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Abstract  

 

 

The research work presented here focuses on the particulate matter (PM) number concentration and 

its physico-chemical properties from the combustion of di and tri-propylene glycol methyl 

ether/diesel blends (D20 and T20 respectively). Exhaust PM were characterised using a Scanning 

Transmission electron microscopy equipped with energy dispersive X-ray spectroscopy (S/TEM-

EDX) to quantify the nanostructure, morphology and elemental composition of the agglomerates, 

Raman spectroscopy (RS) to further examine the particulate graphite like structure and thermo-

gravimetric analyser (TGA) to analyse the oxidative reactivity. The increase in the fuel oxygen 

content reduces both, exhaust PM levels and NOx emissions. TGA analysis confirms that the 

oxygenated blends enhance the particulates oxidative reactivity and increase their volatile fraction 

in the following order T20>D20>Diesel. EDX analysis shows that the combustion of both D20 and 

T20 lowers the PM carbon fraction and ash precipitations but increases its oxygen functional groups 

in the same order. Furthermore, a notable reduction in the primary particles size was recorded, 

whose carbon layers were found to be more tortuous than diesel, but no significant modification 

was shown in their length. Unconventionally, smaller separation distance was seen between the 

carbon layers, and higher graphitisation order was seen from the RS analysis. It was finally 

concluded that concerning the nanoscale parameters, the initial curvature of the carbon layers 

present a stronger influence in dictating the particles reactivity compared to the graphitisation order 

or the initial length and separation distance of the carbon layers. As for the macroscale, primary 

particle size and the portion of oxygen in the particle could be another possible reason for the better 

soot reactivity seen from the propylene glycol ethers combustion. The significance of the reduced 

exhaust particles’ level and modified PM’s physical and elemental properties can improve Diesel 

Particulate Filter (DPF) regeneration and allows engine calibration that can favour NOx emissions 

reduction (i.e. lower NOx – PM trade-off lines).  

Keywords: Glycol ethers; Raman spectrometry; Soot reactivity; Thermogravimetric; nanostructure; 

elemental analysis; emissions; tortuosity 

 

 

1. Introduction  
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Particulate Matter (PM) emissions from modern vehicles, including diesel and gasoline direct injection 

(GDI), consist of carbonaceous materials (soot) and various types of inorganic and organic substances, some 

being mutagenic and carcinogenic by nature [1]. It is commonly accepted that oxygen-borne fuels blended 

with diesel can effectively reduce the PM levels and other unregulated emissions such as unburned 

hydrocarbons and carbon oxides [2]. They also play an important role in enhancing the oxidation reactivity 

of the soot particles (ability to oxidise) [3], leading to improved particulate filters function and durability by 

lowering the regeneration temperatures and minimising the intensity of the soot burn-off cycles [3]. 

If the biodiesel production and utilisation is increased to cover the energy demand in transportation, then the 

associated increase of the glycerol volumes (main by-product from biodiesel production) may create 

ecological hazards, since they cannot be safely disposed [4]. One possible application to benefit from these 

products could be to synthesise propylene oxides from the resulted glycerol, following the process described 

by Yu et al [5]. Afterwards, propylene glycol ethers could be produced by the reaction of propylene oxides 

with methanol [6]. Similar to biodiesel, glycol ethers are known for their suitability with compression 

ignition engines in terms of safety, accessibility, price and compatibility with diesel fuel [7]. Their atomic 

structure contains both ether and alcohol moieties and generally characterised with a high oxygen content 

[8].  

Tri-propylene glycol methyl ether (TPGME) was nominated by Natarajan et al. [9] and also suggested by 

Gonzalez et al. [2] as a potential oxygenate to be blended with diesel among 71 candidates, taking into 

account several factors such as exhaust emissions reduction, blend toxicity, lubricity and cetane number 

improvement. Following Gonzalez’s work, both Mueller et al. [10] and Burke et al. [6] incorporate 

numerical simulations along with chemical kinetic modeling to examine the effect of TPGME molecular 

structure on the ignition mechanism and the soot formation process. As a result, TPGME was shown to 

effectively reduce the soot precursors inception, especially acetylene, and that was directly linked to its 

optimal atomic structure where all the oxygen atoms are available for soot reduction. Dumitrescu et al. [11] 

studied the ignition delay and flame lift-off length produced by TPGME/Diesel blend (50% vol.) and 

confirmed a reduction in soot formation and/or increase in soot oxidation. Another glycol ether candidate is 

the di-propylene glycol methyl ether (DPGME), with similar chemical structure as TPGME but present 

shorter carbon chain length and one less oxygen atom, resulting in approximately the same oxygen content. 

Natarajan et al. [9] nominates DPGME as a viable candidate for mixing with diesel in terms of PM reduction 

and blend stability. Gomez-Cuenca et al. [8] reported that DPGME/diesel fuel blends enhanced the mixture 

cetane number and reduced CO, while no clear trend was seen in production of THC, NOx and PM 

emissions. Hilden et al. [12] reported that both DPGME and TPGME diesel blends, with 6.5 wt.% oxygen 

content, present comparable PM reduction capability, while other authors [9] found that under the same 

oxygen content of 7 wt.%, TPGME/diesel blends are more efficient in reducing PM emissions than DPGME 

blends. 

