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Abstract

Selective routing of information between cortical areas is required in order to combine differ-

ent sources of information according to cognitive demand. Recent experiments have sug-

gested that alpha band activity originating from the pulvinar coordinates this inter-areal

cortical communication. Using a computer model we investigated whether top-down in-

duced shifts in the relative alpha phase between two cortical areas could modulate cortical

communication, quantified in terms of changes in gamma band coherence between them.

The network model was comprised of two uni-directionally connected neuronal populations

of spiking neurons, each representing a cortical area. We find that the phase difference of

the alpha oscillations modulating the two neuronal populations strongly affected the interre-

gional gamma-band neuronal coherence. We confirmed that a higher gamma band coherence

also resulted in more efficient transmission of spiking information between cortical areas,

thereby confirming the value of gamma coherence as a proxy for cortical information transmis-

sion. In a model where both neuronal populations were connected bi-directionally, the relative

alpha phase determined the directionality of communication between the populations. Our

results show the feasibility of a physiological realistic mechanism for routing information in the

brain based on coupled oscillations. Our model results in a set of testable predictions regard-

ing phase shifts in alpha oscillations under different task demands requiring experimental

quantification of neuronal oscillations in different regions in e.g. attention paradigms.

Author summary

Cortical oscillations have been linked to the process of communication between two brain

areas. Here we investigated how a third area could control communication between two

other brain areas. We find that the phase of a slower alpha-band oscillation is able to influ-

ence the power of faster gamma oscillations. By changing phase differences between the

slower oscillation in two areas, a third area is able to control the amount of information

flow. In a network with bi-directional connections, the direction of communication is also

controlled by this phase difference. Our results suggest that the pulvinar could coordinate
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communication between different brain areas. This area could have a central role in prior-

itizing the processing of sensory information that is most relevant for the task at hand.

Introduction

The selective routing of information between neocortical areas is important for efficient task-

specific communication. Since it is impossible for the brain to simultaneously process all the

incoming sensory information, it is crucial to enhance the processing of the most relevant

information for the task at hand while at the same time ignoring irrelevant or distracting infor-

mation. This process of selective attention modulates neural activity both in early visual as well

as their down-stream areas [1]. Since tasks and goals are represented in higher-order cortical

areas, there is a need for a mechanism by which these higher-order areas can influence infor-

mation processing in lower-order areas. We here explore a mechanism whereby the communi-

cation between two lower-order sensory areas is coordinated by a third area inducing phase

shifts in slow oscillations. This coordination serves to increase or decrease the efficiency of

information transfer depending on task demands. We use the coherence between fast oscilla-

tions in these two areas as a proxy for efficiency of information transfer.

Synchronization between different cortical rhythms has been suggested as a means for

selective communication between cortical areas [2–4]. Experiments in monkeys have shown

specifically that synchronization of the gamma rhythm between cortical areas in the occipital

cortex is linked to the selective processing of information during visual attention tasks [5].

However, the mechanism by which this selective synchrony modulation of the gamma rhythm

is coordinated in a top-down manner remains unknown. One proposal is that the synchroni-

zation is achieved by feedforward entrainment, in which a sending region drives the receiving

region [6].

There is in addition an abundance of evidence linking the alpha rhythm to the attentional

processing of information. Alpha power has specifically been shown to correlate with the level

of attentional processing of information [7–10]. When a hemisphere responds to an attended

stimulus, alpha power decreases in this hemisphere, lifting inhibition and increasing informa-

tion processing abilities. At the same time increases in alpha power inhibit processing of infor-

mation in the other hemisphere. [11–13].

The cortical alpha rhythm is well studied, but its origins remain unclear. There is strong evi-

dence for alpha generators in the infragranular layers of the cortex [14–17]. However, experi-

ments also show that the neocortical alpha activity is coherent with the thalamus [18,19],

suggesting that thalamic activity might entrain these infragranular sources. The study by Saal-

mann and coworkers has linked the alpha rhythm originating from the pulvinar to attentional

processing of information in the cortex [20]. The pulvinar has widespread connections to vir-

tually every part of the visual cortex [21,22]. When two cortical areas are connected directly by

cortico-cortical connections they also receive projections from overlapping populations in the

pulvinar [23]. Hence, the pulvinar is an ideal candidate for coordinating the communication

between cortical areas. The study by Saalmann and coworkers has shown that selective alloca-

tion of attention was associated with an increase in Granger causality (GC) from the pulvinar

to the parts of the visual cortex that respond to the attended stimuli, lending further support to

the idea that the pulvinar coordinates information transmission between cortical areas. Fur-

thermore, this study showed an attention-dependent increase in gamma band as well as alpha

band coherence between the relevant parts of cortical areas V4 and TEO, which was correlated

Top-down control of cortical communication by alpha phase
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with a significant increase of alpha band coherence between the pulvinar and these two cortical

areas [20].

In another study, electrical stimulation of the pulvinar caused an increase in firing rate of a

cortical neuron when its receptive field (RF) overlapped with the receptive field of the stimu-

lated pulvinar neurons, while it lowered the firing rate when the receptive field of the cortical

neuron and the pulvinar neurons did not overlap [24]. This indicates that pulvinar projec-

tions can enhance or suppress activity in the cortex, possibly influencing cortico-cortical

communication.

The experimental observation of cross-frequency coupling between alpha phase and

gamma band power supports the idea that the alpha rhythm coordinates neuronal processes

at higher frequencies [16,25]. How this rhythmic modulation of gamma power influences

communication remains unknown. As mentioned in the preceding text it has been suggested

that increases in alpha power decrease gamma activity in a cortical area, thereby reducing its

ability to transmit this information to downstream areas [8]. Another possibility is that the

alpha phase modulation of gamma power leads to windows of high gamma power, which can

be aligned across different areas to improve transmission. In contrast to the idea that gamma

band synchronization is caused by feed-forward entrainment, this would require that top-

down modulation of the alpha phase is able to influence gamma band synchronization by

adjusting alpha phases in different areas.

Experiments conducted to study the role of the alpha phase in cortical communication have

focused mainly on determining whether the perception of stimuli depends on the alpha phase

at which they were presented [26,27]. Recent experiments show that the brain can either

actively adjust its alpha phase during an attentional distractor task [28,29] or modulate the

power [30]. These studies have focused on alpha phase adjustments in tasks with temporal

expectations about the onset of stimuli. Although this is often behaviorally relevant, the brain

also needs a mechanism to enhance processing of uncued stimuli. A possible mechanism

would be to align the alpha phase between different cortical areas rather than adjusting the

alpha phase with respect to stimulus onset, thereby making the enhancing effect independent

of stimulus onset.

Here we investigate by means of a model network comprised of spiking neurons whether

the pulvinar could coordinate communication in the gamma band between two cortical areas

by aligning the relative alpha phase between these cortical areas. We find that the phase differ-

ence between the alpha rhythms of the two populations influences coherence in the gamma

band, as well as the amount of stimulus information sent from one area to another. In bi-direc-

tional networks we were also able to control the direction of communication by adjusting the

alpha phase difference. These results account for a broad set of experimental studies of the role

of alpha and gamma oscillations in attentional processing of information.

Results

Gamma power coupled to alpha phase

Consider a network of two connected neocortical areas coordinated by the pulvinar (Fig 1). To

study communication between the neocortical areas we modeled each population as a local

network of interconnected regular spiking excitatory (E) and inhibitory (I) neurons. The

inhibitory populations consisted of a combination of fast spiking (FS) and low-threshold spik-

ing (LTS) interneurons, all modeled using the Izhikevich model [31] with the appropriate

parameter setting (see METHODS).

Model parameters were adjusted such that the network produced biologically realistic firing

rates, specifically 5–10 Hz for E neurons and 25–35 Hz for the two types of I neurons (see

Top-down control of cortical communication by alpha phase
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METHODS). Gamma oscillations emerged spontaneously through a pyramidal-interneuron

gamma (PING) mechanism ([32]), in which excitatory input from the pyramidal neurons acti-

vated the interneurons. In return they inhibited the network for a period determined by the

time scale of fast GABAergic feedback. This resulted in synchronous population activity that

oscillated with a frequency in the gamma band (Fig 2A). The oscillations were not regular: the

peaks in the spike time histogram (STH) as well as the period of the gamma oscillations fluctu-

ated (Fig 2B). The majority of the analyses reported in this paper are performed on the STH

signal of the E population. This is because the currents entering and leaving neurons from the

E population during synaptic inputs and spiking are thought to contribute most to the extra-

cellular local field potential measured in electrophysiological studies due to their large dipole

fields [33].

