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Abstract
Disorders of adrenal steroidogenesis comprise autosomal 
recessive conditions affecting steroidogenic enzymes of the 
adrenal cortex. Those are located within the 3 major branch-
es of the steroidogenic machinery involved in the produc-
tion of mineralocorticoids, glucocorticoids, and androgens. 
This mini review describes the principles of adrenal steroido-
genesis, including the newly appreciated 11-oxygenated  
androgen pathway. This is followed by a description of 
pathophysiology, biochemistry, and clinical implications of 
steroidogenic disorders, including mutations affecting  
cholesterol import and steroid synthesis, the latter compris-
ing both mutations affecting steroidogenic enzymes and co-
factors required for efficient catalysis. A good understanding 
of adrenal steroidogenic pathways and their regulation is 
crucial as the basis for sound management of these disor-
ders, which in the majority present in early childhood.

© 2018 The Author(s) 
Published by S. Karger AG, Basel

Introduction

The first case of a patient with a steroidogenic disor-
der, likely congenital adrenal hyperplasia (CAH) due to 
21-hydroxylase deficiency, was published more than 150 
years ago [1, 2]: a phenotypical male with ambiguous gen-
italia, female internal anatomy, and large adrenal glands 
on autopsy. It took another century until the biochemis-
try of this condition became clear and treatment was 
available [3]. Only after further advances in molecular bi-
ology and protein biochemistry, the molecular basis of 
CAH was unravelled from the 1980s onwards. Since then, 
our understanding of the physiology and pathophysiol-
ogy of steroid hormones has vastly improved [4]. Al-
though we now have a nearly complete understanding of 
the underlying nature of steroidogenic disorders, diagno-
sis and management continue to pose challenges and re-
quire expert guidance. Novel diagnostic approaches 
promise to improve rapid diagnosis and treatment mon-
itoring. In particular, modified release glucocorticoid 
hormone formulations are promising new therapies to 
mimic the diurnal endogenous secretion pattern of corti-
sol to provide more physiologic replacement.

This article is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (CC BY-
NC-ND) (http://www.karger.com/Services/OpenAccessLicense). 
Usage and distribution for commercial purposes as well as any dis-
tribution of modified material requires written permission.
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Overview of Adrenal Steroidogenesis

Steroidogenesis in the adrenal cortex describes a series 
of consecutive enzymatic reactions converting a precur-
sor hormone into intermediates on their way to active 
steroid hormones for 3 major steroid classes: mineralo-
corticoids (MCs), glucocorticoids (GCs), and precursors 
of active androgens (and ultimately, oestrogens) (Fig. 1). 
The principal enzymes involved are either cytochrome 
P450 enzymes (CYPs) or hydroxysteroid dehydrogenases 
(HSDs). Their expression in distinct layers of the adrenal 
cortex determines the zonal specific steroid output and 
provides functional separation of 3 layers: the MC-pro-
ducing zona glomerulosa as the outer layer, the GC-pro-
ducing zona fasciculata in the middle, and the zona re-
ticularis generating androgen precursors as the inner-
most layer, adjacent to the adrenal medulla.

As a simplified approach to explain adrenal steroido-
genesis, in particular when explaining it to patients and 
lay people, it helps to compare the adrenal steroid ma-
chinery to a highway system with 3 main junctions (see 
Fig. 1): precursors are travelling to their distinct destina-
tions, taking either the MC, GC, or sex steroid junction. 
Traffic flow is controlled via ACTH on junction 2 and 3, 
and via the renin-angiotensin-aldosterone system (RAAS) 
on junction 1. A block at any junction (i.e., a distinct en-
zyme deficiency) causes congestion on the motorway, 
and the precursor traffic will accumulate before the block 
and try to find its way out through the other junctions 
that are open.

Cholesterol is the principal substrate for all steroid 
hormones. It can be synthesized de novo from acetate [5] 
but is mostly supplied from dietary cholesterol transport-
ed to the cell via LDL and HDL [6]. The side-chain cleav-

Fig. 1. Schematic representation of human adrenal steroidogene-
sis. Steroidogenic enzymes are depicted in grey boxes supporting 
catalytic activities indicated by the black arrow. Co-factors for ste-
roidogenic enzymes are represented by white boxes. The three 
main steroidogenic pathways are coloured as green for the miner-
alocorticoid, yellow for the glucocorticoid, and blue for the andro-
gen pathway. An asterisk marks enzymes that are predominantly 
expressed in extra-adrenal tissues. StAR, steroidogenic acute regu-

latory protein; CYP11A1, cholesterol side-chain cleavage enzyme; 
CYP17A1, 17α-hydroxylase/17,20 lyase; CYB5A, cytochrome b5; 
SULT2A1, DHEA sulfotransferase; POR, P450 oxidoreductase; 
CYP21A2, 21-hydroxylase; HSD3B2, 3β-hydroxysteroid dehy
drogenase; CYP11B1, 11β-hydroxylase; CYP11B2, aldosterone 
synthase; HSD17B3, 17β-hydroxysteroid dehydrogenase type 3; 
SRD5A2, 5α-reductase type 2; Adx, adrenodoxin; AdR, adreno-
doxin reductase.
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age enzyme (P450scc or CYP11A1) is located at the inner 
mitochondrial membrane and responsible for the first 
catalytic step, generating pregnenolone. The exact mech-
anisms underlying mitochondrial cholesterol import are 
complex and despite intensive research efforts not under-
stood in all detail yet [7]. There are excellent reviews on 
the extensive work that has been done on cholesterol im-
port and trafficking [4, 7]; this topic is beyond the scope 
of this article.

The steroidogenic acute regulatory protein (StAR) is  
a key player shifting cholesterol from the outer to the in-
ner mitochondrial membrane, where CYP11A1 resides. 
CYP11A1 exhibits 3 consecutive reactions modifying the 
cholesterol molecule: (1) 20α-hydroxylation, (2) 22R-hy-
droxylation, and (3) carbon side-chain cleavage of C20-
C22 yielding pregnenolone [8, 9]. As a mitochondrial 
type 1 CYP enzyme, it requires electron provision from 
NADPH facilitated by adrenodoxin (Adx) and adreno-
doxin reductase (AdR) [10]. CYP11A1 is expressed in all 
3 layers of the adrenal cortex [11] and its function to gen-
erate pregnenolone is the rate-limiting step of all steroid 
hormone biosynthesis. The downstream conversion and 
“fate” of its product depends on the zonal-specific pres-
ence and activity of a distinct combination of steroido-
genic enzymes.

MC Production: Zona Glomerulosa
The enzyme 3β-hydroxysteroid dehydrogenase type 2 

(HSD3B2) generates progesterone from pregnenolone in 
the zona glomerulosa. It has 2 catalytic activities: (1) with 
its dehydrogenase activity it oxidizes the hydroxyl group 
at carbon 3 to a keto group and (2) subsequently, with its 
Δ4/Δ5 isomerase activity, HSD3B2 changes the carbon-
carbon double bond from the position between C5/6 
(“Δ5”) to C4/5 (“Δ4”) [12, 13]. The microsomal (type 2) 
cytochrome P450 enzyme 21-hydroxylase (CYP21A2) 
then converts progesterone via hydroxylation on carbon 
atom 21 to the potent MC precursor 11-deoxycorticoste-
rone (DOC). At this stage, the “fate” of the precursors is 
determined as they have entered the MC pathway (“junc-
tion 1”).

