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On the performance of weighted bootstrapped kernel
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Abstract

We propose a weighted bootstrap approach that can improve on current methods to approxi-
mate the finite sample distribution of normalized maximal deviations of kernel deconvolution
density estimators in the case of ordinary smooth errors. Using results from the approxima-
tion theory for weighted bootstrap empirical processes, we establish an unconditional weak
limit theorem for the corresponding weighted bootstrap statistics. Because the proposed
method uses weights that are not necessarily confined to be uniform (as in Efron’s original
bootstrap), it provides the practitioner with additional flexibility for choosing the weights.
As an immediate consequence of our results, one can construct uniform confidence bands, or
perform goodness-of-fit tests, for the underlying density. We have also carried out some nu-
merical examples which show that, depending on the bootstrap weights chosen, the proposed
method has the potential to perform better than the current procedures in the literature.

Keywords: Kernel, deconvolution, density, weighted bootstrap, CLT.

Mathematics Subject Classification: 62G07

1 Introduction

Consider the following deconvolution density estimation problem. Let X1, . . . , Xn be independently
and identically distributed (iid) observations from the convolution model

Xi = Zi + εi , i = 1, . . . , n,

where ε1, . . . εn are iid random variables with the known probability density function (pdf) ψ and
the corresponding characteristic function φψ(t) =

∫
R ψ(x) eitxdx; here ε1, . . . εn are independent of

the iid random variables Z1, . . . , Zn. Then the kernel deconvolution density estimator of the pdf
f of Z1 at the point x is given by

fn(x) ≡ fn,h(x) =
1

2π

∫

R
e−itx φK(ht) ∙ φ̂n(t)

φψ(t)
dt , (1)
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3This work is supported by the NSF Grant DMS-1407400 of Majid Mojirsheibani.
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where φ̂n(t) = n−1
∑n

j=1 eitXj is the empirical characteristic function of the X. Here φK is
the characteristic function of the compactly supported kernel K, with the smoothing parameter
h > 0, used in the construction of the estimator fn,h in (1). When the density f is p ≥ 0 times
differentiable then (1) can be extended to the deconvolution estimator of the `th derivative of f ,
` = 0, 1, . . . , p, as follows

f
(`)

n (x) ≡ f
(`)

n,h(x) =
1

2π

∫

R
(−it)` e−itx φK(ht) ∙ φ̂n(t)

φψ(t)
dt :=

1

nh`+1

n∑

j=1

L
(`)

n

(
x − Xj

h

)

, (2)

where

L
(`)

n (x) :=
1

2π

∫

R
(−it)` e−itx φK(t)

φψ(t/h)
dt , ` = 0, 1, . . . , p. (3)

Here, L
(`)

n (x) depends on n through h ≡ hn. In passing we also note that the far right side of (2)
has the appearance of the usual kernel density estimator. Such kernel-type deconvolution density
estimators have been studied extensively in the literature. These include the work of Carroll and
Hall (1988), Stefanski (1990), Stefanski and Carroll (1990), Zhang (1990), Fan (1991, 1992), Fan
and Liu (1997), Wand (1998), Hesse (1999), Cator (2001), Delaigle and Gijbels (2004, 2006), Van
Es and Uh (2004, 2005), Lacour (2006), Kulik (2008), Achilleos and Delaigle (2012), and Delaigle
and Hall (2014). In a more recent result, Zamini et al. (2015) have studied kernel deconvolution
density estimators in the context of multiplicative models.

Several authors have also developed density estimators for the heteroscedastic error model. No-
table results along these lines include the work of Delaigle and Meister (2008) who introduce a
kernel estimator of the density in the case of heteroscedastic errors, and establish consistency of
their estimator. McIntyre and Stefanski (2011) propose a deconvolution density estimator with
heteroscedastic errors that are normally distributed; these authors also study the integrated mean
squared error of their estimator. Meister (2010) considers a special type of heteroscedasticity that
corresponds to two types of contaminated data sets and establishes upper and lower bounds for the
convergence rate of the proposed nonparametric density estimator. Another relevant results along
these lines is that of Chesneau and Fadili (2013) who propose a wavelet-based density estimator
in the heteroscedastic model and study its mean integrated squared error.

To address the limiting distribution of kernel deconvolution density estimators (properly normal-
ized), one must carefully take into account the rate at which the modulus of the characteristic
function of the error, φψ(t), decays to zero as t diverges. More specifically two cases are to be
distinguished: the supersmooth case where |φψ(t)| decays to zero at an exponential rate, and the
ordinary smooth case where it decays at a polynomial rate. In the supersmooth case, the asymp-
totic normality of fn(x) was studied and established by Zhang (1990), Fan (1991), and van Es and
Uh (2005). Also see Masry (1993) who established similar results for dependent (stationary) se-
quences. For the ordinary smooth case, asymptotic normality was first established by Fan (1991);
also see Fan and Liu (1997) as well as van Es and Kok (1998). The work of Fan (1991) also

includes the asymptotic normality of the derivative estimators f
(`)

n (x) of f
(`)

(x). Such results can
be used to form pointwise confidence intervals or to carry out tests of significance. On the other
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hand, to construct uniform confidence bands for f , one needs to derive the limiting distribution
of the properly normalized maximal deviations of fn(x) from f(x) (or from E(fn(x))). For the
case of supersmooth errors, van Es and Gugushvili (2008) were the first to derive this limiting
distribution.

For the ordinary smooth case, which is also the focus of our work here (from a weighted boot-
strap approximation point of view), the limiting distribution of the properly normalized versions

of the statistics supt∈[0,1]

∣
∣f

(`)

n (t) − f
(`)

(t)
∣
∣/
√

g(t) , ` = 0, . . . , p, where g is the density function
of the random variable X, has been studied by Bissantz et al. (2007). Of course, g is unknown
in practice and will be replaced by some suitable density estimator. These results can be used to
construct uniform confidence bands for f . However, because of the poor coverage properties of the
resulting bands, Bissantz et al. (2007) use Efron’s (1979) original bootstrap algorithm to construct
percentile bootstrap bands for f . In this paper we propose a weighted bootstrap approach that
can be viewed as a generalization of Efron’s (1979) method. We also note that Efron’s bootstrap
is itself a weighted bootstrap, where the weights form an n-category multinomial random vector
with probabilities (n−1, . . . , n−1). The potential applications of the weighted bootstrap have been
demonstrated by several authors. For example, in the case of confidence intervals for a mean, it
has been shown in Shao and Tu (1995; pp 440-441) that weighted bootstrap with random weights
has a better coverage probability than Efron’s bootstrap. This is particularly true with smaller
sample sizes. Our numerical results in this paper confirm some of these findings and show that the
proposed weighted bootstrap has the ability to improve on the performance of current methods
in deconvolution density estimation in the ordinary smooth case. Furthermore, it has been shown
(see for example Burke (2000), Hall and Mammen (1994), Hórvath et al. (2000), Chiang et al.
(2005), and Chiang et al. (2009)) that in some applications the weighted bootstrap can be com-
putationally more efficient than Efron’s (1979) original algorithm. In Section 2.2 we provide more
detailed comments about various classes of weights employed in the literature as well as the types
of weights proposed in this paper.

From an applied point of view, our proposed approximation methods have the potential to provide
flexible tools in the statistical analysis of data arising from measurement errors models in a variety
of fields such as economics, imaging and signal processing, biometrics, genetics, and medicine.
Here we discuss a few such applications:

(i) One area of genetics looks at how mutations affect organismal fitness. To do this requires esti-
mating the mutation effect distribution because this allows one to assess the frequency of neutral
or nearly neutral effects of mutations on their fitness. Estimating the distribution of the mutation
effect is difficult because the effect of organismal fitness is small and subject to measurement
errors. Traditionally, the density of this distribution was assumed to follow some parametric form
and then the parameters associated with it were estimated. In practice, the parametric family was
not checked for validity. This led Lee et al. (2010) to propose a nonparametric density estimator
based on deconvolution approaches. Using virus lineage data taken from Burch et al. (2007),
they estimate the mutation effect distribution to provide an estimate of the frequency of neutral
or nearly neutral mutations. It is always desirable to be able to study the uniform behavior of the

3



underlying density.