Although propylene glycol ethers are proved to be suitable for mixing with diesel and can reduce the PM 

discharges, there’s still no study highlighting their effect on the resulted PM characteristics. The PM physical 

and chemical properties, such as primary particle size, carbon layer structure, oxygen functional groups and 
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the corresponding ash content are reported to guide the particles reactivity [13]. Despite the extensive 

analysis conducted to understand the correlation between these variables and the oxidative behaviour of the 

particles, this relationship is still quite complex and not fully understood in the literature [13-15]. The current 

paper aims to obtain an improved understanding of the level at which DPGME and TPGME diesel blends 

(20% vol.) will influence the PM oxidative reactivity, and determine the effect of the different physico-

chemical properties, such as morphological parameters, nanostructure characteristics and elemental 

composition, on the corresponding reactivity.  

 

2. Experimental set up and methodology  

2.1: Engine test and combustion analysis: 

The experiments have been conducted in a four-stroke research diesel engine featured with a common rail 

fuel injection system that permits the control of multiple injection strategies. The main specifications of the 

test engine can be found in Table 1. All the tests were performed at a constant speed of 1500 rpm and fix 

load of 4 bar IMEP. The fuel was injected at a stable pressure of 600 bars and split between pilot and main-

injections, with timings of 15 and 8 CAD BTDC respectively. In-cylinder pressure was recorded over 200 

cycles using an AVL GH13P pressure sensor mounted in the cylinder head and the signal was amplified by 

an AVL FlexiFEM 2P2 Amplifier. The corresponding Digital shaft encoder producing 360 pulses per 

revolution was used to measure the crank shaft position [16]. Heat release rate (HRR) was integrated from 

the pressure data collected by designing a simple model neglecting the heat losses differences between the 

fuels tested. Exhaust temperatures from the combustion of each fuel blend are recorded with the use of K-

type thermocouples (with a range of 0-1250 
o
C and an accuracy of ± 2.2 °C) located directly at the exhaust 

port. 

 

 Table 1: Diesel engine specifications 

2.2 Fuel used: 

Ultra-low sulphur diesel (ULSD) was supplied from Shell Global Solutions UK, DPGME and TPGME were 

purchased from Sigma Aldrich. Glycol ether diesel blends, so called D20 and T20 in this analysis, were 

Engine Parameters Specifications 

Engine type Diesel 1-cylinder 

Stroke type Four-stroke 

Cylinder bore x stroke (mm) 84 x 90 

Connecting rod length (mm) 160 

Compression ratio 16:01 

Displacement (cc) 499 

Engine speed range (rpm) 900-3000 

IMEP range (bar) <7 

Fuel pressure range (bar) 500-2000 

Number of injections 3 injection events 
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prepared by mixing diesel with each of the candidates (DPGME and TPGME respectively) separately to 

form 6.5% wt. oxygen content. The properties of the oxygenated hydrocarbons and the blends are obtained 

from the literature and presented in Table 2. 

 

 

Table 2: Fuel specification [12] 

 
 Test method ULSD DPGME TPGME D20

a
  T20   

Chemical Formula - C14H26.1 C7H16O3 C10H22O4 - - 

Latent Heat of vaporisation (kJ/kg) - 243 330 [17] 357 [18] - - 

FAME % (v/v) EN14078-A <0.05 - - <0.05 <0.05 

Viscosity (cSt T 40 c) D-445 2.395 - - 2.208 2.359 

Lubricity, SLBOCLE, g D-5001 3700 - - 2900 4100 

Density (kg/m
3
) at 20 

o
C D-1298 826.9 938 [9]  968 [9]   846.1 848.8 

Cetane number D-6890 43.4 [19] 43.9 [20] 80 [6] - - 

LCV (MJ/kg) D-3338 43.11 27.5 [17] 28.1 [21] 39.58 39.55 

Sulphur, ppm mass D-3120 <5 - - <5 <5 

Cloud point D-2500 -21   -20 -20 

Flash point D-93 71 74 [9]  >110 [9] 72 76 

Ash, mass % D-482 <0.01 - - <0.01 <0.01 

10 % distillation (
 o
C) D-86 208.6 - - 191.8 207.8 

50% distillation (
 o
C) D-86 260.3 - - 251.5 244.8 

90 % distillation (boiling 

temperature) (
 o
C) 

D-86 319.2 -  313.5 308.5 

wt.% C Calculated 86.47 56.73 58.22 80.5 80.55 

wt.% H Calculated 13.53 10.88 10.75 13 12.95 

wt.% O Calculated 0 32.39 31.03 6.5 6.5 

Oxygenates vol. (%) Calculated - - - 20.07 20.95 

a The properties presented for D20 corresponds for 6.1 wt.% oxygen content blend (no information for the 6.5% wt.% O was 

available in the literature) 

2.3: Gaseous Emissions analysis and Particle number concentration: 

Multi-Gas 2030 FTIR spectrometry-based analyser was utilised to measure the gaseous emission from the 

exhaust such as nitrogen oxides (NOx), carbon oxides (CO-CO2) and total hydrocarbons (THC).  

Electrical mobility particle size distribution (dp) and the total particle number concentration were measured 

using a TSI scanning mobility particle sizer which includes a 3080-electrostatic classifier, 3081-Differential 

Mobility Analyser and a 3775-Condensation Particle Counter [22]. The exhaust dilution ratio was set to 1:11 

using an ejector diluter system before testing the sample. 