Further activation of DOC to aldosterone is performed 
in 3 subsequent steps by the mitochondrial CYP enzyme 
11B2 (CYP11B2), or also “aldosterone synthase”: (1) 
11β-hydroxylation of DOC yielding corticosterone, (2) 
18-hydroxylation of corticosterone to form 18-hydroxy-
corticosterone, and finally (3) the 18-methyl oxidation of 
corticosterone generating aldosterone [14]. Of note,  
CYP11B1, which is not expressed in the zona glomeru-
losa, is also able to perform the first two catalytic reactions 

of CYP11B2: however, the 18-methyl oxidation generat-
ing aldosterone is unique to the type 2 isozyme [15]. 

GC Production: Zona Fasciculata
Both zona fasciculata and glomerulosa express high 

amounts of HSD3B2 [11]. The microsomal CYP enzyme 
17α-hydroxylase (CYP17A1) is highly expressed in the 
zona fasciculata and reticularis in postadrenarchal chil-
dren, but absent in the glomerulosa [11], and competes 
with HSD3B2 for substrates. CYP17A1 – the gatekeeper 
towards GC and sex steroid biosynthesis – has 2 catalytic 
activities [16, 17]. First, with its 17α-hydroxylase activity 
CYP17A1, it introduces a hydroxyl group on carbon po
sition 17 of the pregnenolone or progesterone molecule 
to form 17α-hydroxypregnenolone (17OHPreg) and 
17α-hydroxyprogesterone (17OHP), respectively. Sec-
ond, with its 17,20 lyase activity CYP17A1, it cleaves 2 
carbon atoms off position 17 from the hydroxylated com-
pounds, yielding dehydroepiandrosterone (DHEA) and 
androstenedione. Both catalytic activities require elec-
tron transfer from NADPH, which is facilitated by the 
redox enzyme P450 oxidoreductase (POR), which pro-
vides electrons to all microsomal (type 2) CYPs involved 
in steroidogenesis. CYP17A1 17,20 lyase activity, the sex 
steroid-producing step, needs more electrons and further 
interaction with the small haemoprotein cytochrome b5, 
which is only expressed in the zona reticularis, facilitating 
DHEA generation ([18, 19], see below). 

The combination of HSD3B2 and CYP17A1 activities 
generates 17OHP as the principal GC precursor entering 
the GC pathway (“junction 2”). 17OHP is converted to 
11-desoxycortisol, the central GC precursor, by the en-
zyme CYP21A2. Finally, the microsomal CYP enzyme 
11β-hydroxylase (CYP11B1) converts 11-desoxycortisol 
in one single oxidative reaction to the major active GC 
cortisol.

Androgen Precursor Production: Zona Reticularis
The lack of HSD3B2 with strong expression of  

CYP17A1 and both ample presence of the co-factors POR 
and cytochrome b5 (CYB5A) enables the zona reticularis 
to produce robust amounts of the androgen precursor 
DHEA [20]. It is important to note that in normal physi-
ology CYP17A1 17,20 lyase activity has a 100-fold higher 
substrate preference for 17OH-Preg than for 17OHP 
[21], which means that under physiologic conditions 
most androgen synthesis in the adrenal goes through 
DHEA in the “Δ5 pathway.” The mechanisms by which 
CYB5A facilitates the 17,20 lyase activity of CYP17A1  
are not entirely understood; it has been suggested that 
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CYB5A enhances allosteric interaction between the POR 
and CYP17A1 proteins, with only indirect involvement 
in electron transfer [21]. Recent work, however, indicates 
direct binding between CYB5A and CYP enzymes [22].

Adrenal Precursors of the Classic Androgen Pathway
Cortisol and aldosterone leave the adrenal cortex as 

“end products” with high affinities to their respective re-
ceptors. By contrast, DHEA requires further conversion 
to active sex steroids in the gonads and peripheral target 
tissues of androgen action [23]. The conversion of DHEA 
to androstenedione is catalyzed by HSD3B2, and al-
though the zona reticularis expresses very little of this en-
zyme, 50% of circulating plasma androstenedione is of 
adrenal origin [24]. It was proposed that the overlapping 
area between the zona fasciculata and reticularis, where 
both CYP17A1/POR/CYB5A and HSD3B2 are expressed, 
is responsible to generate adrenal androstenedione [25]. 
Ovarian HSD3B2 may also contribute to androstenedi-
one generation in premenopausal women; however, the 
HSD3B type 1 enzyme expressed in many nonsteroido-
genic tissues (i.e., liver, skin, adipose, kidney, and others) 
also generates androstenedione from DHEA [26, 27]. 
Further extra-adrenal downstream conversion towards 
potent, androgen receptor-activating androgens is per-
formed by 17β-hydroxysteroid dehydrogenases (HSD-
17Bs) yielding testosterone. Testosterone generation is 
also catalyzed in small proportions in the adrenal cortex 
by the enzyme 17β-hydroxysteroid dehydrogenase type 5 
(AKR1C3) [28]. Finally, peripheral 5α-reduction by 5α- 
reductases (SRD5s) yield 5α-dihydrotestosterone (DHT), 
the most potent androgen [4, 29].

The majority of DHEA leaves the adrenal in form of its 
sulfate ester DHEAS, which is by far the most abundant 
steroid hormone in the postadrenarchal circulation in 
higher primate species [30]. The conversion of DHEA to 
DHEAS is catalyzed in the zona reticularis by the enzyme 
DHEA sulfotransferase (SULT2A1) [11]. DHEA sulfa-
tion is energetically a highly expensive reaction, which 
requires activated sulfate in the form of 3′-phospho-
adenosine 5′-phosphosulfate (PAPS), generated and de-
livered to SULT2A1 by PAPS synthase 2 (PAPSS2) [31].

Adrenal Precursors of the 11-Oxygenated Androgen 
Pathway
Recent work has highlighted the significance of the 

conversion of androstenedione to 11β-hydroxyandro
stenedione by adrenal CYP11B1, which occurs in signifi-
cant quantities [32, 33]. This metabolite was previously 
thought to be a “waste product” of adrenal androgen pro-

duction [34–36]. However, 11β-hydroxylation of andro-
stenedione, catalyzed by CYP11B1, forms 11β-hydroxy
androstenedione, a precursor to an alternative pathway to 
active 11-oxygenated androgens [37, 38] (Fig. 1). These 
are secreted by the adrenal in huge quantities, even super-
seding the amounts of adrenally derived androstenedi-
one, both at baseline and after ACTH stimulation [32, 
34]. Further conversion via 11-keto-androstenedione 
generates 11-keto-testosterone (11-keto-T) and further 
downstream 11-keto-dihydrotestosterone (11-keto-
DHT) [34, 39]. Importantly, the in vitro androgen recep-
tor-transactivating activity of 11-keto-T and 11-keto-
DHT is similar to that of testosterone and DHT [32, 39–
41]. The implications of this additional androgen class are 
wide-ranging: recent studies have shown that they play a 
key role in androgen excess states, representing the ma-
jority of circulating androgens in polycystic ovary syn-
drome [42]. In addition, 11-oxygenated androgens are 
found to be increased in CAH due to CYP21A2 deficien-
cy [43–46].