(ii) Errors-in-variables is a popular modeling device in economics because many of the variables
described by theory are unobserved. They, therefore, cannot be used in regression models to test
the validity of economic theory. In particular, according to one model of a firm’s demand for
investment, the correct measure of this demand is the marginal Tobin’s q. Marginal q is unob-
served because it is defined as the ratio of expected cash flow from investing to the accounting
value of a firm’s assets. Because one cannot observe expected cash flow, this led economists to
find proxies for it. One proxy is called average Tobin’s q. The relationship between average and
marginal q is modeled as errors-in-variables (see Galvao et al. (2018) for more details). In view of
our setting (i.e., X = Z + ε), here Z would represent marginal Tobin’s q and X would represent
average Tobin’s q. As the former determines a firm’s investment demand, it is useful to have the
knowledge of the density of marginal Tobin’s q, a variable that is unobserved.

(iii) Other applications appear in computer vision as well as image and signal processing. These
applications are discussed in some detail in Meister (2009). Signals and images are usually affected
by some noise because of their surrounding environment, leading to the detection of blurry images
and signals (Benšić and Sabo (2016)). Therefore, a deconvolution approach is aimed at recov-
ering better signals and images from their noisy versions. This technique is known as de-noising
or de-blurring. Applications of deconvolution methods in signal processing with connection to
spectrometry and chemistry can be found in Cornelis and Hassellöv (2014).

2 Main results

2.1 Preliminaries

This subsection is devoted to the presentation of a number of standard assumptions used in
the literature (and in this paper) that were also used by Bissantz et al. (2007) to establish
the asymptotic distribution of the normalized versions of the maximal deviations of the kernel
deconvolution estimator f

(`)

n (t). More specifically, to summarize the existing results, consider the
ordinary smooth case assumption:

Assumption A0.
φψ(t) ∙ tβ → C0, as t → ∞, for some β ≥ 0 and C0 ∈ C\{0}.

When the above assumption holds, the results of Fan (1991) and Fan and Liu (1997) show that

hβL
(`)

n (x) −→ L
(`)

(x) , as h → 0 ,

where, for ` = 0, . . . , p,

L
(`)

(x) =
1

2πC0

∫ ∞

0

(−it)` e−itxtβφK(t) dt +
1

2πC0

∫ 0

−∞
(−it)` e−itx|t|βφK(t) dt , (4)

where C0 is the complex conjugate of C0.
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Additionally, the following assumptions are the same as those used by Bissantz et al. (2007):

Assumption A1.
The function φK(t) =

∫
R K(x) eitxdx is symmetric, three-times differentiable and supported on

[−1, 1] and satisfies |φK(t)| = 1 for |t| ≤ c, for some c ∈ (0, 1), and |φK(t)| ≤ 1 for |t| > c.

Assumption A2.

(a)
∫
{|x|>e} |L

(`+1)

n (x)| |x|3/2[log log |x|]1/2dx = O(h−β), where β is as in assumption A0.

(b)
∫
{|x|>e} |h

βL
(`+1)

n (x)−L
(`+1)

(x)| |x|1/2[log log |x|]1/2dx = O(hγ+1/2), for some γ > 0, where

L
(`)

is as in (4).

Assumption A3.

(a) The density g of X is bounded, and bounded away from zero, on [0, 1]. Additionally, g1/2

has a bounded derivative.

(b) The characteristic function φf (t) =
∫
R f(x) eitxdx of f satisfies

∫
R |φf (t)| |t|r−1dt < ∞ for

some r > p + 1, where, as before, p ≥ 0 is the number of times f is differentiable.

Now consider the statistic

Γ̂n(t, `) =
n1/2hβ+`+1/2

√
ĝn(t)

(
f

(`)

n (t) − f
(`)

(t)
)

, t ∈ [0, 1] , ` = 0, . . . , p , (5)

where ĝn is an estimate of the density g. Bissantz et al. (2007) have established the limiting

distribution of the properly normalized supremum of |Γ̂n(t, `)| under the assumption that ĝn satisfies

sup
0≤t≤1

|ĝn(t) − g(t)| = op

((
log(1/h))−1

)
, as n → ∞ (and thus h → 0). (6)

More specifically, for ` = 0, . . . , p, if we put

C1,` = (2π|C0|
2)−1

∫

R
x2(β+`)φ2

K(x)dx , C2,` =

∫
R x2(β+`+1)φ2

K(x)dx
∫
R x2(β+`)φ2

K(x)dx
(7)

dn,` = (2 log(1/h))1/2 + (2 log(1/h))−1/2 log{C1/2
2,` /(2π)} , (8)

then the following result is an immediate consequence of the work of Bissantz et al. (2007), (see
their Theorem 1 in conjunction with their Corollary 1):

Theorem 1 Let Γ̂n(t, `) be as in (5). Suppose that assumptions A0-A3 hold and that

nh2(β+r)−1 log(1/h) → 0 and nh2(β+`)+1/ log(1/h) → ∞ ,

as n → ∞. If the density estimator ĝn satisfies (6) then, as n → ∞,

P

{√
2 log(1/h)

(

C
−1/2
1,` sup

0≤t≤1

∣
∣
∣Γ̂n(t, `)

∣
∣
∣− dn,`

)

≤ z

}

→ exp
(
−2e−z

)
, ` = 0, . . . , p . (9)
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The above result can be used to construct (1 − α)100% uniform asymptotic confidence bands for

f
(`)

(t), given by

In,`(α) := f
(`)

n (t) ±

√
ĝn(t) ∙ C1,`

nh2(β+`)+1

(
x(α)

√
2 log(1/h)

+ dn,`

)

, 0 ≤ t ≤ 1 ,

where x(α) = −[log log( 1
1−α

) − log 2] solves the equation exp(−2 exp(−x)) = 1 − α. In other

words, P{f
(`)

(t) ∈ In,`(α), 0 ≤ t ≤ 1} → 1 − α. In passing, we point out that Bissantz et al.

(2007) have also considered the following version of Γ̂n(t, `) in (5):

Γn(t, `) =
n1/2hβ+`+1/2

√
g(t)

(
f

(`)

n (t) − E
[
f

(`)

n (t)
])

, t ∈ [0, 1] , ` = 0, . . . , p . (10)

Another closely related statistic is given by

Γ̃n(t, `) =
n1/2hβ+`+1/2

√
g(t)

(
f

(`)

n (t) − f
(`)

(t)
)

, t ∈ [0, 1] , ` = 0, . . . , p . (11)

Here, both (10) and (11) have the same limiting distribution as the one in (9); however, clearly

(5) is more appropriate for constructing uniform confidence intervals for f
(`)

(t). Unfortunately,
approximate confidence bands based on (9) can have poor coverage probabilities; this will be taken
up in the next section where we propose weighted bootstrap approximations to approximate the
distribution of Γ̂n(t, `).