A clear peak in the power spectrum is observed in the gamma band (Fig 2C). This gamma

band is fairly wide reflecting the frequency fluctuations across time. The mean gamma power

Fig 1. Schematic of model used in the simulations. Two neocortical areas were uni-directionally

connected via a feedforward connection. Both areas consisted of excitatory (RS) neurons and inhibitory (FS,

LTS) neurons. Reciprocal connections existed between the excitatory and inhibitory populations within one

area. Neurons of each cell type were also recurrently connected within each area. The input to the FS neurons

was modulated by an alpha-band oscillatory drive from the pulvinar. The pulvinar neurons were not explicitly

modeled. The effect of varying the relative alpha phase Δϕ on communication between the neocortical areas

was tested.

https://doi.org/10.1371/journal.pcbi.1005519.g001
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Fig 2. Gamma oscillations emerged spontaneously from the reciprocal interaction between E cells and I

cells. (A) Rastergram of excitatory (red) and inhibitory (blue) neurons in one population during an interval of 1000 ms.

Gamma oscillations are visible as vertical alignment of spike times. (B) The spike time histogram (STH) reveals the

gamma oscillations (bin width Δt = 1 ms) in both excitatory and inhibitory cells. (C) The power spectral density of the E-

population STH, showing gamma oscillations between 30 and 50 Hz. Data was averaged over 10 trials, the shaded

areas represent the standard error of the mean (SEM). (D) Increasing the input current to excitatory neurons

increases gamma power, while increasing input current to the inhibitory neurons decreases gamma power. The

current to excitatory cells is varied along the y-direction, whereas that to the inhibitory cells is varied along the x-axis,

the resulting gamma power is color-coded according to the color bar shown on the right of the panel. (E) The

frequency of the gamma oscillation increases with increasing input to the excitatory as well as the inhibitory neurons.

https://doi.org/10.1371/journal.pcbi.1005519.g002
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and frequency strongly depended on the mean input strength to the E and the I neurons (Fig

2D and 2E). The mean gamma power was determined as the average power over a symmetric

20 Hz-wide frequency band centered around the peak frequency, which was separately deter-

mined for each individual parameter setting. Increasing input to the E population resulted in

an increase in gamma power, while stronger input to the I population reduced gamma power

(Fig 2D). The peak frequency of the gamma band increased with stronger input to the E cells

as well as the I cells (Fig 2E). These simulations show that we can modulate the power and fre-

quency of gamma oscillations independently by setting the level of depolarization of the inhib-

itory and excitatory neurons to their appropriate value.

To study the coupling between the alpha rhythm and the emergent gamma oscillations we

applied a modulatory input of alpha frequency (10 Hz) with an amplitude of 23 pA to the I

population as described in the METHODS section. There was no alpha frequency input cur-

rent to the excitatory neurons, hence the effect of the modulation on the E population was

assumed to be indirect and mediated by the projection of the I population to the E population.

A modulatory input to the cells in the alpha frequency band can be interpreted as a slow varia-

tion of the input currents, hence appealing to the results shown in Fig 2, we can expect the

gamma power and frequency to vary with the alpha phase.

Under these circumstances, the STH of the E population now displayed oscillations in the

gamma as well as in the alpha band (Fig 3A and 3B). These observations are also reflected in

the power spectral density, which now has peaks in these two frequency bands (Fig 3C). The

introduction of the alpha rhythm not only decreased the gamma power, in accordance to

experimental studies [34], but also broadened the peak, reflecting the variation of gamma oscil-

lation frequency with alpha phase. We applied a wavelet analysis to determine how the power

of the gamma rhythm was coupled to the phase of the alpha rhythm. The alpha band activity

was visible as a red-yellow horizontal band in the spectrogram centered around 10 Hz with

only modest variations in power and frequency (Fig 3D). The gamma power was modulated

by alpha phase, which was reflected in a periodic sequence of transient yellow-green blobs

(Fig 3D, below). These blobs were locked to the peaks of the alpha cycle in the E population

and the troughs in the I population (Fig 3E). The phase of the alpha oscillations in the E and

the I populations are approximately 180˚ apart, which indicates that high activity of the I popu-

lation inhibits the E population. The inhibitory population thus serves to gate the activity of

the excitatory neurons. If the drive from the pulvinar to the cortex projects predominantly to

the inhibitory cells, this predicts that when excitatory neurons in the pulvinar fire, the excit-

atory neurons in the cortex are inhibited. This would mean that the alpha rhythm as measured

in terms of excitatory neurons in cortex is fully out of phase relative to the activity in excitatory

cells of the thalamus, given that axonal delays from pulvinar to cortex are significantly shorter

than an alpha cycle.

Relative alpha phase modulates gamma coherence

In order to quantify how alpha phase modulates communication we studied uni-directionally

connected networks of two neuronal populations, each representing a cortical area as de-

scribed in the METHODS section (Fig 1). We used gamma band coherence between these

populations as index for the level of information transmission, communication for short. We

varied both the relative alpha phase between the populations as well as alpha power. The fol-

lowing effects of alpha phase difference were obtained using a intermediate value of the alpha

amplitude of 23 pA.

The relative alpha phase difference had a strong effect on the coherence in the gamma band

(Fig 4A). The optimal alpha phase difference (Δφ+) for communication, i.e. the one resulting

Top-down control of cortical communication by alpha phase
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Fig 3. The alpha drive from the pulvinar modulates gamma power in a phasic manner. (A,B) The alpha

modulation from the pulvinar drive to the I-cells is clearly visible in both (A) the rastergram and (B) the STH. (C) The

power spectral density of the E-cell STH had peaks both in the alpha and gamma band. Data was averaged over 10

trials, the shaded areas represent the standard error of the mean (SEM). (D) The gamma power was modulated by the

phase of the alpha oscillation. Top: The spectrogram obtained via a wavelet analysis. Bottom: The gamma power (20–

50 Hz; green line) is locked to the phase of the modulating alpha oscillation (blue line). (E) The gamma power (green

line) follows the peak activity of excitatory neurons (red line), whereas the peak for the inhibitory neuronal firing (blue

line) is approximately out of phase with gamma power. Data was averaged over 10 trials, the error bars represent the

standard error of the mean (SEM).

https://doi.org/10.1371/journal.pcbi.1005519.g003
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Fig 4. Gamma coherence is modulated by the phase difference between the alpha oscillations from the

pulvinar that each area receives. For all panels data was averaged over 10 trials, the error bars or shaded areas

represent the standard error of the mean (SEM). (A) Gamma coherence between area 1 and 2 depends strongly on

the alpha phase difference. The blue arrow indicates the optimal and the green arrow indicates the least optimal

alpha phase difference. (B) The firing rate of excitatory (red) and inhibitory (blue) neurons of the second area did not

vary strongly with alpha phase difference. (C,D) The overall coherence can be resolved in a contribution due to a

correlation in amplitude and a phase coherence, which are shown panel C and D, respectively. The amplitude

coherence varied much less with alpha phase difference than the phase coherence. The dashed line in A,C, and D

represent the bias in the coherence, which was determined by calculating the coherence between randomly

shuffled trials. The amplitude coherence is more strongly biased than the phase coherence, due to the similar alpha

modulation in both areas. (E) When comparing the coherence spectrum for the optimal alpha phase (-90˚, blue)

with the least optimal alpha phase (90˚, green), the difference in coherence occurs only in to the gamma band, the

peak of the coherence in the alpha band is unaffected. (F) The strength of the modulation with alpha phase

Top-down control of cortical communication by alpha phase
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in the highest gamma coherence was approximately -90˚, while the least optimal alpha phase

difference (Δφ-), was approximately 90˚. Maximal difference in gamma coherence between

Δφ+ and Δφ- was obtained when the alpha oscillation was strong enough to reduce gamma

power in the sending network to zero at the peak of the alpha phase (i.e. when inhibitory activ-

ity was maximal). The alpha phase-difference leading to maximal gamma coherence corre-

sponds to the state when area 1 leads area 2 by approximately 25 ms, or 1 gamma cycle. The

most optimal and least optimal alpha phase for communication differ 180˚. The overall firing

rates of the excitatory and inhibitory populations in area 1 and 2 did not vary by more than 2%

with alpha phase difference and can thus not be solely responsible for the much larger modula-

tion of the gamma coherence (Fig 4B).

