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Original Article

Topiramate is more effective
than acetazolamide at lowering
intracranial pressure

William J Scotton1,2,3,*, Hannah F Botfield4,* ,
Connar SJ Westgate1,2 , James L Mitchell1,2,3,
Andreas Yiangou1,2,3, Maria S Uldall5, Rigmor H Jensen5

and Alex J Sinclair1,2,3

Abstract

Background: The management of idiopathic intracranial hypertension focuses on reducing intracranial pressure to

preserve vision and reduce headaches. There is sparse evidence to support the use of some of the drugs commonly used

to manage idiopathic intracranial hypertension, therefore we propose to evaluate the efficacy of these drugs at lowering

intracranial pressure in healthy rats.

Methods: We measured intracranial pressure in female rats before and after subcutaneous administration of acetazo-

lamide, topiramate, furosemide, amiloride and octreotide at clinical doses (equivalent to a single human dose) and high

doses (equivalent to a human daily dose). In addition, we measured intracranial pressure after oral administration of

acetazolamide and topiramate.

Results: At clinical and high doses, subcutaneous administration of topiramate lowered intracranial pressure by 32%

(p¼ 0.0009) and 21% (p¼ 0.015) respectively. There was no significant reduction in intracranial pressure noted with

acetazolamide, furosemide, amiloride or octreotide at any dose. Oral administration of topiramate significantly lowered

intracranial pressure by 22% (p¼ 0.018), compared to 5% reduction with acetazolamide (p¼>0.999).

Conclusion: Our in vivo studies demonstrated that both subcutaneous and oral administration of topiramate

significantly lowers intracranial pressure. Other drugs tested, including acetazolamide, did not significantly reduce intra-

cranial pressure. Future clinical trials evaluating the efficacy and side effects of topiramate in idiopathic intracranial

hypertension patients would be of interest.
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Introduction

Idiopathic intracranial hypertension (IIH) typically
affects obese woman of childbearing age and is charac-
terised by raised intracranial pressure (ICP). Morbidity
results from chronic disabling headaches and papilloe-
dema, with the potential for severe visual loss (perman-
ent in up to 25%) (1). IIH affects 1–2 per 100,000 of the
general population and 20 per 100,000 of the obese
female population with numbers expected to rise over
the forthcoming decade in line with escalating obesity
figures (2). Management strategies focus on disease
modification through weight loss, although this is
notoriously difficult to achieve (3). Therefore, the
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majority of patients receive pharmacological therapy
with the aim of reducing cerebrospinal fluid (CSF)
secretion and consequently ICP. For those with fulmin-
ant IIH and rapidly declining vision, CSF diversion
surgery may be necessary (4).

Acetazolamide is the most commonly used drug in
IIH. Class 1 evidence has demonstrated modest improve-
ment in visual Eeld function in patients with IIH with
mild visual loss (5,6). However, the 2015 Cochrane
review (7) has summarised that there is currently insuffi-
cient evidence to recommend or reject the efficacy of
acetazolamide for treating IIH. Between 19–48% of
patients will not tolerate acetazolamide due to side effects
(5,6) and consequently alternative drugs maybe pre-
scribed such as topiramate, furosemide, amiloride and
octreotide. However, there is extremely limited mechan-
istic and clinical data to support their use. The purpose of
this study was to determine which drug currently used to
treat IIH has the greatest effect at lowering ICP in rats to
provide pre-clinical evidence for its use in IIH.

Materials and methods

Experimental animals

Female Sprague-Dawley (SD) rats (Taconic, Denmark)
weighing 150–250 g were used in this study. The rats
were maintained in cages kept under a 12-hour light/
dark cycle with free access to food and water. All experi-
mental procedures were approved by the Danish Animal
Experiments Inspectorate (license number 2014-15-0201-
00256) and comply with the ARRIVE guidelines.

After treatments and surgical procedures, the rats were
monitored daily for any adverse effects.

Drugs

The dose of the drug was determined using the 2005
FDA guidance for industry, which describes how to
estimate the maximum safe starting dose in healthy vol-
unteers (8): Human equivalent dose (mg/kg)¼ rat drug
concentration (mg/kg)/6.2. Therefore, to convert the
human dose to an equivalent rat dose we used the equa-
tion: rat drug concentration (mg/kg)¼ 6.2�human
dose (mg/kg based on a 60 kg human). The rat clinical
dose was calculated using the human single dose, and
the rat high dose was equivalent to the human daily
dose (Table 1).