2.2 The proposed weighted bootstrap

Given the typically slow rates of convergence (logarithmic) of the normalized maximal deviations
of nonparametric density estimators (see, for example, Hall (1991) and Konakov and Piterbarg
(1984) for the case of kernel density estimators), Bissantz et al. (2007) proposed percentile type
bootstrap confidence bands based on Efron’s (1979) original bootstrap. Their approach replaces
Γn(t, `) in (10) by

Γ∗
n(t, `) =

n1/2hβ+`+1/2

√
ĝn(t)

(
f ∗(`)

n (t) − f
(`)

n (t)
)

, t ∈ [0, 1] , ` = 0, . . . , p , (12)

where

f ∗(`)
n (t) =

1

nh`+1

n∑

j=1

L
(`)

n

(
x − X∗

j

h

)

, (13)

with X∗
1 , . . . , X∗

n representing a sample of size n drawn, with replacement, from X1, . . . , Xn. Sim-
ulating Γ∗

n(t, `) a large number of times, Bissantz et al. (2007) used the bootstrap (1−α)-quantile,

q∗1−α, of Γ∗
n(t, `) to construct the bootstrap percentile-type confidence bands for f

(`)
(t), given by

f
(`)

n (t) ± n−1/2n−(β+`+1/2) q∗1−α

√
ĝn(t) , t ∈ [0, 1] , ` = 0, . . . , p.
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Several authors have proposed the weighted bootstrap in the literature as a generalization of
Efron’s (1979) original bootstrap. To the best of our knowledge, the first paper that used the
concept of weighted bootstrap, with weights different from those of Efron, is that of Rubin (1981).
Rubin uses the n spacings of n − 1 ordered uniform (0, 1) random variables for the weights;
this is equivalent to the Dirichlet weights (Wn,1, . . . ,Wn,n) =d Dirichletn(1, 1, . . . , 1). The case
where (Wn,1, . . . ,Wn,n) =d Dirichletn(4, 4, . . . , 4) was studied by Weng (1989), and Zheng and
Tu (1988, Remark 5). The random weighting method employed by Gao and Zhong (2010) in the
problem of kernel density estimation also uses Dirichletn(1, 1, . . . , 1) weights. We also note that if
E1, . . . , En are iid Exp(1) random variables then the random vector of weights ( E1∑

i Ei
, . . . , En∑

i Ei
)

is also Dirichletn(1, 1, . . . , 1). In fact, some authors have considered general weights of the form
( V1∑

i Vi
, . . . , Vn∑

i Vi
), where Vi’s are iid positive random variables with finite mean and variance; see,

for example, Mason and Newton (1992, Ex. 2.1). These different weights lead to a general
approach to study the class of exchangeable bootstrap weights, originally studied by Mason and
Newton (1992) and subsequently by Praestgaard and Wellner (1993), Janssen and Pauls (2003),
and Janssen (2005) among others. An interesting application of exchangeable weighted bootstrap
appears in the work of Bouzebda et al. (2017).

A different class of bootstrap weights, which is the subject of our present work in this paper,
is that of Horváth et al. (2000), Horváth (2000), Burke (1998, 2000), and their more powerful
generalizations in Burke (2010). What makes these weights particularly more appropriate for our
work is their flexibility and, more importantly, the fact that the corresponding weighted bootstrap
empirical processes can be approximated by a sequence of Brownian bridges with the best pos-
sible rate. This result, which is due to Horváth et al. (2000), and its mighty generalization to
multivariate empirical processes, due to Burke (2010), make this class of bootstrap weights quite
suitable for approximating the distribution of many complicated statistics. In fact, in this paper
we propose a weighted bootstrap approach, based on this latter class of weights, to approximate
the limiting distribution in (9) for the statistics given by (5) and (11). Recent results along these
lines include the work of Mojirsheibani and Pouliot (2017) on a weighted bootstrap approximation
of the Lp norms of kernel density estimators in two-sample problems, the results of Ahlgren and
Catani (2017) on tests for autocorrelation, the work of Kojadinovic and Yan (2012) as well as Ko-
jadinovic, Yan, and Holmes (2011) on the applications of the weighted bootstrap to goodness-of-fit
tests. A rather thorough discussion of different types of weighted bootstrap procedures (condi-
tional and unconditional) can be found in Cheng and Huang (2010) and Kosorok (2008; Sec. 10).
The monograph by Barbe and Bertail (1995) provides a survey of many other results on weighted
bootstrap. It also seems probable that more sophisticated weighted bootstrap methods would be
equally good or better than the ones discussed here, but we have not been able to show this thus far.

Our method works as follows. Let ξ1, . . . , ξn be iid random variables, independent of the data
X1, . . . , Xn, with mean E(ξ1) = μ and Var(ξ1) = 1 and consider the following weighted bootstrap

version of f
(`)

n (t)

f
(`)

nn(t) = (nh`+1)−1

n∑

j=1

(1 + ξj − ξ̄) L
(`)

n

(
x − Xj

h

)

, (14)
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where L
(`)

n (x) is given by (3) and ξ̄ is the sample mean of ξ1, . . . , ξn. Observe that if (1+ ξi − ξ̄) is
replaced by Wn,i in (14), where (Wn,1, . . . ,Wn,n) is an n-category multinomial random vector with

probabilities ( 1
n
, . . . , 1

n
), then f

(`)

nn(t) coincides with f
∗(`)
n (t) in (13). Next, consider the bootstrap

statistics

Γ̃nn(t, `) =
n1/2hβ+`+1/2

√
ĝn(t)

(
f

(`)

nn(t) − f
(`)

n (t)
)

, t ∈ [0, 1] , ` = 0, . . . , p , (15)

and

Γ̂nn(t, `) =
n1/2hβ+`+1/2

√
ĝnn(t)

(
f

(`)

nn(t) − f
(`)

n (t)
)

, t ∈ [0, 1] , ` = 0, . . . , p , (16)

where ĝn is an estimator of the density g of Xi’s and ĝnn in (16) is the bootstrap version of ĝn.
We note that (15) is the weighted bootstrap counterpart of (11), whereas (16) is the counterpart
of (5). As for the estimator ĝn that appears in (15), we follow Bissantz et al. (2007) and consider
any estimator that satisfies (6). However, we also consider the specific choice where ĝn is a kernel
density estimator:

ĝn(x) = (nλn)−1

n∑

i=1

H
(
(x − Xi)/λn

)
, (17)

where H : R → R+ is the kernel used with the smoothing parameter λn(→ 0, as n → ∞). The
bootstrap estimator ĝnn in (16) is given by

ĝnn(x) = (nλn)−1

n∑

i=1

(1 + ξi − ξ̄)H
(
(x − Xi)/λn

)
, (18)

where ξ1, . . . , ξn are as in (14). As for the choice of the kernel H, we require:

Assumption (H). The kernel H is nonnegative, symmetric about zero, vanishes outside an in-
terval [−A,A], and is absolutely continuous on [−A,A]. The derivative H′ exists and satisfies∫
{|x|>e} |x|

3/2 (log log |x|)1/2 |H′(x)|dx < ∞. Furthermore, H satisfies
∫
H(x)dx = 1.

To state our main results, we first state an assumption regarding the choice of the random variables
ξ1, . . . , ξn.

Assumption A4.
The random variables ξ1, . . . , ξn are iid with mean μ and variance 1, and are chosen independent of
the data X1, . . . , Xn. Furthermore, ξ1 has a finite moment generating function in an open interval
around the origin.

Theorem 2 Let Γ̃nn(t, `) and Γ̂nn(t, `) be the weighted bootstrap statistics in (15) and (16),
respectively. Also, let C1,` and dn,` be as in (7) and (8). Suppose that assumptions A0-A4 are
satisfied and that nh2(β+r)−1 log(1/h) → 0 and nh2(β+`)+1/ log(1/h) → ∞ , as n → ∞.

(i) If ĝn is any estimator satisfying (6) then, as n → ∞,

P

{√
2 log(1/h)

(

C
−1/2
1,` sup

0≤t≤1

∣
∣
∣Γ̃nn(t, `)

∣
∣
∣− dn,`

)

≤ z

}

→ exp
(
−2e−z

)
, ` = 0, . . . , p .
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(ii) Let ĝnn be as in (18), where λn = n−δ, δ ∈ (1
5
, 1

2
), and suppose that assumption (H) is

satisfied. If log(1/h)
√

log n/(nλn) → 0, as n → ∞, then

P

{√
2 log(1/h)

(

C
−1/2
1,` sup

0≤t≤1

∣
∣
∣Γ̂nn(t, `)

∣
∣
∣− dn,`

)

≤ z

}

→ exp
(
−2e−z

)
, ` = 0, . . . , p .

