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Abstract: Wayside acoustic detection of train bearing faults plays a significant role in 

maintaining safety in the railway transport system. However, the bearing fault 

information is normally masked by strong background noises and harmonic 

interferences generated by other components (e.g. axles and gears). In order to extract 

the bearing fault feature information effectively, a novel method called improved 

singular value decomposition (ISVD) with resonance-based signal sparse 

decomposition (RSSD), namely the ISVD-RSSD method, is proposed in this paper. A 

Savitzky-Golay (S-G) smoothing filter is used to filter singular vectors (SVs) in the 

ISVD method as an extension of the singular value decomposition (SVD) theorem. 

Hilbert spectrum entropy and a stepwise optimisation strategy are used to optimize the 

S-G filter’s parameters. The RSSD method is able to nonlinearly decompose the 

wayside acoustic signal of a faulty train bearing into high and low resonance 

components, the latter of which contains bearing fault information. However, the high 

level of noise usually results in poor decomposition results from the RSSD method. 

Hence, the collected wayside acoustic signal must first be de-noised using the ISVD 

component of the ISVD-RSSD method. Next, the de-noised signal is decomposed by 

using the RSSD method. The obtained low resonance component is then demodulated 

with a Hilbert transform such that the bearing fault can be detected by observing 

Hilbert envelope spectra. The effectiveness of the ISVD-RSSD method is verified 

through both laboratory field-based experiments as described in the paper. The results 

indicate that the proposed method is superior to conventional spectrum analysis and 

ensemble empirical mode decomposition methods. 

Keywords: wayside acoustic detection, train bearing, improved singular value 

decomposition, Savitzky-Golay smoothing filter, resonance-based signal sparse 

decomposition 
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1 Introduction 

In recent years, growth in passenger rail travel has dramatically increased. This 

demand has been driven by a number of factors including economic mobility, 

improved punctuality, and increased reliability. In order to sustain this growth, safety 

and reliability of railway transportation systems have become points of focus for the 

industry. Train bearings, are key components of the vehicle that support the whole 

weight of the train and operate at high speeds. Faults easily occur in train bearings and 

result in economic loss or even casualties. Hence, fault detection in these key 

components plays a significant role in maintaining and continuing to increase rail’s 

role in transportation networks.  

Recently, many technologies have been suggested as suitable candidates for 

monitoring train axle-bearings without needing to disassemble them for inspection. 

Some technologies, such as oil monitoring [1] and vibration-based detection [2,3], are 

vehicle-mounted. These provide high quality information but require sensors and 

equipment to be fitted to every bearing on every vehicle. Acoustic emission [4] and 

hot axle box [5] detection systems can be fitted to one location in the network, but the 

former requires phyical access to the track, while the latter is only suitable for 

detecting late stage faults [6]. Wayside acoustic detection is another technology that is 

becoming increasingly popular because one monitoring station will observe multiple 

vehicles, no physical track access is required in order to install the equipment, and 

detection is at an earlier stage than its thermal counterpart. 

Acoustic waves are vibrational energy signals that are transmitted from the 

bearings via an elastic medium, i.e. through the air. If there is a fault in the axle-

bearing, repeated impulse signals will occur in the vibration signal observed. Thus, 

train bearing faults can be detected by extracting these impulse signals. However, in 

this application, fault feature signals are often masked by high levels of background 

noise (e.g. vehicle noise, environmental noise, or aerodynamic noise, etc. [7]). 

Furthermore, they are also susceptible to harmonic interference. 

 To overcome this problem, researchers have proposed many methods. Wang et al. 

[8] use a variable FIR filter to obtain the fault feature signal after estimating the 

instantaneous frequencies. Combining the stochastic resonance method with 

multiscale noise tuning, He et al. [9] proposed the adaptive stochastic resonance 

method to enhance weak defect information. Zhang et al. [10] proposed a time-
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frequency filter with thresholds to separate the wayside acoustic signal and then 

applied an inverse STFT to obtain a de-noised signal. These methods use a known 

centre frequency band to extract the fault feature signal. However, centre frequencies 

for fault features in wayside acoustic signals are particularly difficult to identify due 

to high levels of background noise and harmonic components. Additionally, the 

methods described above may fail to detect train bearing faults when the fault feature 

signals have centre frequency bands that align with strong noise components.  

