commanded feed rate of 35m/min. Fig. 9 illustrates the

acceleration profiles extracted from the accelerometer. To express a discrete

acceleration signal, a(ti), of N samples, in the frequency domain, â(fi), the395

following transform is used.

â(k) =

N∑
j=1

a(j)W
(j−1)(k−1)
N ,

where WN is a complex number and WN = e−
2πi
N . Applying the transform

to each axis acceleration profile (ax(t) and ay(t)) allows each profile to be rep-

resented in the frequency domain (âx(f) and ây(f)). Fig. 10 illustrates the

frequencies and the relative amplitudes of the sinusoids present in each axis400

acceleration profile. Since tool path motion occurs without physical machining

and surplus mechanical loading (e.g. cutting tool in the spindle), the dominant

frequency in Fig. 10 maybe attributed to the acceleration signal imposed by

tool path shape. This frequency may then be used to derive the time period of

the given circular motion and the subsequent kinematic properties as described405

above.

Each of the three methods is applied to obtained the kinematics produced

by the machine for each tool path. Figs. 11 and 12 summarise the results.
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Figure 11: ALP - velocity and acceleration

The variation in magnitude of the centripetal acceleration, with respect to

curvature, is considered negligible compared to the variation in achieved feed410

rate. The profiles then demonstrate the constant centripetal acceleration fea-

ture, upon which the characteristic model, given in section 3, is based.
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Figure 12: ALP - acceleration and jerk

The results suggest that, for the maximum commanded feed rate, centripetal

accelerations imposed by curvatures of circular tool paths exceed the capabilities

of the machine. The commanded feed rate is not achieved for any test tool415

path. Feed rate profiles (Fig. 11) resemble the schematic shown in section 3.

The magnitudes of the centripetal accelerations remain constant, relative to the

variations in magnitudes of velocity and jerk. Fig. 11 describes the maximum

feed rate attainable by the machine for a given curvature.

A lower commanded feed rate is obtainable for paths whose curvatures do420

not impose a centripetal acceleration greater than the Hermle’s limit. Fig. 13

demonstrates that a commanded feed rate of Fc = 0.05 m/s ≡ 3000 mm/min

is obtainable for four of the test tool paths, specifically paths of curvatures

κ = 20, 25, 33.3̇ and 50m−1. Further, Fig. 14 shows the machine is able to

provide the necessary centripetal accelerations and jerks in order to achieve the425

lower commanded feed rate. It should be noted that the specific value chosen for

the lower commanded feed rate tests is immaterial. The only necessary condition

is that it should be achievable for the test curvatures. Traversing a circle of

curvature 33.3̇m−1, at a commanded feed rate of 0.05m/s, imposes a centripetal
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acceleration of 0.083̇ m/s2. As illustrated by empirical data presented in Fig. 11,430

such an acceleration is achievable and so the lower commanded feed rate can be

achieved on the test path. It then follows that the feed rate can be achieved for

the test tool paths with lower curvatures.
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Figure 13: VLP - velocity and acceleration
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Figure 14: VLP - acceleration and jerk

5. Spiral path experiments

5.1. Cornu spiral tool path435

Empirical data, presented in the previous section, suggests the Hermle’s tool

path motion can be characterised by equations developed in section 3. How-

ever, profiles in section 4 are derived from a number of constant curvature tool

paths, not a single path with varying curvature. To further the investigation,

kinematics produced from traversing a Cornu spiral path are analysed.440

A Cornu spiral is a planar path, defined by a linear curvature profile κ(s) =

αs + β, s ≤ s ≤ L and α, β ∈ R [37]. The path’s curvature imposes a magni-

tude of centripetal acceleration that increases linearly with arc length (Eq. 5).

By defining α, β and L such that the Hermle’s transition curvature κα (see

section 3.3) lies on the path, a change from the velocity limited phase to the445

acceleration limited phase may be observed. Further, since the curvature profile
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is monotonic, empirical kinematic profiles may produce the same characteristic

features as illustrated by Figs. 2, 3, 4 and 5.