The coherence measure receives contributions from two different properties of a signal, an

amplitude contribution, increasing when fluctuations across trials in amplitude between the

two areas are similar, and a phase contribution, increasing when phases differences vary less

across trials [35]. We were interested in determining on which component of the coherence

the alpha modulation had the biggest effect. Fig 4C and 4D show the amplitude coherence and

phase coherence, respectively. The amplitude coherence is very high, and strongly biased, as

expected because the amplitudes in each area fluctuate similarly due to the common alpha

modulation, even when compared across shuffled trials. However, the level of amplitude

coherence does not vary strongly with alpha phase; rather the biggest effect is found for the

gamma phase coherence. This indicates that the phases of the gamma oscillations synchronize

better across areas when there is an optimal alpha phase difference. In Fig 4E the coherence

spectrum for Δφ+ (blue) and Δφ- (green) is shown. The coherence in the alpha band is close to

unity because of the synchronized alpha input and differs little between most and least optimal

phase. There is however a clear difference in coherence around the gamma frequencies (30–50

Hz) as well as a smaller harmonic effect around 70 Hz. These frequency bands match the peak

locations in the power spectrum shown in Fig 3C. These results were obtained by modulating

the input to the inhibitory neurons with an alpha oscillation. Similar results were obtained by

modulating the input to the excitatory neurons (S1 Fig), except that the alpha phases were

shifted by approximately 180 degrees with respect to the thalamic rhythms.

Next we modulated the alpha amplitude over a biologically relevant range to determine how

this influenced the advantage of the optimal phase difference relative to least optimal phase

difference. The rastergrams of neuronal firing under the lowest, middle and highest alpha

amplitude can be found in S2 Fig. The modulation depth of the gamma coherence with phase

difference increased with higher alpha amplitude (Fig 4F). Higher alpha amplitudes increased

gamma coherence for Δφ+, and decreased it for Δφ-. The degree with which the alpha phase dif-

ference can increase gamma coherence had a sigmoidal dependence on alpha power. For lower

values of the alpha amplitude no difference in gamma coherence existed, with further increases

in amplitude the difference in gamma coherence increased strongly. The value of gamma coher-

ence at the optimal alpha phase saturates with alpha power, hence further increases in alpha

power do not increase maximum gamma coherence. The previous and following analyses were

all performed for an intermediate level of alpha modulation amplitude equal to 23 pA (see S2B

Fig for rastergram), such that there was realistic gamma activity at all alpha phases.

We implemented the alpha modulation as a sin2 function (while dividing the frequency by

2 such that there was still an effective frequency of 10 Hz), which has a nonzero average, so

that an increased modulation depth also increased the average input to the inhibitory neurons

increases with the amplitude of the alpha modulation, primarily by reducing the coherence at the least optimal alpha

phase.

https://doi.org/10.1371/journal.pcbi.1005519.g004
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in cortex. We considered this the more biologically plausible setting [25,36]: as stronger alpha

modulation of the cortex would entail more incoming spikes from the pulvinar. In order to

test whether the modulation of gamma coherence with increasing alpha amplitude was not

purely due to the increases or decreases of the firing rate, we did a control simulation with the

alpha modulation implemented as a sine function, which has a zero mean. Cortical firing rates

for this parameter setting did not vary with increasing alpha amplitude, however the modula-

tion of gamma coherence nevertheless remained (S3 Fig).

In conclusion, gamma coherence, used here as an index for cortical communication, can be

reliably modulated by the relative alpha phase between two cortical areas.

Coupling of spiking activity to gamma rhythms

From our previous results it is clear that alpha modulation of cortical areas influences the

gamma rhythm in such a way that gamma coherence is increased or decreased. Especially the

phase synchronization of the gamma rhythms in area 1 and area 2 are strongly influenced (Fig

4E). To see what the effect of this increased synchronization is on the coordination of the spik-

ing activity of individual neurons we compared the two extreme situations of the best alpha

phase difference (Δφ+) and the worst alpha phase difference (Δφ-). A wavelet analysis was used

to determine the phases of the gamma rhythms in area 1 and area 2 (see METHODS).

The spiking activity in area 1 and area 2 were both strongly modulated by their local

gamma rhythms (Fig 5A and 5B). Modulation of the spiking activity in the first area was

almost the same for both conditions (Δφ+ vs. Δφ-, blue vs. green respectively), whereas in the

second area the spiking activity was slightly stronger modulated for Δφ+ (Fig 5B). A larger dif-

ference is found when we considered how the spiking activity of area 1 aligned to the gamma

rhythm in area 2 (Fig 5C). For Δφ+ there is a much stronger locking of area 1 spiking activity

to the area 2 gamma rhythm than for Δφ-. Note that in both conditions the phase difference

between area 1 spiking activity and the gamma rhythm of area 2 is about 90˚, so even the con-

dition with low coherence between the rhythms there is a certain amount of phase locking

between spikes and the rhythms.

To see how the gamma rhythm influences the transfer of individual spikes in both condi-

tions we calculated the probability that a spike in a neuron in area 1 is followed by a spike in a

neuron in area 2 within a window of 1 to 4 ms, which matches the delays due to synaptic acti-

vation in our model (we did not include the effects of axonal delays). Our neurons never fired

more than once in a 4 ms period, hence we could represent each neuron-neuron pair as a

binary value. The number of spikes in area 2 was normalised over the different gamma phase

bins in area 1 by randomly removing spikes from bins until each bin contained the same num-

ber of spikes. This was necessary to ensure that an increased probability is not just the result of

there being more spikes in a certain gamma phase bin. We observed a strong alignment of the

spike emission probability in area 2 to the gamma rhythm of area 1 for the Δφ+ condition, and

a somewhat weaker alignment for the Δφ- condition (Fig 5D). Hence, gamma phases of area 1

corresponding to a high spiking activity also lead to a higher probability that a spike in area 1

was followed by a spike in area 2.

When we quantified the probability that a spike in area 1 is followed by a spike in area 2

in terms of alignment to the gamma rhythm in area 2, we found a different effect (Fig 5E).

There is still alignment for the optimal phase difference, but the gamma phases in area 2 co-

rresponding to high spiking activity do not lead to a higher probability that a spike in area 1 is

followed by a spike in area 2. Instead, for the best alpha phase difference the probability modu-

lation agrees well with the results from Fig 5C: Gamma phases of area 2 for which more area 1

spikes occur, lead to a higher probability that a spike in area 1 is followed by a spike in area 2.
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Fig 5. Spiking activity of individual neurons is coupled to local gamma rhythms. The conditions with the best

alpha phase difference (blue) and the worst alpha phase difference (green) are compared. (A) Normalized spike

counts of area 1 aligned well to the local gamma rhythm in area 1. Here, and in the two following panels, we plot the

spike probability as a function of a phase normalized to 1. (B) Normalized spike counts of area 2 also aligned well to

the local gamma rhythm in area 2. (C) Normalized spike counts of area 1 aligned to the non-local gamma rhythm from

area 2 at a phase of approximately 90˚. (D) The probability of an area 2 spike following an area 1 spike is modulated

by the area 1 gamma phase. It peaks for the area 1 gamma phase at which most area 1 spikes occur. (E) Probability

of an area 2 spike following an area 1 spike is modulated by the area 2 gamma phase but it peaks at a different area 2

gamma phase, namely the one where most area 1 spikes arrive rather than the phase for which most area 2 spikes

occur. Data was averaged over 10 trials, the error bars represent the standard error of the mean (SEM).

https://doi.org/10.1371/journal.pcbi.1005519.g005
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Together, these results suggest that the gamma rhythm in area 1 is responsible for increas-

ing the effectiveness of spike transmission. Concentrating area 1 spiking activity in certain

gamma phases increases area 1’s impact on area 2. The strength of this effect is modulated by

the alpha phase difference between the two areas. The best alpha phase difference, for which

we also found high gamma coherence, leads to a stronger modulation of the effectiveness of

spike transmission by the gamma rhythm in area 1.

Stimulus processing is affected by alpha phase

An important feature of the process of selective attention is the ability to bias the processing of

certain incoming stimuli over others, ensuring that the relevant stimuli have a bigger impact

on downstream areas. We were interested whether the proposed mechanism of shifting alpha

phases could also be used to prepare a transmission channel before the onset of a stimulus,

in order to bias the processing of one stimulus over another by attention. We investigated

whether shifting alpha phases can not only enhance gamma coherence and modulate spike

effectiveness over a longer period of time as shown in the previous sections, but can also have

an effect on short transient effects like the onset of a stimulus. Inspired by work that showed

that the timing of a stimulus with respect to an ongoing cortical oscillation modulates stimulus

processing [26,27], we wondered whether similar effects could be found in our network and

especially whether these effects also show up when a stimulus is communicated from one corti-

cal area to another. To investigate this we needed to present a stimulus to the model network.