Monogenic Disorders of Adrenal Steroidogenesis

Disorders Affecting Cholesterol Import and 
Metabolism
StAR Deficiency – Congenital Lipoid Adrenal 
Hyperplasia
A key player in shifting cholesterol from the outer to 

the inner mitochondrial membrane is StAR [47], and mu-
tations in the STAR gene result in a disorder with disrup-
tion of all steroidogenesis, congenital lipoid adrenal hy-
perplasia (CLAH) [48]. In its most severe form, affected 
babies cannot produce significant amounts of any steroid 
and present with salt-wasting adrenal crisis in the neona-
tal period. They exhibit high ACTH levels, increased plas-
ma renin activity, and grossly enlarged adrenal glands, 
which contain excessive amounts of cholesterol and its 
derivatives [49]. The complex physiology of StAR was 
elucidated by studying patients with disease-causing mu-
tations and led to a “two-hit” disease model for congenital 
lipoid hyperplasia in StAR deficiency [48]: most (but not 
all) steroidogenesis is StAR dependent, and the loss of 
StAR, the first hit, results in compensatory activation of 
the ACTH axis and de novo cholesterol biosynthesis, 
leading to accumulation of cholesterol in the cell. The de-
struction of the cell’s capacity to generate steroids due to 
toxic effects of accumulating cholesterol molecules and 
its metabolites then follows as the second hit. Some of the 
unusual features observed in patients with StAR mutation 
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are better explained with the following model. (1) 46,XY 
babies present with female external genitalia but wolffian 
internal structures: androgen-producing testicular Ley-
dig cells are destroyed during the first trimester when go-
nadal steroidogenesis peaks. Sertoli cells remain intact 
and adequate levels of anti-müllerian hormone inhibit 
the development of female internal structures. (2) As pla-
cental steroidogenesis is not dependent on StAR and the 
placenta is able to produce sufficient amounts of proges-
terone to maintain pregnancy, babies come to term with 
no significant antenatal complications. (3) Fetal adrenal 
androgen production is also compromised, leading to low 
maternal estriol (E3) levels, which can be detected ante-
natally in a maternal urine sample [50]. (4) Salt and water 
balance is controlled antenatally by the placenta, but 
postnatally overt MC deficiency emerges within 2–3 
weeks, the delay is best being explained by progressively 
emerging cellular damage and some remaining StAR-in-
dependent MC biosynthesis. (5) Lastly, adolescent 46,XX 
females were reported to exhibit low sex steroid produc-
tion that is sometimes sufficient to initiate the develop-
ment of secondary sexual characteristics and pubertal 
progression [51, 52]: as the ovary is steroidogenically qui-
escent until puberty, it is “protected” from cellular dam-
age until steroidogenesis starts. Progressive cellular dam-
age in the luteal phase of the menstrual cycle due to ac-
cumulating cholesterol results in anovulatory cycles; 
however, (unopposed) oestrogen production can be suf-
ficient for breast development and cyclical vaginal bleed-
ing.

Milder clinical phenotypes have been described as 
“nonclassic” forms of CLAH, where residual activity of 
the mutant StAR protein was evident (up to 25–30% of 
wild-type activity): patients presented with adrenal insuf-
ficiency after infancy, male external genitalia in 46,XY in-
dividuals, mild hypergonadotrophic hypogonadism, and 
mild MC deficiency [53–55].

Overall, StAR deficiency is rare in most populations. 
To date, just about 80 genetic alterations of the StAR gene 
associated with lipoid CAH have been reported; half of 
them are missense mutations (www.hgmd.cf.ac.uk). 
StAR deficiency is relatively common in East Asia due to 
the p.Q258X founder mutation [56, 57]. Founder effects 
contribute to a higher disease frequency in Arab [48, 58] 
and Swiss [59] populations.

Children with CLAH need steroid replacement thera-
py with GCs, MCs, and sodium during infancy and may 
require sex steroid replacement later on.

P450 Cytochrome Side-Chain Cleavage (CYP11A1) 
Deficiency
It was thought that foetuses lacking the CYP11A1 en-

zyme could not survive pregnancy as placental steroido-
genesis and, hence, the progesterone production main-
taining pregnancy depends on this enzyme. However, 
cases with mutations in the CYP11A1 gene have been re-
ported in individuals, which were clinically and biochem-
ically identical to CLAH [50, 60–63]. The fact that affect-
ed foetuses survive pregnancy could be explained by pro-
longed progesterone production from the corpus luteum, 
sufficient to maintain the nourishing characteristics of 
the endometrium. However miscarriages and preterm 
delivery have been reported in pedigrees with CYP11A1 
deficiency carrying mutations predicted to severely affect 
enzyme function [50, 63]. 

Nonclassic CYP11A1 deficiency has been described in 
nearly a dozen cases where residual enzymatic activity 
was maintained in in vitro assays [64–67]. Good correla-
tion between clinical phenotype and residual enzyme ac-
tivity has been reported [67]. Similar to nonclassic StAR 
deficiency, patients can present with late-onset adrenal 
insufficiency manifesting in early to mid-childhood with 
variable degrees of sex steroid deficiency [66]. Also, iso-
lated adrenal insufficiency with normal sex steroid pro-
duction has been reported in single cases [66, 67].

The main difference between StAR and CYP11A1 de-
ficiency is the size of the adrenals, as there is no choles-
terol accumulation in CYP11A1 deficiency, and thus the 
adrenals (and gonads) remain small. However, the only 
way to differentiate them diagnostically is via genetic test-
ing [60].

Management of CYP11A1 deficiency is similar to 
CLAH due to STAR mutations, with replacement of GC, 
MC, and sex steroids, as required. 

Monogenic Disorders due to Mutations in Adrenal 
Steroidogenic Enzymes
The focus of this section is on the variants of CAH, a 

group of autosomal recessive diseases caused by inacti-
vating mutations in genes encoding enzymes or co-fac-
tors involved in cortisol biosynthesis. Depending on the 
exact location of the steroidogenic block, there can be ex-
cess or deficiency of MCs and adrenal androgen synthe-
sis, respectively. Steroidogenic enzymes implicated in  
the pathophysiology of CAH include 21-hydroxylase 
(CYP21A2), 11β-hydroxylase (CYP11B1), 17α-hydroxy
lase/17,20 lyase (CYP17A1), and 3β-hydroxysteroid de-
hydrogenase type 2 (HSD3B2). Mutations in POR, an 
electron donor enzyme serving CYP21A2 and CYP17A1, 
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cause the most recently identified variant of CAH, which 
will be discussed in the section Monogenic Disorders Af-
fecting Co-Factor Enzymes of Steroidogenesis.