Remark 1 Theorem 2 shows that the bootstrap statistics Γ̃nn and Γ̂nn both yield the same
correct limiting distribution. However, from a practical point of view, in most cases one

should employ Γ̂nn(t, `). This is because the density g of X is virtually always unknown
and, as a result, one has to work with the statistic (5) instead of (11). Consequently, with g
unknown, the statistic (16) (and not (15) or (12)) is the right bootstrap counterpart for the
statistic in (5). To better appreciate this, we give an analogy between our statistics and some
classical results: it is well known (see, for example, Hall (1992; Sec. 2.4)) that, under the
smooth function of means model, and the existence of sufficient moments, the asymptotically

normal statistic Tn =
√

n(θ̂ − θ)/σ̂ admits standard Edgeworth expansions whenever the
characteristic function of the underlying distribution obeys the so-called Cramér’s continuity

condition; here σ̂2 is a consistent estimator of the asymptotic variance σ2 of n1/2θ̂. Using
arguments based on such expansions, it can be shown (see, for example, Hall (1992; Sec.
3.3) and Singh (1981)) that there is significant gain in employing the bootstrap if one uses

T ∗
n =

√
n(θ̂∗ − θ̂)/σ̂∗ as the bootstrap counterpart of Tn, where θ̂∗ and σ̂∗ are the bootstrap

versions of θ̂ and σ̂. This gain can be expressed in terms of the size of the approximation
error, |P{Tn ≤ x}−P ∗{T ∗

n ≤ x}| = Op(n
−1), which holds uniformly in x, whereas the classical

CLT only yields |P{Tn ≤ x} − Φ(x)| = O(n−1/2). Here P ∗ is the bootstrap probability. On
the other hand, the results in Hall (1992; Sec. 3.3) also show that if one uses the wrong

bootstrap statistic S∗
n =

√
n(θ̂∗− θ̂)/σ̂ (instead of T ∗

n) to approximate Tn then, in general, one
has |P{Tn ≤ x} − P ∗{S∗

n ≤ x}| = Op(n
−1/2), which is not any better than the classical CLT.

This analogy shows that the correct bootstrap counterpart of (5) is given by (16). Using the
weighted bootstrap statistic (15) instead of (16) to approximate (5) is, in a sense, equivalent
to looking up the Z table instead of the t table.

Bootstrap weights
According to assumption A4 and Theorem 2, the proposed bootstrap approximations are asymp-
totically valid provided that the bootstrap weights are chosen to have a finite moment generating
function (mgf) and unit variance. Furthermore, the results of Burke (2010) imply that the assump-
tion of a finite mgf can be further relaxed to one based on the existence of sufficient moments.
This implies that in practice there is a great deal of flexibility in choosing bootstrap weights. On
the other hand, in a given application, the finite-sample performance of some weights can be better
than that of others. As a matter of fact, Barbe and Bertail (1995; Ch. II) point out that the
choice of the adequate weights depends on the priorities of the statistician . For example, weights
that yield good coverage probabilities for confidence intervals in a specific problem are not neces-
sarily the same as weights that yield good approximations of the distribution of the corresponding
statistics in the same problem. This type of scenario is not particular to weighted bootstrap and,
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in fact, appears in certain other areas of probability and statistics. An analogy is the choice of the
kernel in nonparametric kernel regression (or density) estimation, where various asymptotic results
can be established provided that the chosen kernel satisfies certain assumptions (such as bound-
edness, smoothness, absolute integrability, etc.) But, there are many different kernels that satisfy
such conditions, and although some exhibit better finite-sample performance in a given statistical
problem, there are no rules for choosing one. In fact, many practitioners simply use popular kernels
such as Gaussian, Uniform, or Epanechnikov.

In the case of bootstrap weights that appear in the proposed approach, a popular choice in the
literature appears to be the Gaussian weight; see, for example, Burke (1998, 2000), Horváth et al.
(2000), Kojadinovic and Yan (2012), and Mojirsheibani and Pouliot (2017).

Numerical results
In what follows, we provide some numerical examples in order to assess the finite-sample perfor-
mance of the following methods and their applications to the construction of confidence bands: the
asymptotic theory (Theorem 1), the percentile type bootstrap of Bissantz et al. (2007) based on
13), and the proposed weighted bootstrap statistics (Theorem 2). Additionally, based on the rec-
ommendations of an anonymous referee, we have also considered the random weighting method, as
described in Section 2.2, where we have followed Gao and Zhong (2010) and employed the popular
Dirichletn(1, 1, . . . , 1) random weights. Our examples show that the proposed weighted bootstrap

can perform quite well in terms of approximating the finite-sample distribution of Γ̂n(t, `) in (5)

and that of Γ̃n(t, `) in (11). In what follows, we consider random samples of sizes n = 50, 100, and
500 drawn from the distribution (density) f of Z. As for the choice of f , we consider two different
distributions: N(0.5, 0.22), i.e., a normal distribution with mean 0.5 and standard deviation 0.2,
and a gamma distribution with the shape parameter 5 and scale parameter 0.1.

Here, the distribution of the measurement error ε is taken to be Laplacian with the pdf ψ(x) =
1
2σ

exp(−|x|/σ), −∞ < x < ∞, where σ = 0.1. The characteristic function of this Laplace distri-
bution is φψ(t) = (1+ σ2t2)−1, which yields β = 2 and C0 = σ−2 in assumption A0. Furthermore,

it is straightforward to see that for a Laplace error distribution, the function Ln(x) ≡ L
(0)

n (x) in
(3) reduces to Ln(x) = K(x) − (σ2/h2)K ′′(x), where K is the kernel used with the smoothing
parameter h. Therefore, the density estimate fn in (1) can be expressed in closed form. As for
the choice of the kernel K with a compactly supported Fourier transform φK(t), to be used in
the construction of the estimate of the density f of Z, we consider the flat Fourier transform
φK(t) = I{−1 ≤ t ≤ 1} corresponding to the kernel K(x) which is proportional to sin(x)/x.
To estimate the density g of X, based on X1, . . . , Xn, we employ the kernel density estimator
ĝn(x) in (17) where H is a Gaussian kernel, truncated at −4 and 4 (which satisfies the conditions
of assumption (H)). The smoothing parameter λn of H was selected via cross-validation. The
selection of the bandwidth h for the density estimator fn is more subtle. Here we have used
two estimators: the first one is the bandwidth that minimizes the approximate MISE, where we
have used the plug-in method of Wang and Wang (2011) which is available in the R package
called “decon”; this estimator will be denoted by H1 throughout this section. Our second es-
timator of h is based on the minimization of supt |fn(t) − f(t)|, which was also discussed by
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Bissantz et al. (2007) and will be denoted by H2 in this paper. Of course, in practice, H2 is
not available because the density f is unknown. However, since we are merely comparing various
estimators, regardless of whether a choice of h is good or poor for a particular data set, it will be
good or poor for all the methods discussed here (because we are using the same density estimator).