We modeled the incoming stimulus as an increase in excitatory input to the first neuronal

population. This increase in excitatory input caused our network to go from a state with low

amplitude gamma oscillations driven by an interneuron gamma (ING) mechanism, which

mainly relies only on interneuron activity for the generation of gamma oscillations, to high

amplitude gamma oscillations driven by a PING mechanism (Fig 6A). There was a strong ini-

tial non-linear effect on the overall firing rate of the population, after which the activity of the

network returned to a state similar to the previous sections. We investigated the transient effect

the stimulus had shortly (30 ms) after stimulus onset on the overall firing rate of the neuronal

populations.

We quantified the response of the first population to the stimulus as the increase in firing

rate during 30 ms after stimulus onset, for different moments of stimulation with respect to

the phase of the alpha rhythm (Fig 6B; solid line). Since the alpha phase also modulates the fir-

ing rate without stimulation, we also quantified this baseline (Fig 6B; dashed line) and took the

difference as the effective response gain caused by the stimulus (Fig 6C).

A two-times-as-strong response was found on optimal alpha phases where inhibition due

to the alpha modulation was weak, compared to least optimal alpha phases where inhibition

was strong. This suggests that the brain could enhance or suppress the processing of a stimulus

by shifting its alpha phase, but only if it can anticipate with sufficient temporal accuracy when

a stimulus would occur. Although, as mentioned in the introduction, some evidence exists for

alpha phase adjustments in anticipation of a stimulus [28], the brain is also able to enhance or

suppress the processing of unexpected stimuli. We hypothesize this might happen by setting

up dynamical networks, or transmission channels, across which the signals are preferentially

processed. To quantify this we considered the effect of the relative phase difference between

two populations on the transmission of the stimulus-induced increases in firing rate of the pre-

synaptic population.

As in Fig 1 the first population was connected to the second. This allowed us to quantify

communication as the increase in firing rate in the second population, transmitted by the first

population in response to a stimulus. The average firing rate over the duration of strongest
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Fig 6. Response to a stimulus response was strongly affected by alpha phase difference. (A) Upon stimulus

presentation the E and I population activity in area 1 increased strongly, yielding both a transient increase due to and

immediately following the stimulus onset (highlighted by the gray bar) as well as a higher sustained rate during the

period that the stimulus was presented. The bottom panel represents the stimulus time course. (B) The response of the

network (firing rate during 30 ms after stimulus onset, represented by the gray bar in panel A) to the stimulus depends

on at what alpha phase the stimulus onset occurs. A strong increase in response is found when the stimulus is active

(solid line) compared to when there is no stimulus (dashed line). (C) The increase in firing rate of area 1 from baseline in

response to the stimulus was twice as high for an optimal alpha phase compared to that for the least optimal phase. (D)

The response of the second area depends both on the alpha phase of area 1 at stimulus onset (y-axis) as well as on the

alpha phase difference between area 1 and area 2 (x-axis). (E) A cross section of the response surface in panel D taken

at the optimal alpha phase of area 1 (0˚, dashed line in panel D) highlights the effect of relative phase. Although both the
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response was used, which was during 30 ms after stimulus onset. The response of the second

population depended both on where in the alpha phase of the first population the stimulus was

presented, as well as on the relative alpha phase difference between area 1 and area 2 (Fig 6D).

For the alpha phase giving the optimal response in area 1 the effect of the alpha phase differ-

ence with area 2 shows the same pattern as the gamma coherence (Fig 6E and 6F). Averaged

over all stimulus onsets at the different alpha phases, the response in area 2 shows the same

effect (S4A Fig). Having the optimal alpha phase difference between both populations can lead

to a twice-as-strong response in the second population when compared to having the least

optimal alpha phase difference.

So not only the alpha phase with respect to the incoming stimulus matters, but also the rela-

tive alpha phase between communicating areas. This shows that shifting the relative alpha

phase can bias the processing of a stimulus by increasing its impact on a downstream area.

Moreover a stimulus is most effectively transmitted by having the optimal alpha phase differ-

ence between successive cortical areas, while having the wrong alpha phase difference can

dampen the effect a stimulus response has on downstream areas.

A question that remains is whether this effect of the relative alpha phase on the impact of sti-

muli enhances the information that is sent from one area to another. Discriminating between dif-

ferent stimuli is a task that human and animal subjects can perform and that often relies on the

activity of cortical areas [37] and we used this task to quantify information transfer from area 1

to area 2. We quantified the performance of the two cortical areas in discriminating two different

stimuli entering at the optimal alpha phase of area 1, but arriving at different alpha phases in area

2 due to (top-down) modulation of the alpha phase difference. Each stimulus was implemented

as an increase in input to a different subpopulation of the first cortical area. One can think of this

as each population having slightly different stimulus preferences. These two subpopulations in

area 1 each projected selectively to the two corresponding subpopulations in the second cortical

area, such that there was no overlap in the feedforward projections (Fig 7A).

To quantify the discriminating abilities of the second area, we trained a support vector

machine (SVM) and used this to decode which stimulus was presented to the first area. The

SVM was trained on the average firing rate of the neurons in each subpopulation of the second

area during 30 ms after stimulus onset, where the strongest stimulus response was observed.

Classification performance depended strongly on alpha phase difference (S5A Fig). The joint

probability of the actually presented stimulus and its SVM classification was used to calculate

the mutual information as described in the METHODS section. Fig 7B shows how the mutual

information between area 1 and area 2 depends on the relative alpha phase difference, as well

as on the alpha phase of area 1 at stimulus onset. When we take the optimal alpha phase of area

1 (Fig 6C), and change the alpha phase difference between both areas we see a strong modula-

tion of the mutual information sent from area 1 to area 2 (Fig 7C), similar to the effect of the

alpha phase difference on coherence (Fig 4A) and stimulus response (Fig 6F). Averaged over

all possible stimulus onsets in the alpha phase of area 1 we find the same effect (S5B Fig). The

relative alpha phase thus not only increases the impact of a stimulus presented to area 1 on the

response in area 2, but also increases the ability of the second area to effectively discriminate

different stimuli based on inputs it received from the first area. Furthermore, when we modu-

late the difficulty of the discrimination task by reducing the number of neurons that can be

baseline response (dashed line) as well as the stimulus response (solid line) are modulated by the alpha phase

difference, the modulation of the latter is much stronger. (F) The difference between stimulus and baseline response is

modulated by a factor of about two by the alpha phase difference between area 1 and area 2. Hence, the two phase

factors have an approximately equal effect, in essence acting as a gate, which is only open if both are optimal. Data was

averaged over 10 trials, the error bars represent the standard error of the mean (SEM).

https://doi.org/10.1371/journal.pcbi.1005519.g006
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used for decoding, we see that this dependence on alpha phase difference is only present for

difficult tasks involving a smaller number of neurons (Fig 7D). When discriminating stimuli

are easy the alpha phase difference doesn’t matter as decoding is always performed with 100%

accuracy. This supports the idea that this alpha phase dependent mechanism would only be

useful for top-down processes that need to increase the performance of processing sensory

information in demanding situations with limited neural resources.

Alpha phase determines directionality of communication

The preceding results were obtained with an unidirectional connection between area 1 and

area 2 whose effectiveness could be manipulated through alpha phase shifting. Brain areas are

Fig 7. Stimulus discrimination in the receiving cortical area is influenced by alpha phase difference with the

sending cortical area. (A) The excitatory populations of both areas were divided in 2 subpopulations that were

individually stimulated. Each subpopulation in area 1 was selectively connected to the corresponding one in area 2. (B)

The degree to which information send from the first area that could be retrieved from the response of the second area

depended both on alpha phase of area 1 at stimulus onset (y-axis) as well as on the alpha phase difference between

area 1 and area 2 (x-axis), in a similar fashion as the stimulus response characterized in Fig 6D. (C) A cross section at

the optimal alpha phase of area 1 (0˚, dashed line in panel 7D) highlights the effect of relative phase. The information

transfer from area 1 to area 2 attained peak values at the same alpha phase difference where stimulus response of area

2 was highest. (D) When less neurons in area 2 were available for decoding, the performance decreased. For 200

neurons decoding performance is always 100% and the alpha phase difference is not relevant. However, for more

challenging tasks for which there are fewer neurons available for decoding the optimal alpha phase difference is

essential for adequate decoding. Data was averaged over 10 trials, the error bars represent the standard error of the

mean (SEM).

https://doi.org/10.1371/journal.pcbi.1005519.g007
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often reciprocally coupled, which would need to be modeled by bidirectional connections. To

study how feedback connections influence communication we incorporated feedback connec-

tions in our model (Fig 7A). This means we cannot quantify communication solely in terms of

coherence, but we also need to assess the direction of communication through analyses utiliz-

ing Granger causality.