For each condition, we mention a brief outline on 
management focusing on hormonal replacement thera-
py. Patients with disorders of sex development (DSD) re-
quire holistic care within an experienced multi-disciplin-
ary service, where also the issue of genital surgery needs 
to be addressed individually in accord with evidence-
based guidelines on the management of DSD. To discuss 
the complexity of this issue is beyond the scope of this 
mini review and we would refer to excellent reviews and 
consensus guidelines recently published [68, 69].

21-Hydroxylase (CYP21A2) Deficiency 
21-Hydroxylase deficiency is by far the most common 

form of CAH, accounting for more than 95% of cases. The 
incidence of the classical form of 21-hydroxylase defi-
ciency is reported to be in the region of 1 in 9,800–16,000 
live births, but this varies greatly according to ethnicity 
and location [70, 71]. Heterozygous carriers are found in 
most populations with a prevalence of 1 in 50.

CYP21A2 is a key enzyme required for both MC and 
GC synthesis, but not for production of adrenal andro-
gens (Fig. 1). Defective 21-hydroxylation results in defi-
cient GC and MC synthesis and leads to accumulation of 
precursor steroids prior to the enzymatic block, most no-
tably 17OHP, which is used as the marker steroid for di-
agnosis and neonatal screening [72]. Following the lack 
of negative feedback from reduced cortisol, increased 
amounts of ACTH continue to stimulate the adrenal cor-
tex. However, ACTH stimulation can only achieve up-
regulation of adrenal androgen output and, after long-
lasting stimulation, adrenal hyperplasia, which gave the 
condition its name. Due to the accumulation of 17OHP, 
there is also increased generation of androstenedione di-
rectly from 17OHP. This conversion does not contribute 
much to androgen synthesis under physiological condi-
tions, as CYP17A1 has a strong substrate preference for 
17Preg rather than 17OHP (Fig. 1). The hallmark combi-
nation of raised 17OHP with elevated adrenal androgens 
establishes the diagnosis, which can be confirmed with 
genetic testing [71].

CYP21A2 and its nonfunctional but highly homolo-
gous pseudogene (CYP21A1P) are located close together 
in the HLA class III region on the short arm of chromo-
some 6 [73]. Approximately 95% of disease-causing mu-
tations in 21-hydroxylase deficiency are variants, point 
mutations, or deletions caused by meiotic recombination 
events between CYP21A2 and CYP21A1P [70, 74]. Ap-

proximately 1% of inactivating mutations in CYP21A2 
arise de novo. Most CAH patients (65–75%) are found to 
have compound heterozygous mutations with the clinical 
phenotype determined by the more productive allele [70]. 
Complete inactivating mutations result in the salt-losing 
phenotype, whereas 1–2% of 21-hydroxylase function is 
sufficient to manifest with the simple virilizing pheno-
type [70, 75].

Depending on the degree of loss-of-function caused by 
a distinct mutation, either, only GC or both GC and MC 
deficiency are present. In childhood, the classical forms 
of 21-hydroxylase deficiency are accordingly differenti-
ated into “salt-wasting” CAH (75%; GC + MC deficiency) 
and “simple virilizing” (25%; GC deficiency only) [71]. In 
the absence of neonatal screening, the salt-wasting form 
presents with life-threatening adrenal “salt-losing” crisis 
within the first 2 weeks of life and ambiguous genitalia in 
affected 46,XX babies from birth (46,XX DSD). Deficien-
cy of cortisol affects the growth subsequent function of 
the adrenal medulla. Reduced production of epinephrine 
and metanephrine exacerbates the potential for hypogly-
caemia during adrenal crisis [76].

The simple virilizing form presents with symptoms of 
androgen excess in isolation, i.e., 46,XX DSD from birth 
[3]; 46,XY individuals affected by the simple virilizing 
form may present with premature pubic/axillary hair 
growth or precocious pseudo-puberty in early childhood 
and rapid skeletal growth with advanced bone age [3, 77].

Treatment requires GC and, if deficient, MC replace-
ment, during infancy also additional sodium supplemen-
tation [72]. GC dosing has to be increased during times 
of physical stress/illness (stress dose cover). As with other 
virilizing forms of CAH, the aim is not only to replace for 
GC deficiency and prevent adrenal crisis but also to 
“switch off” adrenal androgen production by reducing 
ACTH drive. Inadequate dosing results in increased risk 
of adrenal crisis and inadequate androgen suppression, 
the former being a leading cause of mortality in CAH [78] 
and the latter leading to rapid premature skeletal growth 
and reduced height potential in affected children [79]. 
Therefore, GC doses required may be high, usually 10–15 
mg/m2/day of hydrocortisone. However, attempts to 
completely normalize 17OHP levels frequently result in 
overtreatment. Patients run the risk of overtreatment 
with developing Cushingoid side effects impacting on 
growth and metabolic health. In the long term, patients 
have an increased risk of cardiovascular disease and met-
abolic syndrome [80]. Fertility problems are frequent in 
both sexes, related to both under- and overtreatment of 
GCs. Women are affected by menstrual irregularities and 
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chronic anovulation; and many male patients have com-
promised fertility due to testicular adrenal rest tissue with 
compromised spermatogenesis and frequent hypotha-
lamic-pituitary-gonadal dysfunction [81–83].

Though patients with simple virilizing CAH do not 
present with clinically overt MC deficiency, subclinically 
deficient MC production has been found in all forms, not 
exclusively the salt-wasting phenotype [84–86]. A plasma 
aldosterone to renin ratio can be used to evaluate the de-
gree of MC insufficiency [72]. Newborns and infants are 
relatively MC resistant as they have immature renal tu-
bules with a limited capacity to reabsorb sodium, hence 
the requirement for additional salt supplementation dur-
ing this time [72].

During childhood, the GC most widely used and rec-
ommended is short-acting hydrocortisone (= cortisol); 
this is also the GC of choice in adulthood. However, mul-
tiple hydrocortisone doses are not sufficient to control 
androgen excess, sometimes management of adult pa-
tients requires long-acting synthetic GCs such as pred-
nisolone or, in some cases, dexamethasone.

Monitoring GC treatment in CAH can be challenging. 
The current recommended indicators for treatment effi-
cacy are measurement of 17OHP, androstenedione, and 
testosterone in children coupled with height velocity and 
(after 2 years of age) annual bone age assessment [72]. 
Again, the overall goal is not to aim for 17OHP to normal-
ize as this would results in overtreatment with GCs. It is 
very difficult to physiologically replace GCs orally in a 
circadian manner and most patients show androgen ex-
cess with upregulation of both classic and alternative an-
drogen pathways [87]; a recent study has shown that 
whilst classic androgen synthesis appeared controlled, 
the alternative androgen pathways can still produce in 
excess on standard GC therapy in CAH [45]. The chal-
lenges with treatment monitoring may be greater during 
puberty because of activation of the hypothalamic-pitu-
itary-gonadal axis, altered adrenal enzymatic expression 
leading to increased androgen production, physiological 
rapid growth, and psychological sequelae conferred with 
chronic disease. After puberty, the emphasis for treat-
ment shifts to prevention of long-term adverse effects 
[88].