To implement the proposed weighted bootstrap, we consider two choices for the distribution of the
weights ξ1, . . . , ξn : the standard normal, N(0, 1), and the standard exponential, Exp(1). Next, to
assess the performance of various approximations, we computed the statistic

Yn :=
√

2 log(1/h)
{

C
−1/2
1,0 sup

0≤t≤1

∣
∣
∣Γ̂n(t, 0)

∣
∣
∣− dn,0

}
,

for each of the two bandwidth estimators (of fn) as well as each sample size n = 50, 100, 500,

where Γ̂n(t, 0), C1,0, and dn,0 are as in (5), (7), and (8), respectively. In addition to the statistics
Yn above, we also computed B = 1000 copies of the following bootstrap statistic for each of the
two bandwidth estimators and each sample size n:

Y ∗
n :=

√
2 log(1/h)

{
C

−1/2
1,0 sup

0≤t≤1
|Γ∗

n(t, 0)| − dn,0

}

Ỹnn :=
√

2 log(1/h)
{

C
−1/2
1,0 sup

0≤t≤1

∣
∣
∣Γ̃nn(t, 0)

∣
∣
∣− dn,0

}

Ŷnn :=
√

2 log(1/h)
{

C
−1/2
1,0 sup

0≤t≤1

∣
∣
∣Γ̂nn(t, 0)

∣
∣
∣− dn,0

}

Y †
nn :=

√
2 log(1/h)

{
C

−1/2
1,0 sup

0≤t≤1

∣
∣Γ†

nn(t, 0)
∣
∣− dn,0

}
,

where Γ∗
n(t, 0), Γ̃nn(t, 0), and Γ̂nn(t, 0) are as in (12), (15), and (16), respectively, and Γ†

nn(t, 0)
is as in (16) but with bootstrap density estimators constructed based on Dirichletn(1, 1, . . . , 1)

weights (as in Gao and Zhong (2010)). The computation of the weighted bootstrap statistics Ỹnn

and Ŷnn was carried out for both weight distributions, N(0,1) and Exp(1). In practice, to compute
the supremum functionals in all the above expressions, we used the maximum of the corresponding
function over a grid of 200 equally-spaced values of t in the [0 , 1]. Changing the grid size to as
large as 500 did not make any noticeable changes. To present our numerical results, first observe
that if n is not “very small” then by Theorem 1 the random variable U := exp{−2 exp(−Yn)}
has an approximate Unif [0, 1] distribution. Similarly, if the bootstrap methods used are good

approximations, the random variables U∗ := B−1
∑B

j=1 I{Y ∗
n,j ≤ Yn}, Ũ := B−1

∑B
j=1 I{Ỹnn,j ≤

Yn}, Û := B−1
∑B

j=1 I{Ŷnn,j ≤ Yn}, and U † := B−1
∑B

j=1 I{Y †
nn,j ≤ Yn} will each have an

approximate Unif [0, 1] distribution, where Y ∗
n,j is the jth copy of Y ∗

n , based on the jth bootstrap

sample, j = 1, . . . , B, (similarly, Ỹnn,j , Ŷnn,j , and Y †
nn,j are the j th copies of the statistics Ỹnn,

Ŷnn, and Y †
nn based on the jth set of weights). Here, B = 1000 as before. Repeating the entire

above process a total of 300 times yields U1, . . . , U300, U∗
1 , . . . , U ∗

300, Ũ1, . . . , Ũ300, Û1, . . . , Û300,
and U †

1 , . . . , U
†
300 for each setup (corresponding to the choices for the distribution of f , the two

estimates of the bandwidth h, the two choices for the distribution of the weights for weighted
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bootstraps (normal and exponential), and the three sample sizes n = 50, 100, 500). In Figure 1

we have plotted the empirical distribution function of U1, . . . , U300, U∗
1 , . . . , U ∗

300, Ũ1, . . . , Ũ300,

Û1, ∙ ∙ ∙ , Û300, and U †
1 , . . . , U

†
300 for the case where f is the density of a Gamma distribution with

the shape parameter 5 and scale parameter 0.1; we have also included the 45◦ line (which is the
true CDF of a Unif [0, 1] random variable).

Figure 1: Plots of empirical cdf’s when f is the density of a Gamma distribution with the shape parameter 5 and
scale parameter 0.1. Here, plots (a1) to (a6) correspond to U1, ∙ ∙ ∙ , U300, (b1) to (b6) correspond to U∗

1 , ∙ ∙ ∙ , U∗
300,

(c1) to (c6) and (d1) to (d6) correspond to Ũ1, . . . , Ũ300, (e1) to (e6) and (f1) to (f6) correspond to Û1, ∙ ∙ ∙ , Û300,

and (g1) to (g6) correspond to U †
1 , . . . , U †

300.

We make several observations based on Figure 1: First observe that as plots (b5), (c5), (d5),
(e5), (f5), and (g5) show, when n = 500 and h = H1, all methods perform much better than the
asymptotic theory. However, plots (e1) and (f1), as well as those in (e3) and (f3), show that with
smaller sample sizes (n = 50 and 100) and h = H1, the weighted bootstrap statistic (16) performs
slightly better than the percentile bootstrap, the weighted bootstrap (15), and Dirichlet random
weighting. This is also intuitively reasonable because, in practice, the statistic (16) (and not (15)
or (12)) is the right bootstrap counterpart for the statistics in (5). Figure 1 also shows that the
bandwidth H1 yields far better performance than H2. Figure 2 presents the same results when f
is a Normal density with μ = 0.5 and σ = 0.2. Again, we observe that the weighted bootstrap has
the ability to perform quite well.
Figures 1 and 2 only provide an informal way of assessing various methods. Therefore, in addition
to these graphical methods, we have also carried out formal goodness-of-fit tests of hypotheses to
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Figure 2: Plots of empirical cdf’s when f is the density of a Normal distribution with μ = 0.5 and σ = 0.2. Here,
plots (a1) to (a6) correspond to U1, ∙ ∙ ∙ , U300, (b1) to (b6) correspond to U∗

1 , ∙ ∙ ∙ , U∗
300, (c1) to (c6) and (d1)

to (d6) correspond to Ũ1, . . . , Ũ300, (e1) to (e6) and (f1) to (f6) correspond to Û1, ∙ ∙ ∙ , Û300, and (g1) to (g6)

correspond to U †
1 , . . . , U †

300.

assess the performance of all the methods discussed above. More specifically, we carried out the
classical Kolmogorov-Smirnov tests of:

H
(A)
0 : U1, . . . , U300 are iid Unif [0, 1]

H
(B)
0 : U∗

1 , . . . , U ∗
300 are iid Unif [0, 1]

H
(C)
0 : Ũ1, . . . , Ũ300 are iid Unif [0, 1]

H
(D)
0 : Û1, . . . , Û300 are iid Unif [0, 1]

H
(E)
0 : U †

1 , . . . , U
†
300 are iid Unif [0, 1]

under various setups. The results (p-values) are summarized in Table 1.
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Table 1: P-values of Kolmogorov-Smirnov tests of uniformity in H
(A)
0 , H

(B)
0 , H

(C)
0 , H

(D)
0 , and H

(E)
0 under differ-

ent setup. P-values that are larger than 10% appear in boldface. A larger p-value indicates that the corresponding
method works better under the particular values of n and h = H1 or H2. The top half of the table corresponds
to the case where f is the pdf of a Gamma distribution with shape parameter 5 and scale parameter 0.1, and the
bottom half corresponds to f being the pdf of a normal distribution with μ = 0.5 and σ = 0.2.

n = 50 n = 100 n = 500
H1 H2 H1 H2 H1 H2

Method:

Asymptotic theory 2×10−16 2×10−16 2×10−16 2×10−16 2×10−16 2×10−16

via (5)
Percentile bootstrap 1×10−4 2×10−11 0.0033 2×10−12 0.2591 2×10−16

via (12)
Weighted bootstrap via 3×10−5 4×10−11 0.0025 4×10−12 0.3070 2×10−16

(15) with N(0, 1) weights
Weighted bootstrap via 2×10−5 5×10−13 2×10−4 3×10−13 0.3243 2×10−16

(15) with Exp(1) weights
Weighted bootstrap via 0.1270 8×10−5 0.2492 2×10−6 0.6020 2×10−15

(16) with N(0, 1) weights
Weighted bootstrap via 0.0210 1×10−7 0.0277 9×10−9 0.3800 2×10−16