In the bidirectional model simulations we varied the relative alpha phase difference be-

tween both populations. The gamma coherence showed two peaks as a function of phase dif-

ference (Fig 8B). We hypothesized that each peak corresponded to a different direction of

communication.

This hypothesis was tested using the conditional Granger causality, which was conditioned

on the common alpha input that both areas received (see METHODS). The relative alpha

phase indeed determined the directionality of communication between the two populations

(Fig 8). For negative alpha phase differences (Fig 8C) the directionality was from area 1 to area

2, while for positive phase differences (Fig 8D) the directionality was from area 2 to area 1.

Causal communication was mainly in the gamma band. Without aforementioned condition-

ing on the common alpha input, causality in the alpha band dominated. For an alpha phase

difference of 0 degrees, the causality was similar in both directions (Fig 8E) though closer

inspection revealed a constantly switching directionality (S6 Fig), leading on average to lower

gamma coherence (Fig 8A). The fluctuations in Granger causality occurred on timescales of

between 100 and 400 ms and were probably caused by small variations in power and phase of

the gamma oscillations.

Discussion

Summary of results

This study assessed how communication between two cortical areas, indexed by gamma coher-

ence, can be influenced by modulation of the phase of alpha oscillations generated in the thala-

mus. Our results show that the phase difference between alpha rhythms in each area was a

powerful modulator of the effectiveness and direction of cortical communication. Increases in

alpha power can either improve or impair cortical communication, depending on the phase

difference between the alpha generators. A key component of the underlying mechanism was

the coupling between alpha phase and gamma power, which is often reported in experiments

[25] (Fig 3D and 3E). Cortical communication was quantified in several ways to overcome the

possible limitations that each individual measure might have. All measures demonstrated that

communication was modulated with respect to the alpha phase difference between two areas.

The variation in gamma band coherence was primarily caused by modulation of the alpha

phase difference (Fig 4A). Furthermore, we found that the alpha phase difference influences

how well the arrival of individual spikes in the transmitting area is phase locked to the gamma

rhythm of the receiving area (Fig 5C), thereby increasing the probability that a spike in the

transmitting area evokes a spike in the receiving area.

Our simulations further show that the alpha phase difference between two areas can bias

the transfer of an incoming stimulus. The response in the receiving area caused by the re-

sponse to the stimulus in the transmitting area was strongly modulated by the alpha phase dif-

ference (Fig 6E and 6F). To investigate whether an enhanced impact between the two areas

could be utilized to increase bandwidth for stimulus information transfer, we quantified per-

formance on a stimulus discrimination task using mutual information.

These results also showed a strong modulation of the information transferred from the

transmitting to the receiving area as a function of the alpha phase difference (Fig 7C). In a net-

work with bidirectional connections between two cortical areas we were able to control the
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Fig 8. In bidirectional networks the alpha phase difference determines the direction of communication. (A)

Schematic of the model with bidirectional connections between both areas. (B) With bidirectional connectivity the

gamma coherence has peaks at two distinct alpha phase differences (solid line; baseline is represented by dotted

line). (C) For an alpha phase difference of -90˚ Granger causality from area 1 to area 2 (red) is much stronger. (D) For

an alpha phase difference of 90˚ the granger causality from area 2 to area 1 (blue) dominates. (E) At zero alpha phase

difference Granger causality is equal in both directions (red, from area 1 to area 2, blue from area 2 to area 1) and

shows a clear peak in the gamma band. Data was averaged over 10 trials, shaded areas represent the standard error

of the mean (SEM).

https://doi.org/10.1371/journal.pcbi.1005519.g008
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direction of communication by shifting the relative alpha phase. Granger causality analysis

showed that gamma band communication was strong from area 1 to area 2 and weak in the

reverse direction, when area 1 was leading in alpha phase (Fig 8C). The direction of gamma

band GC was reversed when area 2 was leading in alpha phase instead (Fig 8D). This suggests

that our observation on the link between information processing and alpha phase difference

for unidirectional projections extends to bidirectional connections.

Alpha phase to gamma power coupling

Coupling in the alpha band between thalamus and neocortical regions is well-established by

animal recordings [18,19,38]. A number of recent studies report evidence for alpha-gamma

cross-frequency coupling in human subjects that is consistent with the proposed model. Roux

and coworkers used a beam-forming approach to show that the phase of alpha oscillations in

virtual sensors located near the thalamus correlates with the amplitude of gamma oscillations

in the early visual cortex [39]. A transfer entropy analysis of these data further showed that

alpha phase affects gamma amplitude with a delay of about 16 ms. This is similar to physiologi-

cal estimates of the transmission delay between the regions and follows from our model with-

out explicitly building this in. Malekmohammadi and coworkers recorded simultaneously

from cortex using an ECoG grid and from thalamus using depth electrodes. Their measure-

ments show a coupling between the theta phase of oscillatory activity in the thalamus and the

amplitude of beta band oscillations in cortex [40] (see also [41]). Taken together, these studies

demonstrate a coupling between slow-frequency oscillations in thalamus to gamma band

activity in cortex in human subjects, thereby indicating that the model studied here may be

more broadly applicable to the human visual system as well.

Alpha phase could modulate perception

The functional relevance of the phase of a low frequency oscillation (alpha or theta band) can

be assessed by investigating how the detection probability of stimuli depends on the oscillatory

phase at which they are presented. When visual stimuli were presented at a contrast close to

detection threshold, the alpha phase for hits was different compared to that of the misses [42].

This was only true for phases calculated relative to oscillations in the theta and alpha band.

Another experiment has demonstrated that not only is the detection probability modulated by

alpha and theta oscillations but also that there is a phase difference in the alpha and theta fre-

quency band between attended and unattended objects [43]. When the cyclical variation of

detection probability is interpreted as being due to an oscillatory variation of neural excitabil-

ity, it implies that there is a phase difference between the respective retinotopic areas responsi-

ble for processing the respective attended and unattended stimuli. This is consistent with the

phase shifting between cortical areas hypothesized in the model.

Different roles for the pulvinar in modulating attention effects

Recent experiments indicate that the thalamus, specifically the pulvinar, may be a major player

in the coordination of information transmission by coordinating the synchronization between

cortical areas. The simulation results reported here are relevant in relation to two recent exper-

iments by Saalmann et al. [20] and Zhou et al. [44].

In Saalmann et al (experiment 1), monkeys are first cued to the relevant spatial location for

the task, after which the stimulus is presented [20]. Upon stimulus presentation they have to

respond according to the stimulus presented at the target location by either immediately

releasing a lever or holding on and releasing it at a later time. Signals are recorded from the

ventral pulvinar, V4 and area TEO during this task, and the analysis is conducted on responses
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after cue onset but before stimulus onset. The responses when attention is directed into RF

are compared to when attention is directed to a location outside the RF. Within cortex the

coupling between alpha phase and gamma power increases during attention. There is alpha

band (10–15Hz) coherence between the local field potentials (LFPs) in TEO and pulvinar,

V4 and pulvinar as well as between TEO and V4. This alpha-band coherence also increased

with attention. In addition, there was a small increase in gamma coherence, but only for the

TEO-V4 pairs. The direction of interaction between brain regions was investigated using

Granger causality. When attention was directed into the receptive fields, the alpha-band

Granger causality was increased in the direction from the pulvinar to cortex, but between the

two cortical areas it was unaltered.

The proposed interpretation of these results is that alpha oscillations in the pulvinar direct

alpha oscillations in cortical areas that act to align gamma oscillations between areas, thereby

improving information transmission [45]. Our model supports the potential role of alpha

phase shifts in increasing efficiency of information transmission, reflected in enhanced

gamma coherence and mutual information between firing rate fluctuations in the areas. As

gamma coherence both depends on the degree of alpha alignment and whether sufficient acti-

vation is provided by bottom-up stimulus-related inputs or top-down inputs reflecting cogni-

tive factors, the model would predict that when the stimuli are presented the intracortical

gamma-band Granger causality would increase above its value that was measured during the

cue period in [45].

Zhou and coworkers (experiment 2) use a similar but not identical task and measured from

(ventral lateral) pulvinar, V4 and TE (a different area that is adjacent to TEO and has a differ-

ent connectivity profile with the pulvinar [46]). In their task there is a cue in the center of the

visual field that indicates the relevant location (target) in the stimulus array, which is com-

prised of different objects. The subject had to detect a small change in the target object and

respond by making a saccade and the subject had to ignore changes in non-target objects. On

some trials the cue preceded the onset of the stimulus array, thereby providing a measurement

of how cortical networks re-organize to reflect the new focus of attention, prior to the onset of

the stimulus response.