2.4: PM collection method 



 5 

Tissue quartz (TQ) filters (type TISSUEQTZ 2500 QAT-up, 47mm diameter) supplied from VWR 

International Ltd UK were applied to collect the needed PM samples. The filters were pre-heated at 650
o
C 

for 3 hours before starting the collection process. Afterwards, they were placed in an inline filter holder 

connected to a partial exhaust line (vacuum-pumped assisted, as shown in Figure 1) and loaded to a target 

mass of 3 mg, following the method proposed by Mühlbauer et al. [13]. The samples collection point was 

placed before the Diesel Oxidation Catalyst (DOC) to maintain the particles volatile fraction and prevent any 

possible low-temperature PM oxidation that may be caused by the increased amounts of NO2 produced 

downstream the catalyst. This type of reactions may alter the particles structural order and affect their 

oxidative reactivity [23]. 

2.5: PM characterisation techniques: 

A schematic diagram presenting the production process of the tested oxygenated hydrocarbons (from 

literature) and the experimental procedure used for the soot collection and the different methods used to 

analyse the particles physico-chemical properties is plotted in figure 1.  

 

Figure 1: Schematic diagram of the fuel origin, experimental facility, sampling techniques and testing 

methods 

2.5.1: TGA analysis 

The TQ-filters were cut into small sections and used for the TGA testing (PerkinElmer) in a way that an 

equal PM mass of ~ 0.12 mg was examined in all the experiments [24]. The sample was first heated under an 

inert atmosphere of nitrogen at a constant flow of 40 ml/min with 10 °C/min ramp to reach 400 °C. The PM 

sample was maintained isothermal for 30 min to ensure that all the volatile fraction is evaporated, then 
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cooled down to 200°C to start the carbon oxidation process. Atmosphere was then changed to air (10% O2, 

90% N2) and the PM sample was heated to 650 °C with a ramp of 3 °C/min under a flow of 40 ml/min. The 

PM thermal behaviour was identified following two different methods: (a) The 1
st
 derivative of the 

percentage weight loss (dm/dt) was calculated to determine the soot ignition temperature (explained in detail 

in section 3.3.1) [13, 25], and (b) Soot activation energy (Ea) was determined following the simplified 

Arrhenius-type reaction model: 

  (eq.1) 

where m is the percentage sample mass (%), R the universal gas constant (8.314 J/mol.K), T temperature (in 

Kelvin), and PO2 oxygen partial pressure. The soot activation energy was obtained from the slope of the plot 

of   vs.  [3]. 

2.5.2: EDX analysis: 

FEI Talos™ F200X S/TEM equipped with EDS detector (Super-X EDS system with total solid angle of 0.9 

srad) was employed in the analysis to indicate the effect of the different fuels used on the PM elemental 

composition. The particles loaded on the TQ-filters were dissolved in ethanol and transferred into Formvar 

coated copper grids (200 mesh, 3.05 mm diameter, supplied from TAAB laboratories Equipment Ltd) prior 

to the analysis. Four distinct positions of the grids, including different agglomerate size, were inspected to 

determine the average composition of the different tested samples. 

2.5.3: TEM and HRTEM analysis: 

The needed images for the morphology and nanostructure analysis were obtained from the same Talos™ 

F200X S/TEM using the FEI Ceta 16M™ camera that offers an HRTEM imaging information limit up to 

0.12 nm at a fast rate of 25 fps. The morphological parameters, such as radius of gyration (Rg), fractal 

dimension (Df), number of primary particles (npo) and their size distribution (dpo) were analysed through  a 

Matlab built in digital image software following the method proposed by Lapuerta et al. [26, 27]. The 

nanostructure variables, such as fringe length (La), fringe separation distance (d002), and tortuosity (Tf) were 

quantified following the method of Yehliu et al. [28]. La > 0.5 nm and 0.3 < d002 < 0.45 nm were utilised as 

threshold values for this analysis in order to exclude the background effect [28]. According to the formula 

described by Atria et al. [29] and presented in equation 2, the particles degree of graphitization (DOG) is 

calculated as follows: 

   (eq.2) 

Where 0.3354 nm is the interlayer spacing in graphite (d002 graphite) [30] and d002 max is the maximum 

interlayer spacing among the inspected samples. 

2.5.4: Raman analysis: 
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Renishaw inVia Haworth 503A Raman microscopy was applied to test the PM initial graphitisation order. 

Argon ion laser beam with wavelength of 532 nm was implemented to test the filter samples at four distinct 

positions with a 50x magnification objective over the range of 800-2000 cm
-1

. The hardware accumulation 

number was 15 over an exposition time of 20 seconds with an electrical source power of 6.4 μW to avoid 

damaging the particles nanostructure. Same as the EDX analysis, 4 spots were analysed on each filter to 

calculate the average spectrum. 

 

3. Results and Discussions  

3.1 Combustion analysis and gaseous emissions  

As shown in table 3, longer fuel main-injection duration was needed in case of the oxygenates (D20 and 

T20) to maintain the same engine load condition, thus slightly higher break specific fuel consumption 

(BSFC) was recorded. The reduced heating value (LHV) in the oxygenated blends (Table 2) must be 

compensated with a higher volumetric fuel consumption to counterbalance the energy loss [31, 32]. In this 

context, the increased amount of the main-fuel injected lead to an extension in the diffusion combustion 

phase as shown in Figure 2.  