Previous studies investigating the effects of drugs on
ICP administered them via various routes; however, in
this study we standardised the delivery route to sub-
cutaneous injection before going on to assess the most
promising drugs via their usual route of administration
(oral). Acetazolamide (A6011, Sigma-Aldrich), fur-
osemide (F4381, Sigma-Aldrich) and topiramate
(13623, Cayman Chemical) were initially dissolved in
NaOH and then the pH lowered to 8.7, 7.7 and 7.8
respectively, with hydrochloric acid (HCl). Amiloride
HCl (129876-100, Merck Millipore) and Octreotide
acetate salt (H-5972, Bachem) were dissolved in sterile
water. The stock solutions were further diluted in 0.9%
sodium chloride (NaCl) to their final concentrations for
subcutaneous injection. Hyperosmolar solutions are
known to have ICP lowering effects (9), therefore we

Table 1. Human and rat equivalent doses*.

Drug

Human single

(clinical) dose

Human daily

(high) dose

Rat clinical

dose

Rat high

dose

Rat Tmax

(T½) hours Reference

Subcutaneous

Topiramate 50 mg 200 mg 5.2 mg/kg 20.6 mg/kg 0.7� 0.5 (2.5)

20 mg/kg oral

(11)

Acetazolamide 1 g 4 g 103.3 mg/kg 413.4 mg/kg 1–3 (6)

oral

(12)

Amiloride 5 mg 20 mg 516.7 mg/kg 2.0 mg/kg 4 (21.7)**

10 mg/kg oral

(13)

Octreotide 350mg 2 mg 36.2 mg/kg 206.6 mg/kg 1 (0.7� 0.1)

500 mg/kg SC

(14)

Furosemide 40 mg 240 mg 4.1 mg/kg 24.8 mg/kg 1 (0.5)

40 mg/kg oral

(15)

Oral

Topiramate – 200 mg – 6.25 mg/rat

Acetazolamide – 4 g – 125 mg/rat

*Rat drug concentration (mg/kg)¼ 6.2� human dose (mg/kg based on a 60 kg human).

**Tmax for subcutaneous amiloride is not known but is expected to be less than the oral Tmax.
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measured the sodium and chloride concentrations of
each drug in solution. The osmolarity of the clinical
dose acetazolamide solution was equivalent to 2%
NaCl, and the high dose acetazolamide solution was
equivalent to 4% NaCl. The topiramate, amiloride,
octreotide and furosemide solutions’ osmolarity were
equivalent to 0.9% NaCl. For this reason, we compared
the clinical and high dose acetazolamide against controls
of 2% and 4% NaCl respectively. All other drugs were
compared against a 0.9% NaCl control. Acetazolamide
tablets (250mg) and topiramate tablets (25mg) were
purchased from the Danish pharmacy supply and split
into half and a quarter respectively for oral dosing. The
drug was ground into a powder and mixed with
Nutella�, and Nutella� by itself was used as the placebo.

Epidural ICP probe implantation

Implantation of an epidural ICP probe is described in
full elsewhere (10). Briefly, the rats were anaesthetised
(2.7ml/kg subcutaneous injection containing 1.25mg/
ml midazolam, 2.5mg/ml fluanisone and 0.079mg/ml
fentanylcitrate) and placed in a stereotactic frame
(David Kopf Instruments) and the bone was exposed
by retracting the skin and soft tissue. A large burr hole
was carefully drilled to expose the dura mater to enable
placement of the epidural ICP probe (PlasticsOne).
Three other small burr holes were made to fit anchoring
screws to the skull and the epidural ICP probe was
secured using dental resin-cement (Clearfil SA
Cement, RH Dental). The epidural ICP probe and
the transducer (DTX-PlusTM, Argon Medical Devices)
were then connected by a polyethylene tube filled with
sterile water. The pressure signal was visualised and
recorded using Perisoft v.2.5.5 (Perimed). Correct ICP
signal was confirmed by the transient elevation of ICP
after jugular vein compression. When the ICP record-
ing procedure was completed, the epidural ICP probe
was closed with a bite proof cap (PlasticsOne) and the
rat allowed to recover.