In practice, a path with a linear curvature profile cannot be represented ex-

actly in a NC file. Since paths of constant curvature can be represented exactly,450

linear and circular arc segmented tool paths are used to form approximations

to a Cornu spiral’s linear curvature. For both types of tool path, the seg-

ment lengths are kept constant (linear segment length is Lline and arc segment

length is Larc) and sufficiently long to negate influences of controller processing

capability. The minimum segment length, smin, is identified and verified by455

experimental data presented in Appendix A.

5.2. Path generation
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Figure 15: NC File Tool Paths
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Linear segmentation. Eqs. (16) and (17) show that positions on a Cornu spiral

path (x(s), y(s)) can be expressed in terms of it’s curvature profile,

x(s) = x0 +

∫ s

0

cos
[
θ0 +

1

2L
{2κ0Lσ + (κ1 − κ0)σ2}

]
dσ , (16)

and460

y(s) = y0 +

∫ s

0

sin
[
θ0 +

1

2L
{2κ0Lσ + (κ1 − κ0)σ2}

]
dσ , (17)

where (x0, y0) is the start of path, θ0 is initial angle made the path with x-axis,

L is the total length of path and κ0 and κ1 are initial and final path curva-

tures respectively [37]. The expressions contain transcendental functions called

Fresnel integrals [38]. Numerical methods are therefore required to approximate

curvature synthesis [39].465

Some error may be present in the result due to the numerical nature of the

approximation. Since the true value of a position is not knowable, the error

in a given result cannot be stated. However it is possible to bound the error

of numerical integration between two given limits, smin and smax. To simplify

analysis of the error bound, εB , the trapezoidal rule is adopted for numerical470

integration [38]. The error bound can thus be given as

εB = − (smax − smin)3{κ0L+ (κ1 − κ0)smax}2

12N2L2
,

where N is the number of segments in the given interval. The derivation of

this error bound is provided in Appendix D. Provided the error is less than the

positional accuracy of the given CNC machine, the positions form the closest

representation of Cornu spiral path positions for the given machine.475

The positions are linearly interpolated and since the curvature of a Cornu

spiral changes strictly monotonically, consecutive linear segments join with po-

sition continuity, G0. The result is an impulse curvature series that approxi-

mates a Cornu spiral’s linear curvature profile. The diagram shown in Fig. 16

illustrates the approximation. Eq. (5) shows that at each joint in a linearly480

segmented spiral, the path shape imposes an infinite acceleration in the normal
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Figure 16: Piecewise impulse curvature profile

direction to the path, |an(s)| = ∞. Constant feed rate traversal cannot be

achieved for such a path. The machine’s controller may fluctuate feed rate in

order to accommodate impractical demands of the tool path shape.

Biarc segmentation. Circular arcs are another type of constant curvature path485

that can be represented exactly. Connecting two circular arcs with tangent

continuity, G1, forms a composite curve known as a biarc [40]. By using biarcs,

tangent continuity is achievable whilst still providing a path whose curvature

can vary. To ensure tangent continuity, the centre of the second arc, Oi+1, must

lie on the line passing through the centre of the first arc, Oi, and the end point490

of the first arc, Pi+1. To generate an approximation to a Cornu spiral path the

following scheme is employed (Fig. 18).

1. Rotate point Pi about centre Oi through angle θi = Larc/ri .

2. Find new radius. ri+1 = 1/(αsi+1), where si+1 = si + Larc .

3. Find the new centre of rotation Oi+1. O(ri+1) = Pi+1ri+1 +Oi(λ−ri+1),495

where λ =‖Oi −Pi+1‖ .

The result is a piecewise constant curvature series that approximates a Cornu

spiral’s linear curvature profile. The diagram shown in Fig. 17 illustrates the

approximation. A step change in curvature corresponds to a point where two

arc segments meet. The magnitude of curvature changes instantaneously from500

1/ri to 1/ri+1. Eq. (6) shows the shape of a biarc segmented spiral path imposes
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Figure 17: Piecewise constant curvature profile

an infinite jerk in the normal direction to the path, |jn(s)| =∞. This kinematic

demand is not achievable. As with the linearly segmented spiral tool path, the

biarc segmented spiral tool path requires a machine controller to comprise the

requested motion and produce an alternative motion that its control algorithms505

deem appropriate.