Table 3: Fuel injection parameters and exhaust temperature 
 

Fuel 

Pilot 

injection 

timing (CAD 

BTDC) 

Injection 

signal 

duration (ms) 

Main injection 

timing (CAD 

BTDC) 

Injection 

signal 

duration (ms) 

Break specific 

fuel consumption 

BSFC (kg/kW.h) 

Exhaust 

Temperature (°C) 

Diesel 15 0.15 8 0.573 ±1 0.4082 280±2 

D20 15 0.15 8 0.579 ±1 0.4209 276±2 

T20 15 0.15 8 0.575 ±1 0.4201 278±2 

 

The start of combustion (ignition delay (ID)) in common rail diesel engines correlates directly with the fuel 

cetane number (CN), while other physical properties are reported to have lower influence [33]. Higher CN 

fuels, such as T20 (TPGME CN:80), can be responsible not only for advancing the start of combustion but 

also lead to softer pressure and temperature profiles, as seen in Fig. 2 [34, 35]. D20 (DPGME CN: 43.9) has 

a similar CN compared to diesel and as a result the ID was not affected (Fig. 2), whereas the main heat 

release rate (HRR) peak and the exhaust temperature were slightly reduced compared to Diesel.  

Concerning the gaseous emissions, increasing the oxygen content in the fuel has shown no negative impact 

on NOx emissions (Fig. 3) as it is commonly the case in the literature [36]. The small changes in the 

combustion patterns, can be one of the contributing reasons for this trend, but most likely is due to the fuels 

chemical properties.  It is expected that the higher latent heat of vaporisation of the blends (Table 2) lowered 

the maximum flame temperatures and thus reduce the thermal NO formation mechanism [37]. Although the 

shorter ID seen in T20 combustion led to slightly higher NOx levels compared to D20, the NOx still within 

the error bars. It is suggested in the literature that shorter ID (as in the case of T20) can result in higher NOx 
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level due to an increase in the peak combustion pressure and temperature [38]. However, the direct influence 

of the ID on the combustion patterns cannot be fully dictated from the recorded pressure and HRR profiles, 

since no significant changes that allow a fair comparison was seen between the D20 and T20 fuelling. Yet, 

referring to the exhaust temperatures, T20 combustion results in slightly higher exhaust temperature 

compared to D20 and as a result higher in-cylinder temperature, which could be the reason of the increased 

NOx emissions. 

As for the Carbon Oxides (CO) and total hydrocarbons (THC) emissions, there is slight reduction compared 

to the diesel. CO emissions are generally produced from the partial oxidation of the fuel when there is 

deficiency in oxygen. The oxygenated blends reduce the carbon mass fraction in the blend and hence reduce 

the CO formation mechanism [39]. Furthermore, the final CO concentrations also depend on its oxidation 

rate. Following the idea of An et al. [39], oxygenated fuel promotes the CO oxidation by hydroxyl (OH) 

radicals (C + OH  CO2 + H) .  As for the HCs emissions, they generally results from the incomplete 

combustion of the air fuel mixture leading to unburned and partially decomposed fuel molecules [40]. The 

reduction shown was expected since oxygenated fuels lead to more complete combustion compared to diesel, 

and as a result the hydrocarbons oxidation process is promoted [31]. 

 

Figure 2:  In-cylinder pressure, and heat release rate (HRR) from the different fuel used along with the 

magnified HRR region of interest  
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Figure 3: Gaseous emissions resulted from the different fuel blends 

 

3.2 PM Size Distribution  

In general, the C-O moieties presented in the oxygenated hydrocarbon structure are expected to survive the 

fuel-rich ignition phase, thereby supressing the rate of soot formation [39, 41]. Furthermore, oxygenating the 

fuel is expected to result in more complete combustion even in fuel rich regions along with promoting the 

oxidation of the already formed soot precursors [10, 11]. Consequently, it is shown that both D20 and T20 

blends reduce the total particle number concentration by 25 ± 2 % and 40.3 ± 1.7 %, respectively compared 

to diesel (Figure 4). 

 

 

Figure 4: Particle size distribution from different blend used 
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Mueller [10] et al. , Burke et al. [6] and Park et al. [42] suggested that the effective PM reduction shown in 

case of TPGME is directly related to its atomic structure. TPGME holds four oxygen atoms evenly dispersed 

within the particle in such a manner that all carbon atoms are initially bonded with no more than one oxygen 

element. This efficient distribution ensures that all the decomposition reactions will lead to CO molecules 

instead of CO2, thus inhibiting the greatest fraction of carbon atoms from contributing to soot precursor 

species [6].  

Despite that both blends share the same oxygen content (6.5 % wt.), the particles reduction seen with D20 is 

smaller compared to T20. Taking into consideration that no combustion model was designed for DPGME 

throughout the literature and that both DPGME and TPGME share a similar structure, we can speculate that 

their soot reduction ability should not present significant variance. The lower soot reduction capability of 

D20 could be related to its higher boiling temperature (90% distillation temperature) compared to T20 (Table 

2). This property indicates the presence of high molecular weight compounds that will be difficult to 

vaporize completely during the combustion process, favouring the production of the particulate matters [43]. 