(16) with Exp(1) weights
Dirichlet random weight 7×10−5 2×10−5 0.0092 6×10−11 5×10−4 2×10−16

Asymptotic theory 2×10−16 2×10−16 2×10−16 2×10−16 2×10−16 2×10−16

via (5)
Percentile bootstrap 3×10−4 9×10−7 0.0310 9×10−7 0.8688 6×10−8

via (12)
Weighted bootstrap via 2×10−4 5×10−7 0.0277 2×10−6 0.7853 6×10−8

(15) with N(0, 1) weights
Weighted bootstrap via 2×10−5 3×10−8 0.0084 6×10−7 0.8928 2×10−7

(15) with Exp(1) weights
Weighted bootstrap via 0.0217 0.0033 0.1103 0.0107 0.4413 3×10−6

(16) with N(0, 1) weights
Weighted bootstrap via 0.0792 2×10−5 0.1207 1×10−4 0.7867 9×10−7

(16) with Exp(1) weights
Dirichlet random weight 0.0083 3×10−6 0.1017 1×10−5 0.6911 4×10−9

Here, the top half of Table 1 corresponds to the case where f is the pdf of a Gamma distribution
with shape parameter 5 and scale parameter 0.1; in the bottom half of the table f is the pdf of a
normal distribution with μ = 0.5 and σ = 0.2. Our results show that the p-values corresponding
to H

(A)
0 are all virtually zero under every setup, confirming the rather poor performance of the

asymptotic result (9) in Theorem 1. Similarly, all test results are significant (small p-values) when
h = H2. On the other hand, the boldfaced numbers in the second last column of Table 1 show
that when h = H1 and n = 500, most of the p-values are quite large ( > 0.25), confirming the
good performance of various methods used; this is also confirmed by plots (b5), (c5), (d5), (ef),
(f5) in both Figures 1 and 2 as well as plot (g5) in Figure 2. The situation, however, is not
quite the same for smaller sample sizes. In fact, as Table 1 shows, when n = 50 or n = 100, all
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p-values are small except for the five boldfaced values 0.1270, 0.2492, 0.1103, 0.1207, and 0.1017,
indicating the better performance of the weighted bootstrap (16) and, to some extent, that of
Dirichlet random weights (the last line of Table 1).

Next, we used our results to construct 90% confidence bands for the true density f (based on 300
Monte Carlo runs) under different settings. This resulted in 300 bands for each setup. Table 2
summarizes the coverage probabilities for each method under different values of n. Here, coverage
is measured as the proportion of bands (out of 300 bands) that actually captured the true density
f in the interval [0, 1]. Table 2 also gives the average areas, over 300 runs, of confidence bands
constructed under each setup; these average areas appear in brackets. The top half of the table
corresponds to the case where f is the pdf of a Gamma distribution with shape parameter 5 and
scale parameter 0.1, and the bottom half corresponds to the case where f is the pdf of a Normal
distribution with μ = 0.5 and σ = 0.2.
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Table 2: The following table presents the actual coverages of various confidence bands (measured as the proportion
of 300 bands that captured the true pdf). The numbers appearing in brackets are the average areas of the confidence
bands (averaged over 300 bands). The boldfaced values are those actual coverages that are closest to the 90%
nominal coverage probability (they fall within a [90±1]% range). Here, the top half of the table corresponds to the
case where f is the pdf of a Gamma distribution with shape parameter 5 and scale parameter 0.1, and the bottom
half corresponds to the case where f is the pdf of a Normal distribution with μ = 0.5 and σ = 0.2.

n = 50 n = 100 n = 500
H1 H2 H1 H2 H1 H2

Method
Asymptotic theory 0.267 0.153 0.323 0.180 0.500 0.167
via (5) (1.171) (0.538) (1.067) (0.482) (0.882) (0.366)
Percentile bootstrap 0.802 0.727 0.857 0.723 0.880 0.653
via (12) (2.412) (1.536) (1.914) (1.196) (1.303) (0.726)
Weighted bootstrap via 0.807 0.730 0.853 0.717 0.880 0.650
(15) with N(0, 1) weights (2.411) (1.540) (1.915) (1.199) (1.304) (0.726)
Weighted bootstrap via 0.817 0.720 0.860 0.723 0.883 0.667
(15) with Exp(1) weights (4.453) (2.624) (1.943) (1.210) (1.306) (0.727)
Weighted bootstrap via 0.946 0.930 0.947 0.863 0.897 0.737
(16) with N(0, 1) weights (2.449) (1.549) (2.464) (1.511) (1.387) (0.768)
Weighted bootstrap via 0.887 0.843 0.897 0.783 0.893 0.680
(16) with Exp(1) weights (2.958) (1.842) (2.119) (1.321) (1.344) (0.748)
Dirichlet random weight 0.798 0.783 0.876 0.787 0.890 0.697

(3.035) (1.533) (2.093) (1.262) (1.331) (0.713)

Asymptotic theory 0.273 0.121 0.347 0.187 0.563 0.250
via (5) (1.353) (0.435) (1.282) (0.373) (1.046) (0.233)
Percentile bootstrap 0.812 0.770 0.859 0.803 0.897 0.747
via (12) (2.719) (1.448) (2.194) (1.086) (1.487) (0.575)
Weighted bootstrap via 0.813 0.767 0.857 0.810 0.890 0.733
(15) with N(0, 1) weights (2.716) (1.449) (2.192) (1.087) (1.486) (0.575)
Weighted bootstrap via 0.813 0.773 0.863 0.810 0.900 0.740
(15) with Exp(1) weights (4.865) (2.672) (2.220) (1.092) (1.493) (0.577)
Weighted bootstrap via 0.983 0.937 0.963 0.950 0.910 0.780
(16) with N(0, 1) weights (2.767) (1.461) (2.953) (1.432) (1.595) (0.607)
Weighted bootstrap via 0.917 0.867 0.910 0.873 0.906 0.757
(16) with Exp(1) weights (3.359) (1.755) (2.453) (1.207) (1.542) (0.593)
Dirichlet random weight 0.914 0.873 0.907 0.887 0.903 0.763

(3.650) (1.816) (2.389) (1.209) (1.541) (0.602)

The boldfaced values in the table identify those actual coverages that are very close to the 90%
nominal coverage; here an actual coverage is considered to be close to the nominal 90% level if it
falls within the [90±1]% range. Table 2 shows that the result are substantially better when H1 is
used for the bandwidth; this is also consistent with our findings in Table 1, Figure 1, and Figure
2, where all approximations work better when h = H1 is chosen.

The results in Table 2, Table 1, Figure 1, and Figure 2 also show that the weighted bootstrap has
the ability to perform quite well; this is particularly true when the “studentized” type weighted
bootstrap statistic Γ̂nn(t, `), as defined by (16), is used. This is not a fluke. In fact, as mentioned
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in Remark 1, the statistic Γ̂nn(t, `), (and not Γ̃nn(t, `) in (15)), is the correct weighted bootstrap

counterpart of Γ̂n(t, `). Of course, confidence bands based on (16) are typically “wider” (have
larger areas) than those based on (15), which is similar to using t instead of Z values in a confi-
dence interval for a population mean μ.

Remark 2 [The number of Monte Carlo runs.]
We have carried out our numerical examples based on N = 300 Monte Carlo runs. Our choice
of N is based on the variance of the Monte Carlo estimator. More specifically, for j = 1, . . . , N ,
define

Yj =

{
1 if the jth confidence band captures the true density f uniformly in [0, 1],
0 otherwise.