In Figure S4 of the work by Zhou and coworkers the Granger causality between LFP signals

was determined in the period prior to stimulus onset. The gamma band GC from V4 to TE

was enhanced by attention, and it was weak and not modulated by attention the other way

around. The pulvinar-V4 GC was frequency selective, with the gamma band dominating from

V4 to pulvinar, which was also strongly modulated with attention, and lower frequency band

dominating in the pulvinar to V4 GC. In contrast to the study by Saalmann and coworkers,

the alpha band GC from pulvinar to cortex was not modulated by attention. Interestingly

our model does not require an increase in Granger causality (or coherence) in the alpha band

from the pulvinar to the cortex, since it’s only the phase of cortical alpha oscillations that is

modulated.

A possible interpretation of these results, which is consistent with our model, is that gamma

band is representing stimulus-related information going from V4 to pulvinar, whereas the

alpha band drive from pulvinar to V4 modulates the effectiveness of the V4-TE communica-

tion. Each band could reflect the activity of a different set of neurons, the balance between

which varies with the particular group of neurons generating the LFP signal.

The differences in findings of experiment 1 and 2 can thus be caused both by differences in

task setup as well as recording sites. The findings of either of the studies do not contradict the

results of our model, though they raise several issues that could be investigated with additional

model simulations.
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Structure and dynamics of pulvinar-cortical network

Our model is a severe simplification of the pulvinar-cortical network. Here we describe several

aspects that are important for improving our model in future work.A key simplification of our

model is representing the pulvinar activity simply as an alpha oscillation. It would be impor-

tant to understand how this alpha oscillation could be generated by a network of spiking neu-

rons. Our mechanism requires the generation of alpha oscillations with different phases

depending on attentional demand. The existence of such a mechanism is supported by the

finding of phase diverse thalamic projections in the cat thalamus. In the lateral geniculate

nucleus of the thalamus, high threshold thalamic cortical (TC) neurons (HTC) are a subset of

TC neurons that produce bursts activated by a cholinergic projection or by activation of meta-

botropic glutamate receptors [47–49]. This leads to the situation that when the alpha oscilla-

tion is generated by the HTC, the remaining TC can fire at different phases. The same area can

thus project alpha with two different phases relative to the local alpha oscillation. In vitro stud-

ies, controlling the level of depolarization, shows that a finer grained control of the phase is

also possible [47,48]. Under the assumption that neurons in the appropriate location of the pri-

mate pulvinar have similar properties, this extensive set of experiments support the notion that

pulvinar excitatory drives can be tuned in terms of alpha phase, which is a necessity for the

proposed mechanism. Therefore, extending the model with a physiologically realistic network

model of the pulvinar alpha generator would be a great addition.

There is quite some evidence that the pulvinar-cortical interactions operate in both directions.

The pulvinar is not only influencing cortex, but the cortex also projects back to the pulvinar [23].

Expanding our model by making the cortical areas influence the pulvinar would help to provide

insight into the role of these feedback projections. Modeling stimulus representations in the pulvi-

nar [24,50] and how bottom-up sensory information and top-down attentional control interact in

the pulvinar could further increase our understanding of the pulvinar-cortical network.

Finally, an important aspect that we have not implemented in our model is the laminar organi-

zation of the cortex. Different cortical laminae support the processing of information from respec-

tively cortical and subcortical sources. Feedforward projections from the pulvinar project to layer

4 of the cortex, while feedback projections from the pulvinar project to more superficial cortical

layers [51–53]. This would cause the pulvinar to influence the higher and lower areas in the visual

hierarchy in mechanistically different ways, relying on different cell types and circuitry. In addi-

tion, cortical oscillations have a laminar profile, in terms of the origin of alpha oscillations [54,55]

relative to faster oscillations [56], which can differ going from earlier sensory areas (V1,A1, S1) to

the ones further up in the hierarchy (V4, IT) [57]. Taking the laminar structure of the cortex into

account is essential for making accurate predictions for electrophysiological measurements made

with laminar electrical probes and should be considered in future work.

Mechanism for cortical communication

Communication through coherence (CTC) was proposed as a principle to dynamically gener-

ate networks between cortical areas [2]. In its original form, it suggested that for areas to com-

municate effectively, they had to oscillate at the same frequency and the phase difference had

to have a suitable value to align windows of excitability, for instance generated by a properly

timed and synchronized inhibition [58]. The original principle of CTC did not come with a

specific biophysical mechanism, but with predictions that were born out in experiment [59].

The lack of mechanism led to alternative interpretations [60,61] and modeling work arguing

for it [62,63] and against it [64]. Experimentally, it was pointed out that gamma oscillations

varied in frequency across time with a mean depending on the size and contrast of the stimulus

[65]. This would make CTC difficult because the receiving area has to adjust to the ever-
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changing frequency. Nevertheless we now know that this is possible [66], presumably due to

the entrainment properties of PING circuits. In a recent review paper [6], CTC has recently

been revised to account for the new experimental results. In anesthetized monkeys, the relation

between the probability of a spike in V1 eliciting a spike and V2 as a function of LFP phase was

investigated [67]. CTC predicts that the spiking probability should be highest at the best local

phase (i.e. in V2), but in experiment it was found to be at the best V1 phase, for which the V1

activity was the highest. Hence, the gamma was most effective at the time it corresponded to

the highest number of active neurons. This is consistent with our model results (Fig 5). It sup-

ports a phase-based mechanism in the alpha band, which can influence information transmit-

ted in the gamma band. Recently simulations have shown how a network with cross-frequency

coupling can switch between a communication through coherence mechanism and a mecha-

nism similar to the theta-gamma mechanism found in hippocampus [68]. This latter mecha-

nism has been suggested to also play a role in visual processing [69]. Further investigations

need to be conducted to find out how alpha phase changes would influence this mechanism.

Experimental predictions

Our model is consistent with several recent experimental findings. To further validate our

model we here formulate explicit predictions that can be tested by re-analyzing existing

electrophysiological data or by conducting additional experiments. A clear prediction from

our model is that the alpha phase difference between two connected cortical areas should be

correlated with the gamma coherence between both areas. Such experiments can be conducted

in animals using intracranial field recordings or in humans using MEG. A paradigm can be

used in which the need for communication between the regions is manipulated; e.g. an atten-

tion type of paradigm. The alpha phase difference between two cortical areas should be differ-

ent when comparing the attention into the receptive field condition to that with attention

directed outside the receptive field condition. On a trial by trial basis, the difference in alpha

phase should be correlated with gamma coherence, as well as task performance.

Finally, methods such as DREADD [70] and optogenetics [71] can be used to actively

manipulate the phase of cortical alpha oscillations in animal studies. These techniques are well

suited to target very specific groups of neurons in the cortex or pulvinar. By active individual

manipulation of the alpha phase in two connected cortical areas we predict an influence on

gamma coherence between these areas. These techniques are currently well-established for use

in rodents, but are in the process of being adapted for primates use [72].

Conclusions

We have shown a possible role for the alpha rhythm in coordinating cortical communication.

By controlling the alpha phase difference between cortical areas we were able to influence the

effectiveness of communication and the processing of stimuli. In bidirectionally coupled net-

works the alpha phase difference determined the direction of communication. The pulvinar

would be an ideal candidate for controlling this mechanism. We formulated a number of

experimental tests to support the hypothesized mechanisms and further clarify the role of the

pulvinar in the process of selective attention.

Models & methods

Model overview

To study communication between neuronal populations in different cortical areas we

modeled each population as a local network of strongly interconnected neurons (Fig 2). Each
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population consisted of 400 regular spiking (RS) excitatory pyramidal neurons, 75 fast spiking

(FS) interneurons and 25 low threshold spiking (LTS) interneurons [73]. Connectivity within

each population was all-to-all: each neuron projected to all other neurons, representing the

strong connectivity of a local cortical population. In most simulations, two of these popula-

tions were connected, each population representing a part of a different cortical area within

the visual cortex. Depending on the simulation experiment, the populations were connected

either uni-directionally or bi-directionally. Each neuron in each population received an inde-

pendent random noise current inputs that was uncorrelated between neurons. Unless stated

otherwise, the input was modulated with a 10 Hz (alpha frequency) sinusoidal oscillation, sim-

ulating the coordinated input activity from the pulvinar.