 

3.3 Physico-Chemical Analysis of Particulate Emissions 

3.3.1 Thermogravimetric Analysis 

The PM collected on the TQ-filters (described in section 2.4) are mainly comprised of two compounds: (a) 

elemental carbon that accounts for the soot aggregates and (b) volatile components (soluble hydrocarbons, 

lubricants, etc.) which is adsorbed/condensed on the soot surface [24]. The fuel type significantly affects the 

PM composition, both oxygenates shows to produce PM with higher volatile fraction and less elemental 

carbon (table 4). This trend was expected since the combustion of the oxygenated blends: (a) reduces the rate 

of soot production (as shown in section 3.2) which results in an increase in the portion of the volatile 

compounds [44], (b) produces particles with higher specific surface area (shown later in section 3.3.3), which 

indicates an increase in the active surface in which the HCs could be adsorbed [45], (c) reduces the exhaust 

temperature (as shown earlier in section 3.1), which favours the condensation of the unburnt fuel on the soot 

surface [44]. 

 

Table 4: Start of oxidation and ignition temperature along with the corresponding volatile fraction of the 

soot resulted from the different blend combustion. 

Soot origin Start of oxidation (oC) Ignition temperature (oC) Volatile fraction (%) 

Diesel 378.4 ± 3 497 ± 1 70.53 ± 2 

D20 360 ± 2.5 480 ± 3 72.8 ± 1 

T20 360 ± 2.5 480 ± 4 80.95 ± 4 
 

Inspecting the soot weight loss curve (table 4 and Figure 5), particles resulted from both D20 (SD20) and T20 

(ST20) show to start oxidising at a lower temperature (360 ± 2.5 
o
C) compared to diesel soot (SD) (378.4 ± 3 

o
C). The corresponding mass loss rate (dm/dt) was also plotted in figure 5 to determine the particles ignition 
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temperature (Ti), usually defined as the temperature where the maximum mass loss rate occurs (Lower the 

Ti, higher the reactivity) [13, 25]. As shown in figure 5, both SD20 and ST20 present a lower Ti (480 ± 1.3 
o
C) 

compared to SD (497 ± 1 
o
C), indicating that oxygenated fuel blends produce particles with higher oxidative 

potential compared to the neat diesel combustion.  

 

 

Figure 5: Soot weight variation and mass loss rate for the different fuels 

To further investigate the particles reactivity, the soot activation energy (Ea) was calculated following the 

method stated earlier in section 2.5.1. In the calculation, the temperature range that corresponds to the soot 

conversion rate of 10% to 50% was considered, since it results in the most linear trend (as shown by the 

correlation coefficient R
2
 in Figure 6) [24]. ST20 shows to be the most reactive with a corresponding Ea of 100 

kJ/mol followed by SD20 with Ea = 115.2 kJ/mol and SD with Ea = 119.36 kJ/mol. As a first step of the 

analysis, the difference shown along the particles reactivity could be clarified following the particles volatile 

fraction. Although the volatiles were evaporated before launching the oxidation process, the devolatilization 

of these compounds is reported to increase the particles reactivity through raising the soot porosity 

(micropores opening), providing an increase in the internal surface area in which oxygen could penetrate and 

react [46]. This theory perfectly fits our outcomes where ST20, presenting the highest volatile fraction, lead to 

the highest reactivity (lowest Ea), followed by SD20 and SD respectively.  
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Figure 6: Effect of fuel type on the soot activation energy extracted from the corresponding Arrhenius-plot 

  

With respect to the above soot oxidation kinetics, it is quite evident that the oxygenation of the diesel fuel 

can shift the diesel particulate filter (DPF) regeneration process towards lower temperatures [47]. In an effort 

to understand the detected reactivity, a more detailed examination of the different physical and chemical soot 

properties is performed in the following sections of the paper. 

3.3.2 PM elemental composition  

S/TEM-EDX has been employed in this study to analyse the chemical composition of the collected PM 

samples. As shown in Figure 7, the elementary analysis of the PM includes oxygen, carbon, sulphur as well 

as ash content (aluminium and Zinc). However, this method cannot detect the hydrogen (atomic number 

Z=1) levels since light elements with Z<11 cannot be analysed by the EDX method [48]. To collect the same 

filter PM loading, sample collection time varies between the different fuel blends in the following order 

T20>D20>ULSD, confirming the SMPS results since T20 presents the lowest PM presence in the exhaust, 

followed by D20 and Diesel respectively. 

 Ash content: 

Zinc (Zn) and Aluminium (Al) were indicated as the major ash source in the PM studied in this work. Zinc is 

considered as an active catalyst that enhances the oxidative reactivity of the particles (earlier and faster 

oxidation) while Aluminium is reported to have less influence [49, 50]. These type of metals are generated 

from inorganic elements in the fuel, lubrication oil and engine wear [13]. Despite the fact that the PM 

collection duration was longer in case of the oxygenated blends, their ash content (8-9 %) is slightly lower 

compared to the diesel case (12%). DPGME and TPGME present pure oxygenated hydro-carbons where no 

metals such as Ca, S and P-bearing components can be found as it is the case in biodiesel [51]. These 

compounds (DPGME and TPGME) dilute the inorganic elements concentration in diesel fuel without adding 
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any ash precipitations. Reduction in the ash content of the particles help in sustaining the DPF service life 

since ash accumulation increases the system backpressure, leading to less efficient combustion and higher 

fuel penalties [52]. Beside the microstructural difference that will be explained later in section 3.3.4, the 

reduction in the catalytic active materials (ash components) present a valid reason to clarify the slight 

difference shown along the starting oxidation temperature shown earlier in section 3.3.1 (Table 4).   