Using different oscillatory behaviours at different frequencies within the signal, 

the RSSD method can decompose the wayside acoustic signal into high resonance and 

low resonance components [11]. Fault feature signals generated by the bearings have 

low levels of oscillatory behaviour and thus the bearing fault information can be 

found in the low resonance component [12]. The method has been successfully 

demonstrated in fault diagnosis systems based on vibration analysis [13,14], however, 

the high levels of background noise in wayside acoustic signals normally result in 

poor decomposition results [15]. 

The singular value decomposition (SVD) method is the one of most commonly 

used denoising techniques. However, the parameter selection of the method is an 

intractable problem. Additionally, the traditional SVD method has limited 

effectiveness when the target signal has a high level of noise. To overcome these 

issues, the Savitzky-Golay smoothing filter used in [16] is applied to the SVs obtained 

by decomposing the signal using the SVD theorem. The quality of the result is, 

however, directly affected by the parameters of the S-G filter [17]. Hence, in this 

paper, envelope spectrum entropy [18,19] is introduced to construct the objective 

function, and the stepwise optimisation strategy (SOS) [20,21,22]is used to adaptively 

select the parameters of the S-G filter.  

In this paper, the parameters of the SVD method are optimised so that the correct 

SVs can be obtained. Envelope Spectrum Entropy and a stepwise optimisation 

strategy are then used to adaptively select the parameters of the S-G filter. The de-

noised signal is then obtained using the filtered SVs. The de-noised signal is 

decomposed into high and low resonance components using the RSSD method, the 

parameters of which are optimised using a genetic algorithm. Finally, the low 

resonance component is subjected to Hilbert envelope demodulation and train bearing 

faults can be detected by observing the Hilbert envelope spectrum. Analysis of the 

results of experiments presented in this paper indicates that the ISVD-RSSD method 
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can be used to effectively extract fault feature signals and to enhance weaker fault 

signals. 

This paper is organised as follows: In section 2, the ISVD method is introduced. 

In section 3, the RSSD method is introduced. Wayside acoustic detection based on the 

ISVD-RSSD method is presented in section 4. In section 5, section 6 and section 7, 

the simulation, laboratory and field experiments’ results using the proposed method 

are demonstrated. The conclusions of this paper are presented in the final section. 

2 Improved Singular Value Decomposition for Wayside Acoustic Signal  

2.1 Improved Singular Value Decomposition 

A wayside acoustic signal 𝐱 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑁) can be represented as the sum of a 

fault feature signal 𝐲 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑁) and a noise signal n = (𝑛1, 𝑛2, ⋯ , 𝑛𝑁), which 

includes all non-fault related components (i.e. includes the sound of normal bearing 

operation). The Hankel matrix X  can be constructed as shown in Eq. (1) [23]. 

 

𝐗 = [

𝑥1               𝑥2

𝑥2               𝑥3

⋯
⋯

𝑥𝑚

𝑥𝑚+1

⋮                ⋮ ⋱ ⋮
𝑥𝑁−𝑚+1 𝑥𝑁−𝑚+2 ⋯ 𝑥𝑁

] (1) 

 

According to the SVD theorem, X  can be factorized as   

 TX USV  (2) 

 

where 𝐔 ∈ 𝐑(𝑁−𝑚+1)×(𝑁−𝑚+1) , 𝐕 ∈ 𝐑𝑚×𝑚 , and hence 𝐔T𝐔 = 𝐈𝑁−𝑚+1 = 𝐔𝐔T , 

𝐕T𝐕 = 𝐈𝑚 = 𝐕𝐕T , 𝐔 = (𝐮1, 𝐮2 ⋯ , 𝐮𝑁−𝑚+1) , 𝐕 = (𝐯1, 𝐯2, ⋯ , 𝐯𝑚)  and 𝐒 =

diag(σ1, σ2, ⋯ , σ𝑚) . σ1, σ2, ⋯ , σ𝑚  are known as the singular values and ordered 

σ1 ≥ σ2 ≥ ⋯ ≥ 0. The columns of  U  and V , iu  and iv , are known as the left and 

right singular vectors (SVs) of X . SVs can be regarded as time series. To improve the 

SVD method, the SVs are filtered using a Savitzky-Golay (S-G) smoothing filter as 

part of the ISVD method.  