Neuron model. To simulate the potential dynamics of the different neuron types we used

the model proposed by Izhikevich [31]. This simple model is represented by the following

equations

_v ¼ 0:04v2 þ 5v þ 140 � uþ I

_u ¼ aðbv � uÞ

together with a reset condition: when v crosses 30 mV from below: an action potential is called

and the variables are reset according to

v c;

u uþ d

Here v represents the membrane potential of the simulated neuron, I controls the amount

of current flowing into the neuron (level of depolarization) and u is a slow ’recovery’ variable

which can be interpreted as the action-potential induced activation of K+ or inactivation of

Na+ currents. The four dimensionless parameters a, b, c and d determine the dynamical char-

acteristics of the neuron, the additionally numerical constants set spike threshold and rest

potential. The parameter values are given in Table 1for each of the different neuron types used

in the simulation.

In this version of the Izhikevich model only v has physical units, i.e. mV. The other vari-

ables are dimensionless. To compare with physiologically realistic values for the current we

converted the dimensionless I parameter to units of pA. We did this by comparing the firing

rate versus input current (FI) curve of our model to that of a model with input current

expressed in pA units (S7 Fig)[74].

Connectivity. For each pair, the connection strength between neurons was randomly

drawn from a uniform distribution, whose properties were determined by the both the type of

Table 1. Parameter values for the different neuron types used in the model.

Parameter RS FS LTS

a 0.02 0.1 0.02

b 0.2 0.2 0.25

c -65 -65 -65

d 8 2 2

RS, Regular spiking; FS, Fast spiking; LTS, Low-threshold spiking.

https://doi.org/10.1371/journal.pcbi.1005519.t001
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the sending and receiving neuron. Table 2 gives an overview of the average connection

strengths between each neuron type, based on experimental findings [75].

These connection strengths represent the amount of current that enters the receiving neu-

ron after a spike of the sending neuron. These evoked post-synaptic currents decreased expo-

nentially after firing with decay constants τE = 2.5 ms for excitatory currents and τI = 6 ms for

inhibitory currents, based on the typical decay values for AMPA and GABA receptors, respec-

tively, reported in Ref. [76].

Input. The input current to each neuron consisted of evoked post-synaptic currents

caused by other neurons, plus random noise

Inetwork;n ¼
X

i6¼n

Ei þ εn

Where Inetwork,n is the input current to neuron n, Ei is the evoked post-synaptic current caused

by neuron i and εn is the random noise input drawn independently for each neuron and on

each time step from a normal distribution N(μ,σ) effectively generating white noise. Each of

the three different neuron types had a separate noise distribution of which the parameters

were adjusted to produce a realistic spiking behaviour (Table 3).

Besides this input from neurons within the network, neurons also received a modulatory

sinusoidal input of 10 Hz

Imod;n ¼ A sinðφðtÞÞ

with A the amplitude of the modulation and φ(t) the phase of the modulation as a function of

time. The amplitude used in all experiments was 23 pA unless stated otherwise.

Most studies indicate that alpha oscillations in the visual cortex are of an inhibitory nature

[8]. Projections from the thalamus to the cortex also have more synapses on inhibitory neu-

rons and cause stronger evoked postsynaptic potentials in inhibitory cells [77]. For this reason

only inhibitory neurons in the model received the alpha modulation. The alpha rhythm was

transferred to the excitatory neurons by way of the strong interneuron to excitatory cell projec-

tion. Our initial simulations showed there was no qualitative difference between modulating

the inhibitory neurons or the excitatory neurons, except that inhibitory neurons needed stron-

ger modulation, because they are fewer in number.

The inhibitory neurons in each population received alpha currents with the same modula-

tion amplitude and phase, but between the two populations there was a constant phase-differ-

ence. The phase of the modulation, φ (t), was created according to the Kuramoto model [78].

There were frequency fluctuations around an average frequency of 10 Hz, while the phase

Table 2. Connectivity strength between the different neuron types.

Neuron type RS FS LTS

RS 0.0375 -0.25 -0.3

FS 0.125 -0.15 -0.1

LTS 0.125 -0.1 0

RS, Regular spiking; FS, Fast spiking; LTS, Low-threshold spiking. Values represent the range of a uniform

distribution (starting at 0 ending at the value listed in the table) from which connection strengths between

neurons were drawn randomly.

https://doi.org/10.1371/journal.pcbi.1005519.t002
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coherence between both populations was maintained through a coupling with strength J:

_φ1ðtÞ ¼ o0 þ Z1ðtÞ þ J sinðφ2
ðtÞ � φ

1
ðtÞÞ

_φ2ðtÞ ¼ o0 þ Z2ðtÞ þ J sinðφ1
ðtÞ � φ

2
ðtÞÞ

with φ1(t) and φ2(t) being the modulation phases of population 1 and 2 respectively, ω0 the

average frequency of 2π � 10 Hz, η(t) a noise parameter and J a coupling strength parameter

that determines how well the constant phase offset is maintained. We used a value of 0.2 for J,

such that the phase difference between both populations was well maintained. For convenience

we will refer to the phase relationship between population 1 and 2 using the relative phase-dif-

ference, i.e.

φ
1
ðtÞ � φ

2
ðtÞ ¼ Dφ

S8 Fig gives an example of the waveforms and power spectrum of the alpha modulation.

Simulations and analyses

In order to investigate cortical communication the following analyses were performed. All

simulations and analyses were performed in MATLAB R2012b.

Our neuron model was numerically integrated using an adaptation of Euler’s method [31].

Every simulation step consisted of 2 sequential steps of 0.5 ms for numerical stability. After

each simulation step spikes were detected. Specifically, we defined spike times as the time at

which the spike reached its peak potential of 30 mV. The mean firing rate was determined sep-

arately for each neuron type as the number of firings of a neuron divided by the trial time,

averaged over all neurons of the same type

r ¼
1

NT

X

i

ni

with r being the firing rate, N the number of neurons of a certain type, T the trial duration and

ni the number of firings of neuron i. We defined rRS, rFS and rLTS to be the firing rates for the

regular spiking, fast spiking and low threshold spiking neurons, respectively.

Many of the analyses were performed on the spike timing histograms (STHs) for each neu-

ron type seperately. The STHs were defined as the total number of firings of a neuron type

within a certain time bin

STH ¼
X

i

XiðtÞ

Where

XiðtÞ ¼
1; if f ij 2 ðt; t þ DtÞ

0 otherwise

(

Table 3. Noise parameters for different neuron types.

Parameter RS FS LTS

μ 4 5 4

σ 6 4 4

μ, mean of normal distribution generating the noise; σ, standard deviation of normal distribution generating

the noise.

https://doi.org/10.1371/journal.pcbi.1005519.t003
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with Xi(t) determining whether neuron i fired within the time bin at time t, f ij the time of the

jth spike of neuron i. The time bin had a width of Δt = 1ms.
Power. In order to investigate the behaviour of oscillations at different frequencies in the

simulations we used power spectrum analysis. This analysis was done using the CHRONUX

toolbox [79]. This toolbox performs a multi tapered fast discrete Fourier transform on the

data. The elements of the Fourier transform are given by

X fð Þ ¼
XN

j¼1

xðjÞe�
2pðj� 1Þðf � 1Þ

N

with x(j) being the jth data point, N the number of data points and f is the frequency. Before

performing the fast Fourier transform the data x(j)was convolved with multiple tapers, the

number of which depended on the spectral resolution, W, needed and the time window, T,

across which the tapers were calculated, jointly expressed as the time-half-bandwidth product,

NW. Unless stated otherwise the power was measured over a duration of T = 2000 ms with a

time-half-bandwidth product, NW= 5 and a resulting spectral resolution W= 2.5Hz.To

obtain the power spectral density, the absolute values of the (multi-tapered) Fourier elements

were taken

Sðf Þ ¼ jXðf Þj2

Coherence. To quantify communication between both neuronal populations, we analysed

the coherence between temporal dynamics of both populations. The CHRONUX toolbox was

used to calculate the coherence. The coherence is based on the cross-spectral density between

two signals

Cxy fð Þ ¼
jSxyðf Þj

2

Sxxðf ÞSyyðf Þ

where Sxy(f) is the cross spectral density and Sxx(f)and Syy(f)are the respective autospectral

densities. Tapers were applied the same way as for the power spectrum. Unless stated other-

wise the coherence was measured over a duration of T = 2000 ms with a time-half-bandwidth

product NW= 5 and spectral resolution W= 2.5Hz.
Granger causality. During some of our simulations we studied a network with bi-direc-

tional connectivity between both neural populations. For these simulations we determined the

directionality of communication using Granger causality, which was calculated using the Mul-

tivariate Granger Causality (MVGC) MATLAB toolbox [80].