Test paths. Both approximations generate paths whose shapes impose imprac-

tical kinematic demands. To investigate behaviour of the Hermle in response

to these demands, a linearly segmented Cornu spiral path and a biarc seg-

mented Cornu spiral path are traversed with the same commanded feed rate.510

The lower the chosen feed rate, the higher the path’s curvature values need

to be in order for the Hermle’s centripetal acceleration limit to be exceeded.

Practically, the selected feed rate and curvature profile must result in accelera-

tions that can be measured by the chosen data acquisition system. Preliminary

testing reveals that traversing the paths shown in Fig. 15, developed from the515

intrinsic equation κ(s) = 2s, 0 ≤ s ≤ 0.4m, with a commanded feed rate of

0.5m/s ≡ 30m/min, produces accelerations that can be measured by the tri-

axial accelerometer (Fig. 7). Further, as discussed above (section 5.1), the cho-

sen combination of feed rate and tool path shape ensure that the corresponding

transition curvature lies on the desired Cornu spiral path. Each tool path also520

has acceleration and deceleration segments, 0.06m in length (Fig. 15). They
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Figure 18: Biarc construction

ensure acceleration and deceleration from and to rest to occur outside the range

of the test curvatures. These added segments join to their respective spiral

paths with the same level of geometric continuity achieved by the rest of the

path; G0 for the linear segments approximation and G1 for the biarc segments525

approximation.

5.3. Motion Analysis Methodology

The limits Ψ1 and Ψ2 are key kinematic attributes that define the bounded

motion behaviour shown in section 3. These limits can be identified from profiles

describing feed rate and normal acceleration performance with respect to cur-530

vature (Figs. 2 and 3). The feed rate and normal acceleration profiles from the

spirals motions are therefore analysed in order to identify whether the Hermle

exhibits the same bounded motion behaviour.

Data extracted from the accelerometer presents acceleration in terms of ma-

chine axis components ax(t) = ax(t)x̂m and ay(t) = ay(t)ŷm. Achieved axes535

velocities and displacements are derived from axis acceleration profiles. Feed

rate, normal acceleration and curvature can then be deduced.
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The biarc approximation spiral tool path case is used to demonstrate the

analysis procedure. Fig. 19 presents accelerations experienced by the Hermle’s

x and y axes.540
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Figure 19: Biarc spiral acceleration profile

Integration of each axis acceleration component results in axis velocity. Each

element of a discrete set of acceleration values may harbour some degree of error.

This error is preserved through integration and as a result misrepresents velocity.

Fig. 20 shows velocity resulting from integration of x-axis acceleration for biarc

spiral path traversal. Forward integration from beginning t = 0 to the end of545

the motion t = tN produces velocity denoted by vf . Backward integration from

t = tN to t = 0 produces velocity denoted by vb. Profile vf suggests the x-axis

changes direction towards the end of the path and profile vb suggests the axis

started the motion not from rest.

By cause of the cumulative nature of the integration process, the effects of550

the errors propagate through the definite integrals and culminate at end limits
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of both the forward and backward integrations. Inherent error present in the

acceleration signals, is combated by preforming a Hermite blend H(vf , vb) of

the resulting velocity profiles,

H(vf , vb) = vf

(
1− t

tN

)
+ vb

(
t

tN

)
.

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

V
el

o
ci

ty
,

v
(m
/
s)

Time, t (s)

Profile
vf
vb
v

Figure 20: Blending

The euclidean norm of resulting axis velocities forms a representation of the555

feed rate profile, v =
√
v2x + v2y (Fig. 21).
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Figure 21: Axis velocities and feed rate

Axis displacements (Fig. 22) are derived by the same blending approach.

From axis displacements arc length is found, s =
√
s2x + s2y. An approximation

to curvature is formed by scaling arc length by the specified rate of change of

curvature (α = 2⇒ κ(s) = 2s).560
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Figure 22: Axis displacements and arc length

5.4. G0vs. G1 Spiral Motion Analysis

As with section 3, phases of acceleration and deceleration from and to rest

are omitted from analysis. Fig. 23 shows feed rate resulting from traversals of

linearly segmented, G0, and the biarc segmented, G1, spiral approximation tool

paths. Both profiles may be considered to show two distinct types of kinematic565

behaviour. From 0 ≤ κ ≤ 0.16 both profiles demonstrate relatively negligible

feed rate variation. This suggests the motion may be characterised as limited

velocity behaviour. The general trend of both profiles from 0.16 ≤ κ ≤ 0.8 is

for the feed rate to decrease as curvature increases. The nature of the decrease

is characteristic of the limited acceleration behaviour described in section 3.570
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Figure 23: Feed rate