 Sulphur: 

Small amounts of sulphur (1.5 %) were detected in the diesel PM sample. It can be attributed to the unburned 

fuel portion that is condensed on the soot surface. Oxygenates addition reduces the sulphur concentration in 

the fuel blend, thus smaller portion is expected to accumulate on the soot periphery. It is believed that this 

reduction was significant up to a level that wasn’t detectable by the EDX analyser. 

 Carbon: 

PM carbon content was shown to significantly decrease in case of the oxygenated blends (55%-D20, 50%-

T20) with respect to the conventional diesel (62%). This reduction confirms the influence of the molecular 

oxygen (C-O moieties) on the soot formation mechanism described earlier in section 3.2. Furthermore, the 

in-cylinder soot oxidation promotion described in case of the oxygenated blends is not only expected to 

decrease the final soot mass but also reduce the mass of carbon grouped in the particles [53].  

 Oxygen: 

Oxygen concentrations are greater in case of blended fuels with different grades, 9 % for D20 and 13 % for 

T20 compared to diesel. Oxygen fraction increment in case of the oxygenates is resulted from the 

condensation of the unburned fuel (containing oxygen compounds) on the soot periphery and support the 

presence of a higher fraction of surface bond-oxygen functional groups [54]. As for the difference shown 

between D20 and T20, it was expected since T20 present higher volatile fraction compared to D20 (section 

3.3.1), therefore higher portion of oxygenated compounds is expected to be accumulated on the soot surface.  

The elemental composition shown for diesel PM (C and O) in that analysis correlates with previous findings 

by Salamanca et al. [55]; as for D20 and T20 blends no study in the literature has reported its elemental 

composition. The incorporation of the greater amounts of oxygen functional groups is expected to enhance 

the soot oxidation rate by favouring the internal burning mode during the oxidation process, as suggested by 

Song et al. [54].  
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Figure 7:  Elemental composition of the PM samples calculated from the EDX- Analysis, (a) Diesel, (b) 

D20, (c) T20 

3.3.3 PM Morphological Analysis 

All the micrographs were set to have the same magnification scale of 100 nm and the samples were collected 

at the same exhaust sampling point. All the aggregates present the typical morphology of diesel PM, showing 

nearly spherical primary particles blended together to form a stretched chain like structure (Figure 7).  

The primary particles size (dpo) distribution was plotted in Figure 8 by selecting around 350 particles 

(approximately 30 TEM images were analysed) in each case. Oxygenated blends tend to supress the rate of 

soot inception and promote the oxidation of the already formed particulates, as discussed earlier in section 

3.2. Consequently, fewer number of primary particles (npo) was presented in the agglomerates derived from 

D20 and T20 blends, and their size (dpo) shows to be 17.8-25 % smaller than diesel (Figure 8 and 9). As a 

result, radius of gyration (Rg) of the particles was shown to slightly decrease from 70 nm in case of diesel to 

64-65 nm in case of D20 and T20 respectively (Figure 9).  
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Figure 8: Primary particles size distributions resulted from the combustion of diesel, D20, and T20 fuel 

blends 

Assuming that the soot shape is perfectly spherical and its density is 1850 kg/m
3
, the specific surface area 

(SSA) was calculated following the method proposed by Lapuerta et al. [56].  Following the reduction shown 

along dpo, the SSA of the primary particles increases from 115 g/m
2
 in case of SD to 140 and 155 g/m

2
 for 

SD20 and ST20 respectively. Higher SSA (smaller dpo) indicates that the resulted particles are more vulnerable 

to oxygen attack, and as a result their oxidative reactivity should be improved [56, 57]. Other authors 

suggested that the correlation between the primary particle size and the particles reactivity is not always 

consistent [13, 58]. Considering the reduction shown along dpo in case of the oxygenates and the 

corresponding higher oxidative reactivity reported previously in section 3.3.1, this work reflects the 

existence of a positive correlation between these two parameters and confirms the theory stated in ref. [56, 

57]. The fractal dimension (Df) is considered as a metric scale to estimate the structure of the resulted PM 

aggregates [59]. In general, higher particle concentration enhances the collision phenomena between the 

particles and results in aggregates having lower fractal dimension (more chain like structure) [60]. Despite 

the lower levels of particles generated in the case of the oxygenates, Df was approximately 7% lower 

compared to diesel (Figure 9). This is attributed to the promoted oxidation of the already formed 

agglomerates during the combustion of the oxygenated blends [16, 61]. Therefore, it is expected that the 

resulted particulates would be more efficiently trapped in the DPF due to their chain-like structure [61]. 
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Figure 9: Effect of fuel type on radius of gyration (Rg), number of primary particles (npo) and fractal 

dimension (Df) 

3.3.4. Primary particle nanostructure  

Primary particle structure analysis was conducted using the same magnification scale of 20 nm precision. 

Figure 10 shows the original grey scale HRTEM images where the region of interest is processed as skeleton 

function to clearly show their structural details. All the particles inspected present two distinct parts as a 

main structure: outer shell consisting of ordered PAH layers, so called “fringes”, that surrounds an inner part, 

so called “particle core”, where unsymmetrical arrangement for the graphene layers can be seen.  