11β-Hydroxylase (CYP11B1) Deficiency
11β-hydroxylase deficiency is the second most com-

mon cause of CAH, accounting for 2–5% of reported cas-
es of European ancestry, with an overall incidence of 1 in 
100,000–200,000 live births. It is caused by inactivating 
mutations in the CYP11B1 gene. Due to founder muta-

tions, the condition is more common in Israel among 
Jewish immigrants from Morocco [89]. The CYP11B1 
gene is located on the long arm of chromosome 8 and in 
very close proximity to the highly homologous CYP11B2 
(aldosterone synthase) gene [70]. Recombination events 
have been reported where the CYP11B1 gene is under 
control of the CYP11B2 promoter, which responds to an-
giotensin II and not ACTH, resulting clinically in classic 
CYP11B1 deficiency [90]. More than 100 mutations have 
been reported to date in the CYP11B1 gene (www.hgmd.
cf.ac.uk). There is no mutational hotspot, and mutations 
have been found along the whole gene, most being mis-
sense mutations significantly reducing enzymatic activity 
[91].

Most cases of 11β-hydroxylase deficiency present with 
a classical phenotype with the hallmark features of andro-
gen excess and hypertension [92]. CYP11B1 catalyzes the 
conversion of 11-deoxycortisol to cortisol and of 11-de-
oxycorticosterone to corticosterone in the zona fascicu-
lata (see Fig.  1). Reduced cortisol concentrations in  
CYP11B1 deficiency lead to HPA axis activation. Under 
the influence of ACTH, concentrations of the MC recep-
tor agonist corticosterone increase markedly, leading to 
hypertension, suppression of the RAAS and low aldoste-
rone concentration despite the ability of the zona glomer-
ulosa to produce aldosterone. Hypertension might not 
become apparent during the neonatal period due to the 
renal MC resistance, and some newborns may even pres-
ent with salt loss [93]. Androgen excess can be severe, 
presenting with 46,XX DSD from birth and precocious 
pseudo-puberty in males. 

Non-classic forms of CYP11B1 deficiency are rare and 
have a similar phenotype to non-classic CYP21A2 defi-
ciency, exhibiting signs of androgen excess like preco-
cious pseudo-puberty or symptoms suggestive of poly-
cystic ovary syndrome in post-pubertal females [91, 94–
96]. Arterial hypertension is not commonly found early 
in the non-classic form, but can develop later in life, mak-
ing it a diagnosis not to be missed, as health implications 
can be severe [96].

Diagnostically, elevated serum corticosterone, 11-de-
oxycorticosterone and 11-deoxycortisol levels, or their 
urinary metabolites (tetrahydrocorticosterone, tetrahy
dro-11-deoxycorticosterone, tetrahydro-11-deoxycorti-
sol) are strong biochemical markers for this condition 
[92, 96, 97] (Table 1). As 17OHP is accumulating prior to 
the more pronounced increase in 11-deoxycortisol, some 
babies in newborn screening programs are wrongly diag-
nosed as suffering from CYP21A2 deficiency [98]. 
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Treatment requires GC replacement in doses suffi-
cient to ameliorate hypothalamic-pituitary-adrenal axis 
feedback to control androgen excess and hypertension, 
which may also require treatment with MC receptor an-
tagonists. 

17α-Hydroxylase/17,20 Lyase (CYP17A1) Deficiency
CAH due to CYP17A1 deficiency is rare, accounting 

for 1% of CAH cases. CYP17A1 deficiency affects both 
GC and androgen production, which channels steroido-
genesis to the MCs causing excess production (see Fig. 1). 
CYP17A1 deficiency is caused by inactivating mutations 
in the CYP17A1 gene located on the long arm of chromo-
some 10. Inactivating mutations have been located along 
the whole length of the gene, without any distinct hot 
spot, although N-terminal mutations are found more fre-
quently. To date, just over 100 mutations have been re-
ported, 75% of which are missense mutations (www.
hgmd.cf.ac.uk). There are some frequently occurring mu-
tations which are ethnic background-specific, in particu-
lar a small 4bp insertion in exon 8 in Dutch Friedlaenders, 
a 3 amino acid in-frame deletion of exon 8 in South East 
Asia, the p.F53/54del mutation, and, within the Brazil- 
ian population, the missense mutations p.W406R and 
p.R362C [99].

Classically, 46,XX patients affected by CYP17A1 defi-
ciency present at early pubertal age, due to lack of puber-
tal development including primary amenorrhea, with 
marked hypergonadotrophic hypogonadism. Partial ad-
renal insufficiency might become evident with synacthen 
testing, and low renin hypertension is usually manifest. 
In contrast, 46,XY patients present with DSD, having un-
dervirilized external genital from birth. The fact that ‘as-
ymptomatic’ 46,XX patients rarely present with adrenal 
crisis despite being profoundly GC deficient is best ex-
plained due to the affinity of MC precursors (in particular 
DOC) towards the GC receptor. The accumulation of 
DOC, enhanced by the activation of the hypothalamic-
pituitary-adrenal axis with some regulatory effect on the 
MC pathway, results in suppression of the RAAS and al-
dosterone production with biochemical findings of hy-
pernatremia, hypokalemia, hyporeninemia, and arterial 
hypertension.

Milder forms with some residual enzyme activity (par-
tial defects) have been reported; whilst those always dis-
rupt 17,20 lyase activity, the impact on the enzyme’s 
17α-hydroxylase activity can be milder. Such cases, some-
times labelled as “isolated 17,20 lyase deficiency,” are ex-
tremely rare, and patients present with isolated androgen 
deficiency [100]. However, their capacity to produce suf-

ficient amounts of GCs is attenuated, indicating some de-
gree of 17α-hydroxylase impairment [100–102].

The two key pillars of treatment are GC substitution 
and anti-hypertensive management [99]: although GC 
replacement is less essential (due to DOC accumulation 
binding to the GC receptor), GC will lower DOC levels 
and augment blood pressure and potassium levels. Ide-
ally, partial substitution with GC would allow DOC to 
reduce but not quite normalize to allow protection from 
adrenal crisis. In addition, side effects from GC therapy 
are reduced. With this approach, additional anti-hyper-
tensive therapy is required, as blood pressure would not 
normalize completely, and MC receptor antagonists 
would be the first-line therapy. In puberty, the careful in-
troduction of oestrogen will be necessary in 46,XX fe-
males; equally, gonadal testosterone production alone is 
not sufficient to bring an 46,XY boy through puberty, and 
induction with exogenous testosterone is required.

HSD3B2 Deficiency
HSD3B2 deficiency is a rare form of CAH, presenting 

in early infancy [103, 104]. HSD3B2 is at a critical branch 
point in steroidogenesis, gating entrance to all three ste-
roid pathways (Fig. 1). The two isoforms of 3β-hydroxy
steroid dehydrogenase are encoded by genes located in 
close proximity to each other on the short arm of chro-
mosome 1 (HSD3B1 and HSD3B2); HSD3B2 is expressed 
in adrenals and gonads, whilst HSD3B1 is expressed in 
multiple peripheral tissues. More than 60 mutations of 
the HSD3B2 gene have been described (www.hgmd.cf.
ac.uk), and good genotype-phenotype correlations exists 
with regards to MC deficiency, where severe loss-of-func-
tion mutations predict neonatal salt-wasting. There are 
no reported mutations in the human HSD3B1 gene to 
date.