By substituting empirical feed rate values and appropriately scaled arc lengths

values into Eq. (5), a set of normal component acceleration values can be ob-

tained. Fig. 24 shows normal components of acceleration vectors, resulting from

each tool path motion. Both demonstrate a transition from velocity limited to

acceleration limited behaviour.575
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Figure 24: Normal acceleration component

6. Discussion

Both spiral approximation tool paths specify constant feed rate traversal in

the NC files. Analysis of shape properties, undertaken in section 5, reveals both

paths impose impractical kinematic demands in order to provide constant feed

rate. Machine kinematic regulation is therefore required for motion. The results580

are provided by Figs. 23 and 24. Both profiles in Fig. 23 show lower attainable

feed rates for higher path curvatures. This may perhaps be intuitive for many

machinists. Yet by virtue of this investigation, relationships between tool path

shape and machine motion can be further refined. For example, in the case of

the Hermle C600U machine tool, it is demonstrated that feed rate is inversely585

proportional to the square root of curvature. Figs. 23 and 24 illustrates the ma-

chine’s transition from limited velocity to limited acceleration behaviour. Both

profiles, in Fig. 24, show initial periods of motion where centripetal acceleration

rises linearly with curvature to maintain a constant feed rate. As the machine
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transitions into the limited acceleration phase, acceleration no longer increases590

linearly and submits to the centripetal acceleration limit.

Comparing motions resulting from the segmented spirals highlights effects

of shape on tool path motion. Tangent discontinuities may be considered to

impose greater kinematic demands on machine motion than curvature disconti-

nuities, since a lower order time derivative is undefined in the associated set of595

kinematic functions. Traversal of the linearly segmented spiral requires, at each

segment junction, infinite acceleration normal to the direction of travel. Traver-

sal of the biarc segmented spiral requires, at each segment junction, infinite jerk

normal to the direction of travel. Both demands can not materialise. Actual

motions, deemed suitable approximations to the requested motions, are pro-600

duced as a result of controller intervention. The resulting feed rate and normal

acceleration, shown in Figs. 23 and 24, demonstrate less kinematic fluctuation

for the path with a higher level of geometric continuity. Less fluctuation im-

plies greater stability. The kinematics resulting from the biarc spiral motion are

more predictable in the sense that the kinematics profiles are more characteris-605

tic of the schematics developed in section 3. Whether the fluctuations, resulting

from the linearly segmented spiral tool path, are significant, is dependent on

the application for which the motion is implemented.

The biarc segmented tool path not only produces more stable and predictable

motion, but also the actual trajectory of the tool along the path need not deviate610

from the path specified in the NC file. In order to avoid the infinite normal

jerk the tool must simply decelerate in the tangent direction to the tool path.

However, in order to traverse the linearly segmented spiral tool path with a

continuous feed rate profile, the tool must deviate from the junctions between

consecutive linear segments so that the infinite accelerations can be avoided.615

A smaller positional error between the specified and the actual tool path may

therefore be expected for the biarc segmented spiral tool paths.

The characteristic behaviour need not be the same for another machine, for

a machine’s motion has some dependence on it’s own mechatronic attributes.

However, through methodology employed in this paper, models of kinematic be-620
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haviour, with respect to intrinsic shape properties, can be derived. The resulting

schematics can be used to inform selection of parameters for given applications.

For example, a feed rate may have initially been selected because it results in

other desirable conditions, such as particular material removal rates or cutting

forces. However, analysis of the shape schematics suggest significant deviation625

from commanded feed rate may occur at a given region on the tool path, re-

sulting in other undesirable conditions. An informed decision, prior to physical

testing, can then be made. A revised feed rate, globally or locally, may be ap-

propriate. Perhaps tool path shape may even be altered to effect kinematics to

influence conditions.630

This paper only considers planar motion. The investigation may be extended

to higher dimensions by considering the effects of torsion. The jerk vector would

then gain a binormal component. Incorporating a binormal vector may also

provide a means of describing the characteristic nature of motions where a tool’s

orientation may be allowed to change with respect to the workpiece [41, 42]. This635

could then motivate the study of the motions of a machine’s rotational axes.