 
Figure 10: HR-TEM micrograph presenting the primary particle structure resulted from the combustion of 

the different fuel used, (a) diesel (b) D20 (c) T20 

The carbon atoms located in the basal plane have lower reactivity compared to the edge site position. The 

accessible number of the carbon layers in the edge sites can be predicted by analysing the primary particles 

nanostructure parameters stated earlier in section 2.5.3 [62]. The resulted variables are presented in Figure 11 

and 12 as a normal distribution to show the variations in detail between the different particles inspected. 
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 Fringes Length (La) and Fringe Tortuosity (Tf): 

Oxygenated fuels tend to produce particles characterised by shorter fringe length (La) and higher tortuosity 

(Tf) compared to diesel [58, 63].  In general, short La highlights the presence of greater number of carbon 

atoms in the edge sites, in other words more reactive particles [62, 64]. Higher Tf (more curved fringes) 

impose the bond/ring strain (distort bonds from their ideal values) which increases the reactivity of the 

carbon atoms located in the basal plane since their atomic orbitals overlap and their electronic resonance 

stabilization is reduced [62, 64]. Therefore, the C-C bonds are weakened and become more vulnerable to the 

oxidative attack [62]. Higher levels of Tf was predicted to increase the possibility of breaking the outer layer 

into smaller fringes during the oxidation process, thus enhancing the reactivity of the particles [56]. Van Der 

Wal et al. [62] proved that Tf present more influential effect compared to La in term of increasing the PM 

reactivity.  

In this work, La present a non-linear trend between the different particles, ST20 comprise shorter layers 

compared to the diesel case while SD20 tend to present longer layers (i.e. less reactive particle) (Figure 11). 

This result supports the higher reactivity shown along ST20 compared to SD20, but in the same time contradicts 

the fact that both particles are still more reactive than diesel particles. In this context, it can be clearly stated 

that the fringes length (La) cannot be considered as a critical parameter that dictates the PM oxidative 

behaviour and other factors should be accounted for a more adequate analysis.  

Oppositely to La, both blends tend to produce particles with higher Tf compared to diesel. This trend was 

expected since the combustion of the oxygenated blends lead to the formation of smaller primary particles 

compared to diesel, thus the carbon layers are likely to be more stretched (more curved) [56]. Furthermore, 

the elevated amounts of the PM surface oxygen groups shown earlier in case of the oxygenates (section 

3.3.2) could be another possible reason for that trend. Man et al. [25] reported that the oxygen functional 

groups on the soot surface can “change the connection types between the carbon atoms in a graphene layer”, 

leading to more curved fringes.  

 

Figure 11: Nanostructure parameters of the inspected particles: (a) fringe length (La), (b) tortuosity (Tf) 
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 Fringes Separation Distance (d002) and Degree of Graphitisation (DOG): 

Higher fringes separation distances (d002) are reported in the literature to enhance the particles oxidative 

reactivity by facilitating the access of the oxygen to the carbon edge sites [63]. It is commonly accepted 

throughout the literature that the combustion of oxygenated diesel blends (especially biodiesel) produce 

particles with larger d002 compared to the conventional diesel [65, 66]. Combustion temperature and soot 

residence time constitute a governing factor that dictates the particles degree of graphitisation [58]. In 

general, soot produced under high in-cylinder temperatures are expected to have higher DOG and 

consequently possess lower active surface area (lower reactivity) [58]. In contrast, Lapuerta et al. reported 

that the variation in the particles structural order depends more on the fuel type rather than on the 

combustion temperature [56]. 

Despite the lower exhaust temperature from the combustion of the oxygenated blends (see section 3.1), thus 

lower in-cylinder temperature, the resulted PM present shorter d002 between its graphene layers (Fig. 12). 

This reveals that oxygen borne fuels produce particles with more ordered graphite-like structure compared to 

diesel, which was further confirmed by calculating their DOG following the equation stated earlier in section 

2.5.3. The particles DOG changes in the following order: D20 ~ 0.525 > T20 ~ 0.505 > Diesel ~ 0.439. 

These findings confirm Lapuerta’s theory [56], proving that the particle DOG is more fuel dependant rather 

than engine dependant. Furthermore, the initial higher DOG in case of the oxygenates did not negatively 

affect the particles reactivity during the oxidation process (Figure 5), thereby highlighting that the initial 

graphitic order is not the only dominant factor that determines the oxidative behaviour of the particles. 

However, it could be speculated that the negligible difference between SD20, T20 and SD regarding the starting 

oxidation temperature (as seen in section 3.3.1) may be also influenced by that factor.  

Following our results, the fringes tortuosity seems to be the most critical nano-structural parameter 

influencing the particles reactivity in our analysis, a trend that was suggested earlier by Lapuerta et al. [56].   

 

Figure 12: Particles fringe separation distance (d002) 
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3.3.5 Graphitic structure order  

The particles structural variance indicated earlier by the HRTEM analysis was further investigated by the 

aim of Raman spectroscopy. The obtained spectra was first corrected by a linear baseline and then de-

convoluted into 3 Lorentzian shape bands (D4 ~ 1200 cm
-1

, D1 ~ 1350 cm
-1 

and G ~ 1580 cm
-1

) and 1 

Gaussian band (D3 ~ 1500 cm
-1

) based on the approach by Ess et al. [67] (Figure 13). In general, differences 

between the intensities, area and full width at half maximum (FWHM) of the different resulted bands refer to 

different structural orders in the basal plane of the graphene layers [56]. Among the examined bands, G and 

D1 present the most intense peaks; G attribute to the ideal graphitic structure while D1 refers to disorder in 

the edges of the layers.  