Classically, affected patients present in infancy with 
salt-wasting adrenal crisis and high-renin hypotension, 
similar to CYP21A2 deficiency. However, both sexes can 
present with DSD: in 46,XY babies, deficiency of adrenal 
and gonadal androgens result in undermasculinization. 
The observation that 46,XX babies can present with viril-
ized genitalia is explained by the compensatory action of 
the HSD3B type 1 isoform expressed in placenta and pe-
ripheral tissues: HSD3B1 facilitates downstream conver-
sion of accumulating adrenal DHEA to androstenedione 
in the periphery, causing androgen excess. Apparently, 
this is sufficient to virilize an 46,XX baby, but would not 
compensate for the loss of gonadal HSD3B2 activity in 
46,XY babies. 
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The presence of the HSD3B1 isoform can make this 
diagnosis difficult: one would expect that 17OHP levels 
are low; however, HSD3B1 peripherally converts 17α- 
hydroxypregnenolone (17OHPreg), which accumulates 
before the block, into 17OHP, which can be increased in 
newborns with HSD3B2 deficiency. The overall steroid 
precursor constellation in this condition is a predomi-
nance of Δ5 steroids (i.e., pregnenolone, 17Preg, and 
DHEA) over Δ4 steroids (progesterone, 17OHP, and an-
drostenedione); this ratio is further exaggerated after 
ACTH stimulation (Table 1). Urinary steroid profiling is 
similarly accurate and less invasive to establish the diag-
nosis [97] (Table 1).

There is broad phenotypic variation, and presentation 
can vary from severe salt-wasting forms, to non-salt-
wasters with variable degrees of virilization. This may in-
clude late-onset forms manifesting with hirsutism and ir-
regular periods resembling a polycystic ovary syndrome 
phenotype in patients with confirmed pathogenic muta-
tions. In addition, a clinical and biochemical phenotype 
exists, where androgen excess is present with predomi-
nance of Δ5 steroids, where no genetic abnormalities in 
the HSD3B2 gene were detected [105, 106]. The molecu-
lar basis of this condition, often referred to as “functional 
HSD3B2 deficiency,” is currently unknown.

Monogenic Disorders Affecting Co-Factor Enzymes of 
Steroidogenesis
POR Deficiency
POR is required as a crucial electron donor enzyme for 

all microsomal (type 2) CYP enzymes, including ste-
roidogenic enzymes CYP21A2, CYP17A1, and, to a lesser 
degree, CYP19A1 (P450 aromatase). The discovery of the 
genetic cause in 2004 [107, 108] explained the pathophys-
iology of what was described before as “apparent com-
bined 17α-hydroxylase and 21-hydroxylase deficiency,” 
reported in 1985 [109]. The exact incidence is unknown, 
but POR deficiency is a rare CAH variant, with approxi-
mately 75 mutations in 140 individuals reported to date 
(www.hgmd.cf.ac.uk) [110]. The POR gene is located on 
the long arm of chromosome 7. There are 2 mutations 
which are frequently found in distinct ethnic groups: the 
p.A287P mutation is most common in White Caucasians, 
whereas the p.R457H mutation is most commonly found 
in individuals of Asian ancestry.

The majority of affected patients will have some degree 
of cortisol deficiency, with 90% requiring at least stress-
related GC replacement. Therefore, all affected patients 
should undergo cosyntropin stimulation testing, regard-
less of presence or absence of DSD [111]. Approximately 

50% of those who require GC treatment will need perma-
nent hydrocortisone replacement, with the other 50% re-
quiring replacement during periods of stress. 75% of pa-
tients will have some degree of DSD, and this has been 
reported in both sexes: 46,XY babies are often undermas-
culinized and 46,XX babies are born virilized without 
progression of virilization postnatally. This intriguing 
finding is explained by the presence of an alternative 
pathway to 5α-DHT synthesis only active during fetal life 
[108], elements of which were first described in the foetal 
gonad of the tammar wallaby pouch young [112]. Postna-
tally, activity of the pathway ceases, so there is sex steroid 
deficiency in both sexes. In puberty, both sexes can pres-
ent with delayed development of sexual characteristics, in 
particular females often develop significant hypergonad-
otropic hypogonadism and severe ovarian cysts prone to 
torsion, which can be difficult to manage [113, 114]. In 
addition, expectant mothers carrying affected foetuses 
can experience virilization during pregnancy, which 
characteristically resolves postpartum [107, 108, 111, 113, 
115]; this is explained by the production of 5α-reduced 
androgens via the alternative pathway by the foetus, that 
cannot be aromatized by the placenta and is transferred 
to the maternal circulation.

POR deficiency is not only a steroidogenic but also a 
multi-system disorder, as it affects all microsomal CYP 
enzymes that require POR for proper function (Fig. 2). 
The most striking clinical findings in the majority of af-
fected POR-deficient patients are skeletal abnormalities, 
which have been described as part of the Antley-Bixler 
syndrome phenotype. Typical malformations include 
large joint synostosis such as radio-humeral synostosis, 
congenital bowing of the femurs, and hand and foot mal-
formations such as long palms, camptodactyly, and rock-
er bottom feet. Craniofacial anomalies are frequent, such 
as craniosynostosis with midface hypoplasia, most com-
monly involving the coronal and lambdoid sutures, which 
can in severe forms be complicated by hydrocephalus re-
quiring surgical intervention [111]. The number and se-
verity of associated malformation features form the basis 
of a scoring system proposed to classify the severity of 
Antley-Bixler syndrome phenotype [111]. It is thought 
that the molecular basis of the malformation phenotype 
is the disruption of the activity CYP enzymes involved in 
sterol synthesis and retinoic acid metabolism, both of 
which have been shown to cause a skeletal malformation 
phenotype in murine knockout models [116].

In addition, loss of POR function affects a number of 
key CYP enzymes involved in hepatic phase 1 metabo-
lism, including CYP1A2, CYP2C9, CYP2C19, CYP2D6, 
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and CYP3A4, which metabolize about 80% of xenobiot- 
ics and drugs used in clinical practice [117]. In addition, 
CYP3A4 metabolizes oestrogens and GCs, which is im-
portant for treatment considerations in patients with 
POR deficiency as the metabolic clearance of exogenous 
hormone replacement is expected to be reduced, thus po-
tentially exposing patients to higher GC and oestrogen 
levels than intended. So far, various studies have assessed 
the impact of certain POR mutations on POR-dependent 
hepatic cytochromes in vitro (see [118, 119] for a compre-
hensive overview), with one detailed in vivo phenotyping 
study confirming altered drug detoxification for a variety 
of substances [120].