Drug administration

Subcutaneous drug administration: On day 0, the epi-
dural ICP probe was implanted and the rat allowed to
recover. On days 3, 6, 9, 12, 15, 18 and 21, ICP
recordings with drug treatments were conducted
while the rats were sedated with midazolam (2.5mg/
kg subcutaneous injection) in an infusion cage (Instech
Laboratories), which had a swirl lever arm to ensure
unhindered movement. A stable baseline ICP reading
was recorded for around 30 minutes, before the rats
received a subcutaneous injection of the drug. ICP was
recorded for a further 120 minutes, after which the rat
was returned to its normal cage (this includes the peak

plasma concentration (Tmax) for the majority of the
drugs; Table 1 (11–15)). A randomised cross over
block design was used to allocate the order of drug
treatment and the dose. Towards the end of the
experiment it was increasingly difficult to measure
ICP in some of the rats, possibly due to blockage or
scarring of the epidural ICP probe, and these meas-
urements were excluded from analysis. The final num-
bers for each group are included in the figure legend
(a minimum of n¼ 5 in each treatment group and
n¼ 4 in control groups).

Oral drug administration: On day 0, the epidural
ICP probe was implanted and the animal allowed to
recover followed by 12-hour ICP recordings (to include
the Tmax) on day 3 (conducted as above). Rats were
randomly allocated to receive placebo, 125mg acetazo-
lamide tablet or 6.25mg topiramate (high doses),
crushed in Nutella�. This resulted in n¼ 5 in each treat-
ment group. Water intake was measured over the
course of the experiment, and at 12 hours the animals
were sacrificed, with blood and CSF samples taken for
pH measurement.

Statistical analysis

Sample numbers were calculated using a power
calculation based on our previous results with acetazo-
lamide (16). The data was assessed for normality and
the values were represented as mean and standard
error of the mean (SEM). The data was analysed
using GraphPad Prism software (v.7). For comparison
of ICP area under the curve (AUC) for NaCl 0.9%
versus clinical and high drug doses (topiramate,
furosemide, amiloride and octreotide), one-way
ANOVA (followed by post-hoc Tukey test to
correct for multiple comparisons) was used. For
comparison of ICP AUC for NaCl 2% versus acetazo-
lamide clinical dose, and NaCl 4% versus acetazola-
mide high dose, unpaired T-tests were used. Values
were considered statistically significant when p values
were less than 0.05.

Results

Subcutaneous dosing and effect on ICP

At clinical and high doses, subcutaneous administra-
tion of topiramate significantly lowered ICP over 2
hours to 68.6� 2.0% of baseline (32% reduction,
p< 0.001) and 79.2� 7.5% of baseline (21% reduction,
p< 0.05) respectively compared to 0.9% NaCl control
(Figure 1(a) and (b), and Table 2). Subcutaneous
administration of acetazolamide showed a trend
towards a reduction in ICP at clinical (19% reduction)
and high doses (20% reduction); however, it was not

Scotton et al. 3
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Figure 1. Effect of subcutaneous administration of clinical or high dose drugs on ICP. Rats received a subcutaneous injection of

topiramate ((a) and (b)), acetazolamide ((c) and (d)), amiloride ((e) and (f)), octreotide ((g) and (h)) and furosemide ((i) and (j)).

((a), (c), (e), (g), (i)) Line graphs showing the change in ICP from baseline (mmHg)� SEM, after subcutaneous injection with either high

or clinical dose of drug measured every 15 minutes for 120 minutes. ((b), (d), (f), (h), (j)) Bar graphs showing percentage of control ICP

AUC over 120 minutes� SEM, with clinical or high dose of drug. Controls: 2% NaCl for acetazolamide clinical dose, 4% Na Cl for

acetazolamide high dose, and 0.9% NaCl for all other drugs tested.
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significantly different compared to the 2% and 4%
NaCl controls respectively (Figure 1(c) and (d), and
Table 2). At both clinical and high doses the other
drugs, amiloride (10% and 27% reduction respect-
ively), octreotide (1% and 18% reduction respectively),
and furosemide (1% and 13% reduction respectively),
did not significantly reduce ICP compared to 0.9%
NaCl control (Figure 1(e)-(j), and Table 2).