Here Y1, . . . , YN are iid Bernoulli(p) random variables, generated by the N simulated data sets

of size n each, where p = E(Yj) can be estimated by p̂ =
∑N

j=1 Yj/N . In fact, this is how

the coverage probabilities in Table 2 are computed. But Var( p̂) = p(1 − p)/N ≤ 1
4N

, and if
this variance is required to be less than a pre-specified threshold δ, then we can achieve this
by choosing N ≥ 1

4δ
. Here, we took δ = 10−3 which leads to requiring N ≥ 250. Therefore,

our choice of N = 300 is more than sufficient. We must also add that our initial small pilot
study based on several values of N shows that once N reaches about 200, the main message
of tables 1 and 2 will not change (by increasing N) in the sense that the positions of the
boldfaced values will remain the same in both tables. Of course, a much larger N can render
more stable (less variable) results, but it comes at a formidable computational cost. Also, in
our view, a sample of size N = 300 is large enough to warrant the applications of the classical
Kolmogorove-Smirnov test.

3 Proofs

PROOF OF THEOREM 2. Part (i).
Let G(x) = P{X ≤ x} and Gn(x) = n−1

∑n
i=1 I{Xi ≤ x}. Also put

Gnn(x) = n−1

n∑

i=1

(1 + ξi − ξ̄)I{Xi ≤ x}

βn(x) =
√

n (Gnn(x) − Gn(x)) = n−1/2

n∑

i=1

(ξi − ξ̄)I{Xi ≤ x}

and observe that with L
(`)

n (∙) as in (3), we have

f
(`)

nn(t) − f
(`)

n (t) =
1

nh`+1

[
n∑

i=1

(1 + ξi − ξ̄) L
(`)

n

(
t − Xi

h

)

−
n∑

i=1

L
(`)

n

(
t − Xi

h

)]

=
1

n1/2h`+1

∫

R
L

(`)

n

(
t − u

h

)

dβn(u) .
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Consequently,

n1/2hβ+`+1/2
(
f

(`)

nn(t) − f
(`)

n (t)
)

= hβ−1/2

∫

R
L

(`)

n

(
t − u

h

)

dβn(u) .

Next, we state a result of Horváth et al. (2000) on the best approximation of the process {βn(t), t ∈
R} by a sequence of Brownian bridges. A powerful generalization of this

Lemma 1 [Horváth et al. (2000; Theorem 1.3).] Let βn(x) = n−1/2
∑n

i=1(ξi − ξ̄)I{Xi ≤ x}
and suppose that the weights ξ1, . . . , ξn satisfy assumption A4. Then there exists a sequence of
Brownian bridges {Bn(t), 0 ≤ t ≤ 1} such that

P

{

sup
−∞<x<∞

|βn(x) − Bn(G(x))| > n−1/2(c1 log n + y)

}

≤ c2e
−c3y,

for all y ≥ 0, where c1, c2 and c3 are positive constants.

An application of the above lemma together with the Borel-Cantelli lemma immediately gives

sup
−∞<x<∞

|βn(x) − Bn(G(x))| =a.s. O(n−1/2 log n). (19)

Now observe that with Bn(∙) as above,

sup
0≤t≤1

∣
∣
∣
∣
∣
n1/2hβ+`+1/2

√
g(t)

(
f

(`)

nn(t) − f
(`)

n (t)
)
−

hβ−1/2

√
g(t)

∫

R
L

(`)

n

(
t − u

h

)

dBn(G(u))

∣
∣
∣
∣
∣

= sup
0≤t≤1

∣
∣
∣
∣
∣
hβ−1/2

√
g(t)

[∫

R
L

(`)

n

(
t − u

h

)

dβn(u) −
∫

R
L

(`)

n

(
t − u

h

)

dBn(G(u))

]∣∣
∣
∣
∣

= sup
0≤t≤1

∣
∣
∣
∣
∣
hβ−1/2

√
g(t)

∫

R

(
βn(t − hs) − Bn(G(t − hs))

)
L

(`+1)

n (s) ds

∣
∣
∣
∣
∣

≤ h−1/2 sup
0≤x≤1

∣
∣βn(x) − Bn(G(x))

∣
∣× sup

0≤t≤1

hβ

√
g(t)

∫

R

∣
∣
∣L

(`+1)

n (s)
∣
∣
∣ ds

=a.s. O
(
log n/

√
nh
)

, (20)

where the last line follows from (19), part (a) of assumption A2, and part (a) of assumption A3.
Bissantz et al. (2007) studied the asymptotic behavior of the process

Γn,0(t, `) :=
hβ−1/2

√
g(t)

∫

R
L

(`)

n

(
t − u

h

)

dBn(G(u)) , t ∈ [0, 1] .

Their results show that (2 log(1/h))1/2
{
C

−1/2
1,` sup0≤t≤1

∣
∣Γn,0(t, `)

∣
∣ − dn,`

}
→d Y , where P{Y ≤

y} = exp(−2e−y). Putting this together with (20), we obtain

√
2 log(1/h)

(

C
−1/2
1,` sup

0≤t≤1

∣
∣
∣
∣
∣
n1/2hβ+`+1/2

√
g(t)

(
f

(`)

nn(t) − f
(`)

n (t)
)
∣
∣
∣
∣
∣
− dn,`

)

−→d Y , (21)
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as n → ∞, where P{Y ≤ y} = exp(−2e−y). To complete the proof of part (i) of Theorem 2 we
need to show that

√
log(1/h) n1/2hβ+`+1/2 sup

0≤t≤1

∣
∣
∣
∣
∣

[
1

√
ĝn(t)

−
1

√
g(t)

]
(
f

(`)

nn(t) − f
(`)

n (t)
)
∣
∣
∣
∣
∣
−→p 0 , (22)

as n → ∞. To show this, first observe that the expression on the left side of the arrow in (22) is
bounded by

√
log(1/h) n1/2hβ+`+1/2 sup

0≤t≤1

∣
∣
∣
(
f

(`)

nn(t) − f
(`)

n (t)
)
/
√

g(t)
∣
∣
∣× sup

0≤t≤1

∣
∣(ĝn(t) − g(t)

)
/ ĝn(t)

∣
∣ . (23)

However, in view of (21), we have

√
log(1/h) n1/2hβ+`+1/2 sup

0≤t≤1

∣
∣
∣
(
f

(`)

nn(t) − f
(`)

n (t)
)
/
√

g(t)
∣
∣
∣ = Op(log(1/h)) . (24)

Furthermore, (6) together with part (a) of assumption A3 imply (see the Appendix) that

sup
0≤t≤1

∣
∣(ĝn(t) − g(t)

)
/ ĝn(t)

∣
∣ = op

((
log(1/h)

)−1)
. (25)

Now, (22) follows from (23), (24), and (25), which completes the proof of Part (i).

Part (ii).

Let Γ̃nn(t, `) and Γ̂nn(t, `) be as in (15) and (16). Then, in view of Part (i) and the fact that∣
∣Γ̂nn(t, `) − Γ̃nn(t, `)

∣
∣ = n1/2hβ+`+1/2

∣
∣(f

(`)

nn(t) − f
(`)

n (t)
)
×
{
ĝ
−1/2
nn (t) − ĝ

−1/2
n (t)

}∣∣, where ĝn and
ĝnn are as in (17) and (18) respectively, it is sufficient to show that

√
log(1/h) n1/2hβ+`+1/2 sup

0≤t≤1

∣
∣
∣
∣
∣
f

(`)

nn(t) − f
(`)

n (t)
√

ĝn(t)

∣
∣
∣
∣
∣
∙ sup

0≤t≤1

∣
∣
∣
∣
ĝnn(t) − ĝn(t)

ĝnn(t)

∣
∣
∣
∣ −→p 0 , (26)

as n → ∞. But, by Part (i) we obtain

√
log(1/h) n1/2hβ+`+1/2 sup

0≤t≤1

∣
∣
∣
∣
∣
f

(`)

nn(t) − f
(`)

n (t)
√

ĝn(t)

∣
∣
∣
∣
∣

(15)
=
√

log(1/h) sup
0≤t≤1

∣
∣
∣Γ̃nn(t, `)

∣
∣
∣ = Op(log(1/h)) .