However, in five-axis machining efforts are usually made to preserve the angles

between the cutting tool’s rotational axis and the component’s surface normal,

not the tool path’s binormal vector [43]. Further, it can be shown that the

geometric properties of a surface can impose impractical kinematic demands on640

a machine’s axes, which in turn can cause surface defects [43]. It then follows

that the kinematics imposed by the geometric properties of a surface should be

considered as well as the tool paths that lie on it.

7. Concluding remarks

In this paper, constraints were enforced upon the general kinematic vector645

equations (Eqs. 4, 5 and 6) in order to provide a shape characterisation of

tool path motion that accounted for a machines kinematic limits. Two dis-

tinct phases of motion originated as a result of deriving the shape characteristic

model. It was shown that the velocity limited phase described motion at the
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commanded feed rate and the acceleration limited phase described motion with650

a constant magnitude for the centripetal acceleration vector.

Having postulated a shape characteristic model of tool path motion in sec-

tion 3, supportive empirical evidence from an example machine (Hermle C600U)

was provided. The empirical data demonstrated both the velocity and the ac-

celeration limited phase behaviour as described by the shape schematics.655

Performing the free motion tests, detailed in section 4, provides a means of

identifying the maximum magnitudes of the kinematic vectors for a tool path

of a given shape. From the resulting data, appropriate kinematic constraints

may be enforced upon the general kinematic vector equations in order to de-

rive a suitable characterisation of tool path motion. This paper has shown660

that this approach does not require knowledge of the motion control algorithms

implemented on a specific machine’s controller. The main advantage of this

methodology is that it may be applied to any machine in order to obtain a

suitable characterisation of tool path motion.

A given characteristic model depends only upon the shape of a desired tool665

path and the machine’s kinematic limits. These are two of the very few condi-

tions that are identifiable prior to physical machining. The model may therefore

be employed in a pre-processing manner to inform the selection of NC file tool

path motions. This can therefore help to reduce the material and energy re-

sources being consumed during machining trials and so improve the efficiency670

and productivity of the manufacturing process.

There are however limitations to the methodology presented in this paper.

The kinematic discontinuities inherent in the shape characterisation model and

illustrated in the schematics of Figs. 2, 3, 4 and 5, arise from the idealised

assumption of removing acceleration and deceleration from and to rest. In675

practice these discontinuities are not realised. They refer to the discrete time

period where the machine transitions from one limited phase to another. The

actual curvature at which this transition begins must therefore be less than the

theoretical transition curvature. Indeed, this premature transition was shown

to occur along the spiral tool paths investigated in section 5. By considering680
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the nature of a given machine’s acceleration and deceleration profiles a given

characterisation may be further refined.
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Appendix A. Sampling Period, Ts

Sampling period, Ts, is the time interval in which a controller receives po-800

sition feedback from servo loops. Since the purpose of the investigation is to

study the effects of shape on tool path motion, care has been taken to ensure

that tool path motions do not require processing speeds greater than the con-

troller’s processing capability.

The greater the number of points used to define a tool path, the greater the805

processing speed required from the controller. Consider a planar linear tool path

defined by N equally spaced points. If the commanded feed rate is achieved, the

distance between consecutive points does not require a sampling period greater

than the controller’s limit. By incrementally increasing the number of equally

spaced points until the commanded feed rate is not achieved, the controller810

sampling period can be identified.

A planar linear path has no curvature and no torsion, so shape has no affect.

The length of the line does however affect the achieved feed rate. The length of

the line should be sufficiently long such that the machine can accelerate to the
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commanded feed rate from rest and decelerate from the commanded feed rate815

to rest.

The specific values of feed rate and line length chosen are immaterial. In

general, the greater the commanded feed rate, the greater the distances required

for acceleration and deceleration and so the longer the line needed. However,

for a line of a given length, the greater the commanded feed rate, the fewer820

equally spaced points required to observe a difference between the commanded

and achieved feed rates.