Oral dosing and effect on ICP

Oral administration of topiramate lowered ICP, reach-
ing a maximum after 1 hour (1.0� 0.4mmHg reduction
in ICP) and returning to baseline at 11 hours
(0.1� 0.3mmHg reduction in ICP) (Figure 2(a)). Over
the first two hours, topiramate significantly reduced
ICP to 77.8� 6.0% of baseline AUC (22% reduction,
p< 0.05), compared to placebo. Acetazolamide did not
significantly lower ICP over this period (95.0� 3.5% of
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Figure 2. Effect of oral dosing of acetazolamide or topiramate on ICP, CSF pH, blood pH and water intake. (a) Line graph showing

the change in ICP from baseline (mmHg)� SEM, measured every 30 minutes for 12 hours after treatment; (b) line graph showing the

change in ICP from baseline (mmHg)� SEM, measured every 15 minutes for 120 minutes after treatment; (c) bar graph showing

percentage of control ICP AUC over 120 minutes� SEM after treatment. Bar graphs showing blood pH (d), CSF pH (e) and water

intake, (f) at 12 hours after treatment.

Table 2. Summary of results.

Drug

Clinical dose High dose

% change p value % change p value

Subcutaneous

Topiramate �32% 0.0009 (***) �21% 0.015 (*)

Acetazolamide �19% 0.08 (ns) �20% 0.18 (ns)

Amiloride �10% 0.51 (ns) �27% 0.08 (ns)

Octreotide �1% >0.99 (ns) �18% 0.19 (ns)

Furosemide �1% 0.99 (ns) �13% 0.28 (ns)

Oral

Topiramate – – �22% 0.018 (*)

Acetazolamide – – �5% >0.999 (ns)

All results analysed with 1-way ANOVA, except 2% NaCl vs. acetazolamide

clinical dose, and 4% NaCl vs. acetazolamide high dose, which were ana-

lysed with unpaired T-tests. All statistical analysis and graphs performed in

Graph Prism. Values were considered statistically significant when p values

were *p< 0.05, ***p< 0.001.
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baseline AUC, 5% reduction) (Figure 2(a)–(c), and
Table 2).

Oral dosing and effect on blood pH, water intake
and CSF pH

Acetazolamide significantly lowered blood pH (7.08�
0.04 pH, p< 0.01), and led to increased water intake
(19.0� 3.7 g, p< 0.05), but had no effect on CSF pH
(7.40� 0.04 pH) compared to placebo (7.36� 0.02 pH,
4.2� 1.7 g, 7.33� 0.08 pH respectively). Topiramate
had no significant effect on blood pH (7.25� 0.03 pH),
water intake (6.6� 2.1 g) or CSF pH (7.45� 0.08 pH)
(Figure 2(d)–(f)).

Discussion

The aim of the present study was to ascertain which
drug – acetazolamide, topiramate, furosemide, amilor-
ide or octreotide – had the greatest effect on lowering
ICP in healthy rats, and so provide pre-clinical evidence
to support their use in the pharmacological treatment
of IIH. We were able to demonstrate that both subcuta-
neous and oral administration of topiramate signifi-
cantly reduced ICP. In addition, our results suggest
that acetazolamide, the current first line oral therapy
in IIH, does not significantly lower ICP. Amiloride,
octreotide, and furosemide also had no effect on ICP
when administered subcutaneously.

The management of IIH is focused on reducing ICP
to try to both preserve visual function, as well as reduce
long-term headache disability. Pharmacological man-
agement is one option to reduce ICP, and current medi-
cations used are thought to principally work by
reducing CSF secretion. CSF secretion involves numer-
ous enzymes, ion channels and transporters that pro-
duce a net movement of ions across the choroid plexus
epithelium, thus creating an osmotic gradient that
drives water from the blood stream into the ventricles
(17). The proposed mechanisms of action of the differ-
ent drugs investigated in this study involve inhibition of
these enzymes or transporters at various stages in this
process (Figure 3).