A number of studies have looked at genotype-pheno-
type correlations [111, 113, 115]. Generally, phenotypic 
expression of a distinct genotype can be variable, but mu-
tations causing 46,XX DSD usually present with normal 
genital phenotype in 46,XY individuals and vice versa; 
similarly, the severity of the skeletal malformation phe-
notype is increased in carriers of major loss-of-function 

mutations [110, 111]. With severe phenotypes, there have 
been reported cases of stillbirth and early neonatal death 
[121].

Diagnosis of POR deficiency can usually be readily es-
tablished by urinary steroid profiling by gas chromatog-
raphy-mass spectrometry, which reveals the hallmark 
feature of combined impairment of CYP21A2 and  
CYP17A1 activities [97, 111] and a characteristic accu-
mulation of pregnenolone metabolites [97] (Table 1). 
Molecular genetic testing will then confirm the diagnosis. 
Prenatal testing is possible using maternal urinary steroid 
profiling from 12 weeks onwards [121] or through mo-
lecular genetic techniques once the POR pathogenic vari-
ant has been ascertained for a given family [110].

Hormonal replacement therapy consists of GC re-
placement, mostly only required as stress dose cover, de-
pending on the degree of adrenal insufficiency. Overall, 
GC doses are lower as adrenal androgen suppression is 
not necessary. In addition, treatment goals should holisti-
cally aim to address other associated features as well. Gen-
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Fig. 2. Schematic diagram illustrating the 
known implications of co-factors CYB5A, 
PAPSS2, and POR beyond steroid hor-
mone biosynthesis on haemoglobin, hepat-
ic, and chondrocyte metabolism. CYB5A, 
cytochrome b5; PAPSS2, PAPS synthase 2; 
POR, P450 oxidoreductase.
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ital abnormalities may require surgical intervention, and 
this should be addressed within a holistic and experi-
enced DSD service. Males may require testosterone re-
placement during puberty; similarly, females may require 
oestrogen replacement during this time, ideally as oestro-
gen patch to avoid hepatic first-pass metabolism (see 
above). Skeletal malformations may require physical and 
occupational therapy or surgical intervention. 

Cytochrome b5 (CYB5A) Deficiency
CYB5A deficiency is a very rare monogenic disorder, 

with only 5 cases reported so far [122–124]. In addition 
to conveying 17,20 lyase activity of CYP17A1 (Fig.  1), 
CYB5A also plays key roles in haemoglobin synthesis and 
hepatic phase 1 drug metabolism (Fig.  2). The first re-
ported case of CYB5A deficiency was a patient with severe 
methaemoglobinaemia presenting with fatal cyanosis at 
birth [122, 125]. The baby, who carried a severe splice-site 
mutation, was also found to have ambiguous genitalia; 
however, detailed endocrine investigations were not per-
formed [125]. Only recently, 4 children from 2 different 
pedigrees with CYB5A deficiency have been reported: all 
affected children did not have any clinical cyanosis, but 
insufficient masculinization in 46,XY individuals (46,XY 
DSD) and lack of pubertal development in the only af-
fected 46,XX individual [123, 126]. Methaemoglobin lev-
els were found to be mildly raised without clinical evi-
dence of cyanosis. Affected children were homozygous 
for a novel nonsense mutation (p.W27X), likely to abolish 
protein activity [123], and a homozygous missense muta-
tion, p.H44L, which retains minimal protein function on 
17,20 lyase activity in vitro [126].

Biochemical investigations, in particular urinary ste-
roid profiling, revealed an exclusive impairment of the 
17,20 lyase activity of CYP17A1 with intact 17α-hydroxylase 
activity. This reflects normal GC and MC production 
with isolated androgen deficiency, in essence true isolated 
17,20 lyase deficiency [126]. Some cases of CYP17A1 and 
POR deficiency have also been described as isolated 17,20 
lyase deficiency; however, biochemistry reveals impaired 
17α-hydroxylase activity in both instances [102, 127, 
128]. Three affected individuals from a Swiss pedigree 
with isolated 17,20 lyase deficiency reported in the 1970s 
[129] have been shown to have mutations in the AKR1C2 
and AKR1C4 genes [130]. Both enzymes are thought to 
be involved in the proposed alternative “backdoor” path-
way to DHT, exemplified by POR deficiency and de-
scribed in the respective above section of this review.  
CYP17A1 17,20 lyase activity supported by CYB5A is re-
quired in the early part of that pathway. These cases 

suggest the need for the alternative pathway to be active 
for normal male sexual differentiation [130].

PAPSS2 Deficiency
DHEA is the principal adrenal androgen precursor 

synthesized in the adrenal zona reticularis in post-adre-
narche children and in the adrenal fetal zone prior to 
birth (see Fig. 1). Previous assumptions regarded the in-
terconversion of DHEA and its sulfate ester DHEAS as a 
well-balanced equilibrium, in which DHEAS serves a 
storage pool for the (re)generation of active androgens. 
This equilibrium was thought to be maintained by 2 
counteracting enzymes, the DHEA sulfotransferase  
SULT2A1, responsible for sulfate conjugation of the 
DHEA molecule, and steroid sulfatase, STS, cleaving the 
sulfate group off the DHEAS molecule to make it acces-
sible for downstream activation towards active andro-
gens. However, in a number of in vivo studies, we have 
previously shown that the inactivating step catalyzed by 
SULT2A1 is the predominant direction in normal human 
physiology, whereas STS activity makes only minor con-
tributions to androgen activation [131–133].

The seminal case of apparent DHEA sulfotransferase 
activity due to PAPSS2 deficiency, a 6-year-old girl, first 
presented with signs of hyperandrogenism (premature 
adrenarche and later on hirsutism and irregular menstru-
al cycles) [134]. Strikingly, her biochemical assessment 
revealed undetectable serum DHEAS while circulating 
androstenedione and testosterone levels were increased. 
A defect in the DHEA sulfotransferase enzyme SULT2A1 
was hypothesized, but no mutations were found. All sul-
fotransferases depend on the provision of the universal 
sulfate donor PAPS, which is generated by the human iso-
enzymes PAPS synthase 1 and 2. Genetic analysis of both 
PAPSS1 and PAPSS2 in our patient revealed compound 
heterozygous mutations in PAPSS2, disrupting DHEA 
sulfotransferase activity [134]. 

PAPSS2 deficiency had previously been described in a 
large Pakistani kindred presenting with spondyloepime-
taphyseal dysplasia (SEMD)/brachyolmia type 4 (MIM 
#603005) [135, 136]; interestingly, in our patient only 
subtle vertebral abnormalities could be detected radio-
logically but not clinically, suggesting that the residual 
enzymatic activity of the only partially activating muta-
tion was largely sufficient to support sulfation processes 
required in chondrocyte and bone development [134]. 
Over recent years, a number of PAPSS2 mutations have 
been reported in patients with SEMD/brachyolmia, with 
only very limited data on endocrine function [137–139]. 
Steroid metabolome profiling following an oral DHEA 
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challenge, performed in a family with 2 brothers affected 
by PAPSS2 deficiency, revealed that also the mother, a 
heterozygous carrier of a severe loss-of-function muta-
tion, had impaired DHEA sulfation with clinical and bio-
chemical evidence of androgen excess [140].