The Hermle’s maximum permissible feed rate, Fmax, (0.6m/s) is therefore

set as the commanded feed rate in the linear tool path motion tests. The

tool path length is set to 0.5m, as preliminary testing showed such a length825

is sufficiently long to enable the commanded feed rate to be achieved. By

incrementally increasing the density of the equally spaced points, it is found

that the threshold number of points, Nt, at which the specified feed rate is

still achieved is 214 (Fig. A.25). From this, the minimum distance between

consecutive points can be found, smin = L/Nt. It then follows that Ts =830

smin/F .
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Figure A.25: Feed rate profiles for different point densities

To verify the threshold number of points does not affect motion, a compari-

son is made to a motion produced for N = 2 points (start and end points of the

line). Fig. A.25 suggests negligible difference between the two motions. Dou-

bling the threshold number of points to 428, halves the distance between con-835

secutive points and the achieved feed rate is approximately halved (Fig. A.25).

Further, the line is then divided into three sections, the first and last sections

contain points minimally spaced and the middle section contains points that are

spaced with half the minimal distance. From the figure it can be seen that the

achieved feed rate drops to approximately half in the middle dense region as the840

sampling period phenomenon takes effect.

Appendix B. Jerk vector derivation

Taking the derivative of Eq. (5) with respect to time, provides an expression

for the jerk vector:

48



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

j(t) =
d

dt

[
d2s

dt2
t̂(s) +

{ds
dt

}2

κ(s)n̂(s)

]

=
d

dt

[
d2s

dt2
t̂(s)

]
+
d

dt

[{ds
dt

}2

κ(s)n̂(s)

]
.

Let845

ξ0(t) ≡ d

dt

[
d2s

dt2
t̂(s)

]
and

ξ1(t) ≡ d

dt

[{ds
dt

}2

κ(s)n̂(s)

]
.

It then follows that,

ξ0(t) =
d3s

dt3
t̂(s) +

ds

dt

d2s

dt2
dt̂(s)

ds
.

Substituting Eq. (1) into the above equation gives

ξ0(t) =
d3s

dt3
t̂(s) +

ds

dt

d2s

dt2
κ(s)n̂(s) . (B.1)

Also,

ξ1(t) = 2
ds

dt

d2s

dt2
κ(s)n̂(s) +

{ds
dt

}3 d

ds

[
κ(s)n̂(s)

]

= 2
ds

dt

d2s

dt2
κ(s)n̂(s) +

{ds
dt

}3 dκ(s)

ds
n̂(s) +

{ds
dt

}3

κ(s)
dn̂(s)

ds
.

Substituting Eq. (2) into the above equation gives,850

ξ1(t) = 2
ds

dt

d2s

dt2
κ(s)n̂(s) +

{ds
dt

}3 dκ(s)

ds
n̂(s)

−
{ds
dt

}3

{κ(s)}2t̂(s) +
{ds
dt

}3

τ(s)κ(s)b̂(s) .

(B.2)

49



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Summing Eq. (B.1) and Eq. (B.2) produces the equation given below,

j(t) = jt(t)̂t(s) + jn(t)n̂(s) + jb(t)b̂(s) ;

where

jt(t) =
d3s(t)

dt3
−
{ds(t)

dt

}3

{κ(s)}2 ,

jn(t) = 3
ds(t)

dt

d2s(t)

dt2
κ(s) +

{ds(t)
dt

}3 dκ(s)

ds
,

and

jb(t) =
{ds(t)

dt

}3

κ(s)τ(s) .

Appendix C. Derivation of the third derivative of arc length with

respect to time855

Taking the derivative of Eq. (12) with respect to time gives,

d3s

dt3
= −1

2
Ψ2

d

ds

[
1

{κ(s)}2
dκ(s)

ds

]
ds

dt

= −1

2
Ψ2

1

{κ(s)}2

[
d2κ(s)

ds2
− 2

1

κ(s)

{
dκ(s)

ds

}2
]
ds

dt
.

(C.1)

An alternative form of Eq. (10) is

ds

dt
=

√
Ψ2

√
κ(s)

κ(s)
. (C.2)

Substituting Eq. C.2 into Eq. (C.1) gives,

d3s

dt3
= −1

2
Ψ2

√
Ψ2

√
κ(s)

1

{κ(s)}3

[
d2κ(s)

ds2
− 2

1

κ(s)

{
dκ(s)

ds

}2
]
.
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Appendix D. Numerical integration error bound

For a given interval [smin, smax], the total error εT of numerical integration,860

using the trapezoidal rule, can be given as

εT = − (smax − smin)3

12N2

∑N−1
i=0 f ′′(ζi)

N
,

where N is the number of segments in the interval and f ′′(ζi) is the second

derivative of the integrand evaluated at some point ζi, smin ≤ ζi ≤ smax [44].