(27)
To deal with the second supremum term in (26), let Bn(∙) and βn(∙) be as in Lemma 1 and observe

that since (nλn)1/2
(
ĝnn(t) − ĝn(t)

)
= λ

−1/2
n

∫
RH((t − s)/λn) dβn(s), part (a) of assumption A3

and arguments similar to (and, in fact, easier than) those that lead to (20) yield

sup
0≤t≤1

∣
∣
∣
∣
∣

√
nλn

g(t)
(ĝnn(t) − ĝn(t)) −

1
√

λng(t)

∫

R
H

(
t − s

λn

)

dBn(G(s))

∣
∣
∣
∣
∣
=a.s. O

(
log n
√

nλn

)

(28)
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Now let {B(t), 0 ≤ t ≤ 1} be a Brownian bridge and note that for each n = 1, 2, . . .
{

1
√

λng(t)

∫

R
H ((t − s)/λn) dBn(G(s)), 0 ≤ t ≤ 1

}

=d

{
1

√
λng(t)

∫

R
H ((t − s)/λn) dB(G(s)), 0 ≤ t ≤ 1

}

On the other hand, Bickel and Rosenblatt (1973) studied the behavior of the process Λn(t) =
(λng(t))−1/2

∫
RH ((t − s)/λn) dB(G(s)), 0 ≤ t ≤ 1, and showed that

P

{√
2δ log n

(

η−1/2 sup
0≤t≤1

|Λn(t)| − %n

)

≤ z

}

−→ exp
(
−2e−z

)
, (29)

where η =
∫
H2(u) du, and

%n =
√

2δ log n +






log C1− 1
2

log π+ 1
2
(log δ+log log n)

(2δ log n)1/2 , if C1 := H2(A)+H2(−A)
2η

> 0,
log[(1/π)(C2/2)1/2]

(2δ log n)1/2 , otherwise ,

and where C2 = 1
2η

∫
[H′(t)]2dt. Therefore, in view of (28),

P

{√
2δ log n

(

η−1/2 sup
0≤t≤1

∣
∣
∣
√

nλn/g(t) (ĝnn(t) − ĝn(t))
∣
∣
∣− %n

)

≤ z

}

−→ exp
(
−2e−z

)
,

which, together with part (a) of assumption A3, yield

sup
0≤t≤1

|ĝnn(t) − ĝn(t)| = Op

(√
log n/(nλn)

)
. (30)

Putting together (30) and part (a) of assumption A3, it can be shown (see the Appendix) that

sup
0≤t≤1

∣
∣[ĝnn(t) − ĝn(t)

]
/ĝnn(t)

∣
∣ = Op

(√
log n/(nλn)

)
. (31)

This together with (27), and the condition that log(1/h)
√

log n/(nλn) → 0, imply that

(
left side of the arrow in (26)

)
= Op (log(1/h)) ∙ Op

(√
log n/(nλn)

)
= op(1) ,

as n → ∞. This completes the proof of Part (ii) of Theorem 2.
2

Appendix
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DERIVATION OF (25):
The derivation of (25) is similar to, and easier than, that of (31) given below.

Since
∣
∣ĝn(t) − g(t)

∣
∣ ≥

(∣∣ĝn(t) − g(t)
∣
∣/|ĝn(t)|

)
∙ inft∈[0,1] |ĝn(t)|, we find that for all n > 0

sup
t∈[0,1]

∣
∣ĝn(t) − g(t)

∣
∣ ≥ sup

t∈[0,1]

∣
∣
∣
∣
ĝn(t) − g(t)

ĝn(t)

∣
∣
∣
∣ ∙ inf

t∈[0,1]

∣
∣ĝn(t)

∣
∣. (32)

Next, observe that for all n > 0

− sup
t∈[0,1]

∣
∣ĝn(t) − g(t)

∣
∣ ≤ inf

t∈[0,1]

(
|ĝn(t)| − g(t)

)
≤ inf

t∈[0,1]
|ĝn(t) − g(t)| ≤ sup

t∈[0,1]

∣
∣ĝn(t) − g(t)

∣
∣.

But, as n → ∞, both the far left and the far right sides of the above chain of inequalities converge
to zero (by (6)); hence, so does the middle term, i.e., inft∈[0,1]

(
|ĝn(t)|−g(t)

)
→p 0. Consequently,

in view of part (a) of assumption A3, we find

lim
n→∞

inf
t∈[0,1]

|ĝn(t)| ≥ lim
n→∞

{
inf

t∈[0,1]

(
|ĝn(t)| − g(t)

)
+ inf

t∈[0,1]
g(t)

}
=p 0 + inf

t∈[0,1]
g(t) > 0.

Now, multiplying both sides of the inequality in (32) by log(1/h) and taking the limit as n → ∞,
we find (via (6)) that log(1/h) supt∈[0,1]

∣
∣(ĝn(t) − g(t)

)
/ ĝn(t)

∣
∣→p 0, which is the same as (25).

2

DERIVATION OF (31):

Since
∣
∣ĝnn(t) − ĝn(t)

∣
∣ ≥

(∣∣ĝnn(t) − ĝn(t)
∣
∣/
∣
∣ĝnn(t)

∣
∣) ∙ inft∈[0,1] |ĝnn(t)|, we find that for all n > 0

sup
t∈[0,1]

∣
∣ĝnn(t) − gn(t)

∣
∣ ≥ sup

t∈[0,1]

∣
∣
∣
∣
ĝnn(t) − gn(t)

ĝnn(t)

∣
∣
∣
∣ ∙ inf

t∈[0,1]
|ĝnn(t)| (33)

Now, observe that for all n > 0

− sup
t∈[0,1]

∣
∣ĝnn(t)−ĝn(t)

∣
∣ ≤ inf

t∈[0,1]

(
|ĝnn(t)|−|ĝn(t)|

)
≤ inf

t∈[0,1]

∣
∣ĝnn(t)−ĝn(t)

∣
∣ ≤ sup

t∈[0,1]

∣
∣ĝnn(t)−ĝn(t)

∣
∣.

But, as n → ∞, both the far left and the far right sides of the above chain of inequalities converge
to zero (by (30)) and, hence, so does the middle term, i.e., inft∈[0,1]

(
|ĝnn(t)| − |ĝn(t)|

)
→p 0.

This together with part (a) of assumption A3 and the fact that supt∈[0,1] |ĝn(t) − g(t)| →p 0 for
the kernel density estimator ĝn defined in (17), imply that

lim
n→∞

inf
t∈[0,1]

|ĝnn(t)| = lim
n→∞

inf
t∈[0,1]

{
|ĝnn(t)| − |ĝn(t)| + |ĝn(t)| − g(t) + g(t)

}

≥ lim
n→∞

{
inf

t∈[0,1]

(
|ĝnn(t)| − |ĝn(t)|

)
+ inf

t∈[0,1]

(
|ĝn(t)| − g(t)

)
+ inf

t∈[0,1]
g(t)

}

=p 0 + 0 + inf
t∈[0,1]

g(t) > 0 ,

where we have used the simple inequality that for bounded functions ψ1, ψ2 : C → R, where C ⊂ R,
one has inft∈C{ψ1(t) + ψ2(t)} ≥ inft∈C ψ1(t) + inf t∈C ψ2(t). Next let {an} be any sequence of
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positive numbers converging to zero and observe that if we multiply both sides of the inequality
(33) by an

√
nλn/ log n, then upon taking the limit as n → ∞, we find (in view of (30)) that

an

√
nλn/ log n supt∈[0,1]

∣
∣(ĝnn(t)− ĝn(t)

)
/ ĝnn(t)

∣
∣→p 0. Now, (31) follows because the sequence

{an} can be chosen to converge arbitrarily slowly.
2
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