Acetazolamide is the most commonly used first line
drug for the treatment of IIH. It is a carbonic anhy-
drase (CA) inhibitor, which reduces ion transport and
consequently water across choroid plexus epithelial
cells (17) and can decrease CSF secretion by 57–64%
(16,18). However, the evidence that acetazolamide
reduces ICP and is an effective treatment for IIH is
inconclusive. Intravenous infusion (19) and intraperito-
neal injection (16) of acetazolamide in rats causes a
reduction in ICP; however, intraventricular administra-
tion has no effect on ICP (20). In addition, hydroceph-
alic infants treated with intravenous acetazolamide

showed a transient increase in ICP, while those treated
with oral acetazolamide demonstrated no change in
ICP (21). Our studies suggest that when compared to
an appropriate vehicle control (4% NaCl), acetazola-
mide does not significantly reduce ICP in our model.
We suggest that part of the ICP lowering effect of acet-
azolamide seen in previous animal studies may be due
to the solution it is dissolved in, as hypertonic solutions
can lower ICP (9). Furthermore, in this study oral
administration of acetazolamide, the most clinically
relevant delivery route as the drug is given orally in
IIH patients, lowered blood pH and induced diuresis
but did not lower ICP. We do acknowledge, however,
that the diuresis noted in the rodents on acetazolamide
is the result of inhibition of renal carbonic anhydrase,
reflecting systemic absorption, and cannot be extrapo-
lated to infer the extent of inhibition of carbonic anhy-
drase at the choroid plexus. There are currently only
two randomised control trials in IIH comparing acet-
azolamide to placebo (5,6). They demonstrate modest
improvements in IIH symptoms; however, many
patients are unable to tolerate high doses of acetazola-
mide due to a plethora of side effects including fatigue,
paraesthesia, and gastrointestinal symptoms. As such,
a Cochrane review (2015) concluded that there is insuf-
ficient evidence to recommend acetazolamide as a first
line intervention for IIH (7).

We are the first to demonstrate that topiramate sig-
nificantly reduces ICP after subcutaneous and oral
administration in a rat model. Originally used as a treat-
ment for epilepsy, it has many mechanisms of action
within the CNS including being an effective CA inhibi-
tor, with a similar inhibitory activity of CAII andCAXII
isoforms to acetazolamide (inhibition constants CAII –
10 nM topiramate vs. 12 nM acetazolamide; CAXII –
3.8 nM topiramate vs. 5.7 nM acetazolamide) (22). In
addition, it is more lipophilic than acetazolamide and
therefore is likely to have higher intracellular concentra-
tions. Topiramate also has additional properties that
make it of particular interest in the treatment of IIH.
Class 1 evidence shows that topiramate is an effective
prophylactic treatment for both episodic and chronic
migraine (23–25), and given the prevalence of headache
in IIH patients, this prophylactic action may be benefi-
cial. Another well-documented effect of topiramate is
weight loss (22,26,27), which would be of particular
interest in the treatment of IIH as weight loss has already
been shown to significantly reduce ICP, headaches and
papilloedema (3). Several case studies have demon-
strated improvements in IIH symptoms with topiramate
(28–30). However, the putative benefits of topiramate
over acetazolamide would need to be weighed up in rela-
tion to its well-documented side effects, which include
paraesthesia, cognitive impairment, fatigue, insomnia,
anxiety and nephrolithiasis. However, the
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discontinuation rate of topiramate was only 20–30% in
the treatment arm of a chronic migraine randomised
clinical trial (31), which compares favourably with the
discontinuation rates seen with acetazolamide in the IIH
RCT by Ball et al. (5).

Furosemide inhibits the Naþ-Kþ-2Cl� cotransporter
(NKCC1) on choroid plexus epithelial cells, and in
animal studies reduces CSF secretion by 20–50%
(32,33). Amiloride blocks the Naþ/Hþ exchanger and/
or Naþ channels (ENaC) on choroid plexus epithelial
cells and may also act upon blood vessels of the choroid
plexus to alter CSF secretion. In animal models,
amiloride has been shown to reduce CSF secretion
by up to 50%, though only when administered into
the carotid artery (34,35). Although previous studies
demonstrate furosemide and amiloride alter CSF

secretion, our study suggests neither drug significantly
reduces ICP.