Hankel matrixes Y and N , corresponding to the signal and noise components ( y  

and n ), can also be constructed. The matrix N is full column rank, i.e. rank(N) = m. 

Thus, the rank of X is also equal to m, however, the rank of Y  normally satisfies 

rank(Y) = k <m. Therefore, X  and Y can be factorized as shown in Eq. (3) and Eq. 

(4): 
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where 1 1, (N-m+1)×kU U R , 1 1, k kS S R , 1 1, m kV V R ,
( 1) ( )

2 2, N m m-k  U U R , 

( )( )

2

m k m k S R , 
( )

2 2, m m k V V R . 1S  and 2S can be calculated from [24] 

 2 2 1/2

1 1

2

( )w k

w m k



 

  




S S I

S I
 (5) 

 

where w  satisfies 
T

mwNN I . Eq. (5) shows that the first k singular values in S  are 

influenced by the fault feature signal and the noise signal simultaneously, while the 

other singular values in S are only influenced by the noise signal. Thus, the denoised 

signal x  can be obtained using the inverse SVD method as Eq. (6). 

 

1

k
T

i i i

i

u v


x  (6) 

 

2.2 Parameter Selection 

Four main parameters directly affect the result of the ISVD method: the 

embedding dimension m, the rank of the best approximation matrix 1S , the degree of 

the Savitzky-Golay filter d , and the window size of the S-G filter Wn . Adaptive 

selection methods for these parameters are proposed in this paper. A fault feature 

signal, ( )x t  , is used to demonstrate the selection method [25]. The signal assumes a 

constant shaft speed, as the time that the bearing passes the microphone is too short 

for any significant change in speed. 

 1

0

( ) exp[ ( T)] cos[2 ( T)] ( T)
M

m re

m

x t A t m f t m u t m 




        (7) 

 

where M  is the number of impulses in the signal, mA  is the amplitude of the m -th 

impulse, and   is the impulse damping ratio. To simulate the impulse interval, the 

fault feature frequency of  satisfies 1/of T . ref  is the resonance frequency of the 

bearing, and (t)u  is the unit step function. The values of each parameter are shown in 

Table 1, and the fault feature signal is shown in Figure 1. The sampling frequency and 
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time of the simulation signal are 4096 Hz and 1 s, respectively. A simulated acoustic 

bearing signal, including the fault feature signal and 0 dB signal-to-noise ratio 

(SNROriginal), can be obtained by adding a random Gaussian noise signal to the 

simulated fault feature signal.  

 

Please insert the Table 1 into here  

 

Please insert the Figure 1 into here  

 

 

 

2.2.1 Embedding Dimension  

A novel false neighbour method [26] is introduced to determine the value of the 

embedding dimension m in the ISVD method. According to the false neighbour 

method, any two points which stay close in the d-dimension reconstructed space will 

be close in the (d+1)-dimensional reconstruction space. Such a pair of points are 

called true neighbours, otherwise, they are regards as false neighbours. Optimal 

embedding means that there are no false neighbours. Eq. (8) is constructed to find a 

false neighbour. If ( , )a i m  is larger than a given threshold value, false neighbours can 

be identified. 

 
( )

( )

( 1) ( 1)
( , )

( ) ( )

i n i,m

i n i,m

X m X m
a i m

X m X m

  



 (8) 

 

where   is the Euclidean norm. ( 1)iX m  is the i -th reconstructed vector with 

embedding dimension 1m , i.e. 1( 1) ( , , , )i i i i mX m x x x   . ( , ) ( )n i mX m is the 

nearest neighbour of ( )iX m  in the m-dimensional reconstructed space 

(1 ( , )n i m N m   ). 