 

 

Figure 13: Raman spectra of diesel soot with its corresponding Lorentzian curve fitting, Diesel, D20 and 

T20 spectrum 

The intensity and area ratio of D1 with respect to G (ID1/IG, AD1/AG), next to the FWHM of D1 present an 

indicator to quantify the density of the edges sites and the crystalline sizes distribution [58]. These indicators 

are considered as useful parameters to interpret the particles DOG [13]. Seong et al. [68] considered these 

ratios as an important factor that rule the particles oxidative reactivity, lower ratios correlates with a lower 

reactivity. As shown in table 5, soot originated from oxygenated blends presents lower FWHM D1, ID1/IG and 

AD1/AG ratio compared to diesel. These results agree with the reduction shown along d002 in section 3.3.4 and 

confirms that the layers of the particles tend to be more ordered in case of the oxygenates. These results did 

not follow the theory mentioned earlier in ref. [68] since, as stated in section 3.3.4, fringes tortuosity (which 

cannot be identified by Raman analysis) is the only nanostructure variable dictating the oxidative behaviour 

in that work. Furthermore, D3 results from amorphous carbon, i.e. organic molecules, fragments or 

functional group. No significant changes were detected along that band between the different tested samples. 

D4 is directly related to the vibration caused by the single or double carbon-carbon bonds (C-C, C=C) 
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presented in polyene-like structures which indicates disorder in the graphitic lattice [69]. Same as D1, 

AD4/AG shows to slightly decrease in case of oxygenates confirming the higher DOG reported earlier.  

Table 5: FWHM D1, ID1/IG, AD1/AG, AD3/AG, AD4/AG for the soot from the combustion of Diesel, D20 and 

T20 blends 

Soot origin FWHM D1 ID1/IG AD1/A G ratio AD3/AG AD4/AG 

Diesel 186 ± 0.5 1.158 ± 0.025 2.95 ± 0.03 0.75 ± 0.013 0.53 ± 0.04 

D20 184 ± 0.3 1.1119 ± 0.012 2.83 ± 0.06 0.77 ± 0.023 0.45 ± 0.06 

T20 182 ± 0.2 1.088 ± 0.021 2.75 ±0.05 0.78 ± 0.024 0.32 ± 0.05 
 

4. Summary of results 

The several analytical techniques implemented to characterise the different PM properties are presented in 

the 1
st
 column of Figure 14. The effect of both D20 and T20 blends on the different particles physico-

chemical properties (morphological, nano-structural and elemental) is shown in the 2
nd

 column of the graph. 

Furthermore, the way with which every physico-chemical property influences the rest of the studied 

properties (i.e. higher d002 lead to higher DOG) is presented through the arrows sketched on the both sides of 

the 2
nd

 column.  

The general impact of these properties on the particles oxidative behaviour, as it is commonly reported in the 

literature, is shown in the 3
rd

 column of the graph to clearly identify the properties that correlate with the 

enhanced oxidative potential recorded in that work.  As a summary, the different physico-chemical 

properties inspected were qualitatively classified into two main groups: “Factors with major influence on 

the oxidative behaviour of the particles” and “Factors with minor influence on the oxidative behaviour 

of the particles”.  

 

Figure 14: Summary of the different physico-chemical parameters affecting the particles reactivity 
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Conclusions 

The effect of adding di and tri-propylene glycol methyl ether to diesel (6.5 w.t % oxygen content) on the 

gaseous emissions, sooting tendency, and oxidative reactivity of the particulate matters along with their 

physico-chemical characteristics was investigated in this study. Increasing the fuel oxygen content shows no 

negative impact on the NOx production for both blends, while T20 fuelling shows to be more effective than 

D20 in PM reduction. The particles resulted from the oxygenated fuels shows to be more reactive compared 

to diesel but the relationship between the particles physico-chemical properties and reactivity was quite 

complex.  

Particles morphology displays significant modifications, both blends results in aggregates with more chain-

like structure that includes fewer number and smaller primary particles compared to diesel. Inspecting the 

particles carbon layers, oxygenated fuels show to slightly influence the fringes length (La) but tend to 

significantly elevate their tortuosity levels (Tf). Unexpectedly, both Raman and HRTEM analysis highlight 

that glycol ether blends increase the particles initial graphitisation order, which contradicts the higher 

reactivity recorded. In addition, lower ash precipitations and higher oxygen content was detected through the 

elemental analysis of the PM.  

Given the results of this work, it appears that the initial carbon layers length (La) and particles graphitisation 

degree present no clear indication in presuming the particles oxidative behaviour, as it is the case in the 

literature. However, initial primary particle size and surface oxygen group present the major role in dictating 

the particles reactivity, since beside their positive impact on the oxidation mechanism, they both influence 

the fringes tortuosity (Tf), whose been considered as the most critical parameter governing the reactivity 

shown in that analysis.  

This work shows that apart from effectively reducing the PM emissions, glycol ether blends combustion 

could also help in decreasing the severity of the DPF regeneration process (i.e. lower soot activation energy) 

and increase the filter lifespan (i.e. lower soot ash content) without affecting its filtration efficiency (i.e. soot 

with chain-shape morphology). 
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