Although the underlying defect is rare, the elucidation 
of PAPSS2 deficiency has provided fundamental insights 
into the mechanisms controlling the equilibrium between 
androgen activation and inactivation. It highlights the 
crucial role of DHEA sulfation as a gatekeeper to human 
androgen synthesis: disruption of DHEA sulfation drives 
unconjugated DHEA molecules towards active androgen 
synthesis, causing androgen excess. To what extent 
PAPSS2 contributes to common phenotypic androgen 
excess remains to be established. In-depth phenotyping 
studies with targeted sequencing are lacking. Population-
based GWAS studies describing only minor effects of 
more common variants in PAPSS2, SULT2A1, and STS 
[141, 142]. Like POR deficiency and CYB5A deficiency, 
PAPSS2 deficiency results in a multi-system disorder and 
in addition to impaired DHEA sulfation it impacts on 
chondrocyte and bone development and is likely to im-
pact on hepatic phase 2 drug and xenobiotic metabolism 
(Fig. 2).

Outlook and Future Directions

Novel GC Replacement Strategies – Modified Release 
Formulations
Treatment for CAH with steroid hormone replace-

ment was not available until the 1950s. Since this time, 
there has been little development in the way we conduct 
steroid hormone replacement therapy, particularly in the 
field of paediatrics. Coming to adulthood, a prospective 
study on the health status of CAH patients in the UK  
(CaHASE) showed alarming results: the majority of pa-
tients have poorly controlled androgen levels with non-
physiological GC replacement regimes affecting fertility 
and quality of life [80], which could be improved with 
better treatment options [143]. Only in recent years, there 
have been encouraging trials to explore new GC formula-
tions for replacement therapy and to suppressing parts of 
the hypothalamic-pituitary-adrenal axis. Oral GC re-
placement in its current form is adequate at ameliorating 
cortisol deficiency, but fails to account for the normal 
physiological diurnal rhythm of cortisol production, fails 
to adequately suppress ACTH production via negative 
feedback mechanisms, and fails to suppress production of 
androgens without risking the side effects of gross over-

treatment [144]. Learning from advances in the field of 
diabetes, trials with continuous subcutaneous infusions 
of hydrocortisone have been performed in patients with 
adrenal insufficiency [145–147]. Though the outcomes 
were generally favourable, with findings of lower mean 
ACTH levels and more physiological variation in cortisol 
levels, this is a costly strategy which requires intensive pa-
tient education; improvement in quality of life measures 
were inconsistent and side effects such as insertion site 
reactions were common. Methods to deliver oral GCs 
more physiologically are also in development. Plenad-
ren® (Shire Pharmaceuticals Ltd.) is a dual-release hy-
drocortisone, consisting of an extended-release core sur-
rounded by an immediate-release coating. It is licensed 
for once daily dosing in adults and was designed in the 
hope to improve treatment compliance as well as achieve 
more physiological GC replacement. Trials have shown 
sustained improvement in quality of life, reduction in 
central adiposity and improvements in lipid profile in 
adult patients with adrenal insufficiency [148]. Peak con-
centrations of cortisol are reached in the late morning and 
nadir lower in the late evening than a conventional re-
gime [149]. However, as it is taken after awakening, 
Plenadren cannot mimic the physiological early morning 
cortisol peak and therefore is unlikely to achieve adequate 
androgen suppression required for treatment of 21-hy-
droxylase deficiency. 

Chronocort® (Diurnal Ltd.) is another modified re-
lease form of hydrocortisone that has a delayed release 
and then sustained absorption profile. In contrast to 
Plenadren, it does not start to release cortisol immedi-
ately but only after a lag time of several hours after intake. 
It has been designed for twice daily dosing so that the 
larger evening dose has its peak effect in the early morn-
ing hours and smaller morning dose peaks in the after-
noon/evening and provides GC cover for the day, in or-
der to achieve a more physiological cortisol profile [149, 
150]. Small early clinical trials have demonstrated corti-
sol profiles similar to physiologic cortisol secretion, a de-
crease in hydrocortisone dose equivalent to achieve low-
er androstenedione and 17-OHP levels compared to 
standard GC treatment. It also increased lean body mass, 
morning HOMA-IR, and osteocalcin [151, 152]. The tri-
al did however report a slightly decreased bone mineral 
density (despite increased osteocalcin), some sleep dis-
turbances and there was no reported difference in qual-
ity of life measure. Larger and more in-depth studies are 
required (and indeed currently ongoing) to fully assess 
the potential benefits, efficacy and long-term effect of 
this medication. 
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Other Approaches to Control CAH-Related Androgen 
Excess
Two recent proof-of-concept studies have shown nov-

el approaches to decreasing androgen excess in CAH. The 
first involved the use of the CYP17A1 inhibitor abi-
raterone, originally designed for prostate cancer, where it 
profoundly decreases serum testosterone and improves 
survival in men with this condition. A small trial has been 
undertaken in women with CAH secondary to 21-hy-
droxylase deficiency, who were administered abiraterone 
acetate alongside physiological doses of hydrocortisone. 
This trial showed a significant reduction in androgen 
production (both androstenedione and testosterone), 
with no major side effects reported [153]. Thus, abi-
raterone treatment might facilitate reduction in the GC 
dose required as androgen control with combination 
therapy is improved. However, this does not address the 
effects of a persistent early morning rise in ACTH ob-
served with standard GC treatment regimens and would 
be contraindicated in anyone requiring fertility due to ef-
fects on gonadal function. 

Another recent novel approach has targeted the hyper-
activity of the HPA axis in CAH. To reduce the ACTH-
driven increase in androgen production in CAH, a recent 
study has administered a corticotropin-releasing hor-
mone receptor antagonist. This initial proof-of-concept 
study demonstrated a reduction in ACTH and 17OHP, 
but no consistent trend with androstenedione or testos-
terone after a single dose of a CRF1 receptor antagonist 
[154]. Further studies will be required to fully demon-
strate the efficacy of this treatment strategy. 

Learning More from the Few – The Use of Registries 
All disorders of steroidogenesis are rare diseases. As 

with any condition, a better understanding and improv-

ing patient care require experience from large patient co-
horts. International registries allowing anonymized and 
secure data exchange and hence an accumulation of 
knowledge have been developed over the past decade and 
have been shown to improve our understanding of rare 
diseases, such as DSD [155, 156]. The international regis-
try on CAH (www.i-cah.org) seeks to connect clinical and 
research centres on all 5 continents by a “virtual research 
environment” aiming to improve the understanding of 
CAH and ultimately aiming to provide better manage-
ment for affected patients as a result. Another important 
advance is the initiation of the European Reference Net-
works (ERNs) for rare disease, which has seen the cre-
ation of EndoERN (https://endo-ern.eu), with an adre-
nal-specific subgroup working towards an international 
standard of care for patients with rare adrenal monogen-
ic disorders. With the possibility to get affected patients 
themselves involved as well, these initiatives clearly set 
the tune for the future approach to rare disease manage-
ment by creating a platform of exchange for evidence-
based multidisciplinary care.
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