The Granger causality from an area A to an area B determines how much better the activity

in area B can be explained by including the past activity of area A in addition to the past activ-

ity of area B. The analysis performed by the MVGC toolbox is based on a vector autoregressive

model (VAR) of the multivariate time-series U which makes a model of the time-series Ut at

time t given the history of this time-series, Ut-k, with lags k taken up to order p

U t ¼
Xp

k¼1

AkU t� k þ εt

where Ak are the regression coefficients and εt is the residual noise, which is turned into a
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residual noise covariance matrix

S ¼ CovðεtÞ

Because we would like to know the frequency-resolved Granger causality, we used the spec-

tral Granger causality. For this measure the stochastic process Ut is converted to an auto-

covariance sequence Γk

Gk ¼ CovðU t;U t� kÞ

From this we can obtain the cross power spectral density (CPSD) via a Fourier transform

SðlÞ ¼
X1

k¼� 1

Gke
� ikl 0 � l � 2p

For a VAR process this CPSD is given as

SðlÞ ¼ HðlÞSHðlÞ�

where H(λ) is a transfer function that is defined as the inverse matrix of the Fourier transform

of the regression coefficients

HðlÞ ¼ I �
Xp

k¼1

Ake
� ikl

 !� 1

and the � denotes the complex conjugate and transpose.

In case we want to know the Granger causal influence of a time-series Y on another time-

series X we have

U t ¼
Xt

Y t

� �

and we can write the CPSD as

SðlÞ ¼
SxxðlÞ SxyðlÞ

SyxðlÞ SyyðlÞ

 !

with individual elements given as

SxxðlÞ ¼ HxxðlÞSxxHxxðlÞ
�
þ 2RfHxxðlÞSxyHxyðlÞ

�
g þHxyðlÞSyyHxyðlÞ

�

where R denotes the real part and ‘�’ denotes the Hermitian conjugate, which involves taking

the matrix transpose and the complex conjugate of each element. This expression can always

be converted to a form where

Sxy ¼ 0

leaving the Granger causality invariant [81]. In this case we get the expression

SxxðlÞ ¼ HxxðlÞSxxHxxðlÞ
�
þHxyðlÞSyyHxyðlÞ

�

where the first part is an intrinsic term, representing the contribution of the local process and

the last part a causal term, representing the contribution from the external process.
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The spectral Granger causality is then given as the total spectral density divided by the part

caused by the intrinsic term

fY!X lð Þ ¼ ln
jSxxðlÞj

jSxxðlÞ � HxyðlÞSyyHxyðlÞ
�
j

which thus gives a measure for the causal strength of the external process in comparison to the

intrinsic process.

The conditional case is an extension of this and we refer to [80] for a detailed explanation of

how the MVGC toolbox implements this.

Support vector machines. The support vector machines used for classifying the different

stimuli define the hyperplane that optimally separates the two classes of stimuli. They do this

by maximizing the margin, that is the maximum distance between two hyperplanes parallel to

the separating hyperplane that do not contain any interior data points. If we have data vectors

xj that belong to classes yj = ±1, we can define a hyperplane as

f ðxÞ ¼ x � bþ b

where β has the same dimension as x and b is a scalar. The problem can then be defined as

finding the β and b that minimize || β|| in such a way that for all data points

yjf ðxjÞ � 1

This problem can be solved using a quadratic programming algorithm; in our case the stan-

dard function ‘svmtrain’ in MATLAB.

The classification of a vector z can be done using the optimal solution (β�,b�)

classðzÞ ¼ signðz � b� þ b�Þ

Mutual information. To quantify information transfer in our model we used the mutual

information measure. The mutual information of our system quantifies how well stimulus infor-

mation can be extracted from responses of the system. It uses the entropy of the responses r

HðrÞ ¼ �
X

r

pðrÞ logpðrÞ

which measures the variability of responses in the system under influence of the different stimuli.

Here the response r is the number of spikes in a period of 30ms after stimulus onset. Not all of

this variability is caused by the stimulus though, as some of it is due to the intrinsic properties of

the system. To compensate for this the marginal entropy

HðrjsÞ ¼ �
X

s

pðsÞ
X

r

pðrjsÞ logpðrjsÞ

which gives the variability of responses under influence of the same stimulus s, is subtracted. The

mutual information between response r and stimulus s is thus given by

Iðr; sÞ ¼ HðrÞ � HðrjsÞ

In terms of probability distributions this gives

I r; sð Þ ¼
X

s

pðsÞ
X

r

pðrjsÞ log
pðrjsÞ
pðrÞ

which is always positive. The maximum mutual information depends on the amount of stimuli

Top-down control of cortical communication by alpha phase

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005519 May 4, 2017 27 / 33

https://doi.org/10.1371/journal.pcbi.1005519


encoded. We used a logarithmic base of 2 so that mutual information was given in bits. For a

system with 2 stimuli as used in our simulations the maximal mutual information is then 1 bit.

Wavelet analysis. Some of our analyses required determining the phase of the different

oscillatory frequencies at a high temporal resolution. To obtain this temporal progression of

phase we used a wavelet analysis. Complex Morlet wavelets were convolved with the signal to

obtain a complex number describing the power and phase for every frequency and time-step.

The complex Morlet wavelet is described by

c t; fð Þ ¼ Ae
� t2

2s2
t e2ipf0t

with f0 the center frequency of the wavelet and σt the bandwidth parameter of the gaussian

envelope. The bandwidth of the complex wavelet scaled with 1/f0 such that at every frequency

the envelop of the wavelet was equal to one period of the centre frequency and the support of

the wavelet was infinite. The complex wavelet transform is found by convolving the signal, x
(t), with this wavelet

CWTx t; fð Þ ¼

ffiffiffi
f
f0

s Z 1

� 1

xðtÞc�
f ðt � tÞ

f0

� �

dt

where ψ
�

is the complex conjugate of the Morlet wavelet. The power and phase of the signal at

a particular frequency can be calculated in a time-resolved fashion using the complex wavelet

transform:

Pxðt; f Þ ¼ jCWTxðt; f Þj
2

�xðt; f Þ ¼ argðCWTxðt; f ÞÞ

The main advantage of wavelet analysis over traditional short-time Fourier analysis is that

it has better temporal resolution for higher frequencies, enabling better tracking of the phase

at different time points.

Supporting information

S1 Fig. Effect of alpha phase difference when the alpha rhythm modulates the input to the

excitatory neurons directly. Gamma coherence between area 1 and area 2 when the alpha

rhythm modulates input to the excitatory neurons (A). The phase (B) and amplitude (C)

coherence both depend on the alpha phase difference, but the phase coherence is more

strongly modulated. The amplitude coherence is strongly biased due to the similar alpha mod-

ulation in both areas. When comparing the coherence spectrum for the optimal alpha phase

(-90˚, red) with the least optimal alpha phase (90˚, blue), we can see that the effect on coher-

ence is limited to the gamma band (D).

(TIF)

S2 Fig. Rastergrams for different alpha modulation amplitudes. Rastergram of neuronal fir-

ing when there is no alpha modulation (A), intermediate alpha modulation of 23 pA (B) or

maximal alpha modulation of 45 pA (C). Only under the highest modulation strength the

activity in the troughs of the alpha oscillation is almost fully silenced. The more moderate

amplitude of (B) was used for all further analysis though.

(TIF)

S3 Fig. Effects of alpha phase difference when alpha rhythm is modelled as Sin function

instead of Sin instead of Sin2. Firing rates for the excitatory population (red) and inhibitory
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population (blue) of area 1 (A) and area 2 (B) under a sinusoid modulation. The difference

between the gamma coherence for the optimal alpha phase difference (red) and that for the

least optimal alpha phase difference (blue) increases with higher alpha amplitude (C).

(TIF)

S4 Fig. Average effect of alpha phase difference on stimulus response. (A) Averaged across

all stimulus onset phases in area 1 we find a clear dependence of the stimulus response on the

alpha phase difference between both areas.

(TIF)

S5 Fig. Effect of alpha phase difference on information transmission. (A) Classification

error depends on alpha phase difference. (B) Averaged over all phases for stimulus onsets in

area 1 we find a modulation of the mutual information similar to that shown in Fig 4A.

(TIF)

S6 Fig. The directionality of the interaction between two areas fluctuated when the alpha

phase difference is zero. (A) When the alpha phase difference between both areas is zero the

directions alternate such that there is always causality in just 1 direction.

(TIF)

S7 Fig. Firing rates versus input current for different neuron types. (A) Regular spiking, (B)

fast spiking and (C) low threshold spiking.

(TIF)

S8 Fig. Examples of modulatory alpha oscillations. To give an idea about the fluctuation of

the alpha oscillation compare the green line in (A) representing an oscillation without fluctua-

tions to the blue line in (A) where the alpha oscillation fluctuated. The power spectral density

plot of the resulting fluctuating oscillation can be found in (B).

(TIF)
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