Octreotide, a somatostatin analogue, is predom-
inantly used to manage growth hormone-releasing
pituitary tumours. Recently, two uncontrolled studies
conducted in IIH patients have shown an improvement
in IIH symptoms with octreotide treatment (36,37).
As somatostatin receptors are highly expressed in
the arachnoid villi and choroid plexus, it was proposed
that octreotide could directly influence CSF dynamics
and thus ICP (38). Our studies do not support
this hypothesis, instead showing that subcutaneous
administration of octreotide does not alter
ICP. However, the beneficial effects of octreotide
observed in IIH patients could be due to its anti-obesity
properties (39).

Blood
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Figure 3. CSF formation in the choroid plexus and potential sites of action of the commonly used drugs in IIH. (a) Hydrostatic

pressure drives the passive filtration of fluid from the blood through the fenestrated capillaries into the choroidal interstitial fluid.

(b) At the basolateral membrane, ion exchangers substitute Hþ and HCO3
� for Naþ and Cl� respectively. (c) The carbonic anhydrase

enzyme catalyses the conversion of H2O and CO2 to HCO3
� and Hþ. (d) On the apical surface, the Naþ Kþ ATPase actively pumps

2Kþ in and 3Naþ out and the Naþ�Kþ�2Cl� co-transporter, driven by the accumulation of Cl�, moves 2Cl�, Naþ and Kþ ions out.

HCO3
� and Kþ also passively move out of the cells. (e) The net movement of Naþ, Cl� and HCO3

� generates an osmotic gradient

causing the movement of water in the same direction. Water moves mainly via a transcellular route, with aquaporin 1 at the

basolateral and apical membrane facilitating water transport along this osmotic gradient.

CAH: carbonic anhydrase; SST: somatostatin receptor (*location in the choroid plexus unknown); AQP1: aquaporin 1; NKKC1: Na-K-

CL cotransporter 1; NHE-1: Na-H antiporter 1; AE2: anion exchange protein 2; ENaC: epithelial Na channel.
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There are several limitations to our study that
need to be addressed. Firstly, we only assessed the
effect of each of the drugs on ICP after one admin-
istration and cannot exclude that the effects of the
drugs on ICP may alter with repeated dosing.
However, we have monitored the ICP over the dur-
ation of the peak plasma concentrations (Tmax) and
consequently would predict an effect within this time
frame, as is seen with other therapeutic agents that
alter ICP (40). Secondly, these studies were conducted
in rats and we do not know whether these results will
directly translate to humans. However, both mannitol
and hypertonic saline have been shown to reduce ICP
in rats and humans (40,41). The high dose used for
acetazolamide was based on the clinically relevant
highest dose of 4 g that 40% of the patients were
on in the Idiopathic Intracranial Hypertension
Treatment Trial (IIHTT), which equated to roughly
80mg per rat, significantly less than doses used in
previous animal studies (16). It is possible that if
higher doses were used (although these would be
less clinically relevant), a greater effect could have

been seen as noted in other papers. In addition, if
a repeated dosing regimen was used, as in the IIHTT
study, a higher steady state concentration of acetazo-
lamide would likely have been reached, compared to
our model where only a single dose was used. This is
obviously also true of the other drugs, however,
including topiramate. The final limitation is that we
used healthy rats, rather than a disease model of
raised ICP. There are reports that CSF secretion
may change in raised ICP models (42); however,
our previous studies investigating the GLP-1R agon-
ist exendin-4 demonstrate that drug-induced reduc-
tions in ICP seen in healthy rats are replicated in a
model of hydrocephalus (43).

In summary, out of all the drugs we tested that are
currently used to treat IIH, only topiramate signifi-
cantly reduced ICP. Topiramate may have additional
advantages in IIH, including its migraine prevention
properties and weight loss effects; however, the side
effects can be considerable. Future studies comparing
the physiological effects of these drugs to reduce ICP in
IIH patients would be of interest.

Article highlights

. There is limited evidence to support the use of some of the drugs commonly used to manage idiopathic
intracranial hypertension.

. We demonstrate that topiramate reduces intracranial pressure at clinically relevant doses.

. At clinically relevant doses, acetazolamide, furosemide, amiloride and octreotide do not lower intracranial
pressure.
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