The expression

∑N−1
i=0 f ′′(ζi)

N
,

can be considered as an approximate average value of the second derivative in865

the specified interval. At some point, the second derivative will take its average

value ζavg, assuming it is continuous. In the case of the integrands given in

Eqs. (16) and (17), it is shown below in Eqs. (D.3) and (D.4) and Fig. D.26 that

the second derivatives are indeed continuous. Therefore let,

ζavg =

∑N−1
i=0 f ′′(ζi)

N
.

The total error may then be expressed as870

εT = − (smax − smin)3

12N2
ζavg .

It is not known where ζavg lies in the interval. By replacing ζavg withmax(|f ′′(ζi)|),

an upper bound εB on the total error for the given interval can be found. It

then follows that,

εB = − (smax − smin)3

12N2
max(|f ′′(ζi)|) . (D.1)

The above equation shows that to identify error bounds of the Cornu spiral

positions, resulting from Eqs. (16) and (17), evaluation of the second derivatives875

of the corresponding integrands is required. This can be achieved by rewriting

Eqs. (16) and (17) as
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x(s) = x0 +

∫ s

0

fx(σ)dσ ,

and

y(s) = y0 +

∫ s

0

fy(σ)dσ ,

where fx(σ) = cos(α(σ)), fy(σ) = sin(α(σ)) and

α(σ) = θ0 +
1

2L
{2κ0Lσ + (κ1 − κ0)σ2)} . (D.2)

The first and second derivatives of the integrand fx(σ) are880

dfx(σ)

dσ
= −dα(σ)

dσ
sin(α(σ)) ,

and

d2fx(σ)

dσ2
= −

[
d2α(σ)

dσ2
sin(α(σ)) +

{
dα(σ)

dσ

}2

cos(α(σ))

]
, (D.3)

respectively. Similarly,

dfy(σ)

dσ
=
dα(σ)

dσ
cos(α(σ)) ,

and

d2fy(σ)

dσ2
=
d2α(σ)

dσ2
cos(α(σ))−

{
dα(σ)

dσ

}2

sin(α(σ)) . (D.4)

From Eq. (D.2) it follows that,

dα(σ)

dσ
=

1

L
{κ0L+ (κ1 − κ0)σ} ,

and885

d2α(σ)

dσ2
=
κ1 − κ0
L

.
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|cos(α(σ))| and |sin(α(σ))| ≤ 1, ∀ σ, d2(α(σ))/dσ2 is constant, and {dα(σ)/dσ}2 =

O(σ2) since,

{
dα(σ)

dσ

}2

=
1

L2
{κ0L+ (κ1 − κ0)σ}2 . (D.5)

It then follows that the magnitude of {dα(σ)/dσ}2 increases monotonically and

so its maximum value occurs at smax for the interval [smin, smax]. As illustrated

by Fig. D.26, as σ → ∞, {dα(σ)/dσ}2, denoted (α′)2 in Fig. D.26, begins to890

envelope both second derivative terms (Eqs. (D.3) and (D.4)). By substituting

Eq. (D.5) into Eq. (D.1) an alternative expression for the error bound can be

formed

εB = − (smax − smin)3{κ0L+ (κ1 − κ0)smax}2

12N2L2
.

The number of segments required, for a given interval, to obtain a suitable

magnitude of error can then be identified,895

N =

√
(smax − smin)3{κ0L+ (κ1 − κ0)smax}2

12|εB |L2
.
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Figure D.26: Error bound
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Highlights (for review) 

 

By performing free motion tests on a machine’s axes it is possible to identify the maximum magnitudes of the 
kinematic vectors for a tool path of a given shape. From the resulting data, appropriate kinematic constraints are 
enforced upon the general kinematic vector equations to derive a suitable characterisation of tool path motion. 
The paper shows that this approach does not require knowledge of the motion control algorithms implemented 
on a given machine's controller. The main advantage of this methodology is that it may be applied to any 
machine in order to obtain a suitable characterisation of tool path motion. 
 