 To determine the threshold value, a criteria parameter ( )E m  which is the mean 

value of ( , )a i m  is defined as Eq. (9). Thus, ( )E m  is dependent only on the dimension 

m . The variation from m  to 1m  is defined as Eq. (10) 

 

1

1
( ) ( , )

N m

i

E m a i d
N m








  (9) 
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 1( ) ( 1) ( )E m E m E m   (10) 

 

 The optimal value for m, mo, can be found when 1( )E m  is slowly changing, 

defined as 1( 1) 1( ) 0.01o oE m E m    in this paper and shown in Figure 2 (a). 

2.2.2 Rank of the best approximation 1S   

The first singular value 1 , which corresponds to the main fault information, is 

bigger than other singular values as shown in Figure 2 (b). Therefore, the first singular 

value in S is retained and the other singular values are set to 0 in the ISVD method. 

The de-noised signal x  can be obtained 

 
1 1 1

Tx u v  (11) 

 

Thus, only (:,1)U  and (:,1)V  in Eq. (2) need to be filtered by the S-G filter, 

which is computationally efficient in comparison with the method presented in 

reference [15].  

 

Please insert the Figure 2 into here  

 

2.2.3 Degree and Window Size of the Savitzky-Golay filter 

In this paper, a stepwise optimisation strategy is applied to the adaptive selection 

of the degree ( d ) and window size ( Wn ) of the S-G filter. This strategy is widely 

used to solve the multi-variable optimisation problem by turning a multi-variable 

problem into several sub-problems by dividing variables into groups [20,21,22]. In 

this paper, the window size is first optimised with the degree fixed as 3. The degree is 

then optimised with the window size fixed as the value obtained in the first step (The 

maximum value of Wn  is 25).  

The objective function F  is  

 ( )F ESE x  (12) 

where ( )ESE x  is the Envelope Spectrum Entropy of the de-noised signal x . The ESE, 

as shown in Eq. (13-16), normally decreases as fault information increases [18,19]. 

Hence, the optimal values for the degree and window size of the S-G filter can be 

obtained when minimising Eq. (16) by using a stepwise optimisation strategy.  

 2 2( ) ( ) H [ ( )]Z t x t x t   (13) 
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 FFT( ( )Q Z t  (14) 

 / ( )B Q sum Q  (15) 

 /2

2

1

( ) ( ) log ( ( ))
N

K

ESE B k B k


  x  (16) 

where H[ ]  and FFT( )  represent the Hilbert transform and Fourier transform, 

respectively. B  is the normalisation of the envelope spectrum Q . The optimisation 

process is shown in Eq. (17). 

 

 

min ( , )

s. t . 2 1:

1

W

W

W

F d n

n k k Z

n d

  

 

 (17) 

A comparison of the ISVD and conventional methods is provided in Table 2, 

where de-noising results for 4 signals with different SNR (signal to noise ratios) are 

presented. Signal4 from the table is the simulated acoustic bearing signal generated in 

Section 1.2 above, and Signals1-3 are variants of this signal with different signal to 

noise ratios. SNREEMD, SNRLPSR, SNRSVD and SNRISVD represent the SNR for the 

obtained de-noised signals after using the ensemble empirical mode decomposition 

(EEMD) method [27], the large parameter stochastic resonance (LPSR) method [28], 

conventional SVD method [29] and the ISVD method respectively. The results 

demonstrate a significant improvement in SNR when using the ISVD method over the 

conventional approaches. 

 

Please insert the Table 2 into here  

 

3 Resonance-Based Sparse Signal Decomposition 

In Section 2, the ISVD method is introduced for the purposes of de-noising 

acoustic signals. However, fault features in the de-noised signal can still be masked 

by harmonic interference. Thus, in this paper, the resonance-based sparse signal 

decomposition (RSSD) method is introduced to exclude these harmonic components. 

According to different oscillatory behaviour, the RSSD method can be used to 

decompose the analysis signal into the high and the low resonance components. The 

high resonance component is a signal consisting of multiple simultaneous sustained 

oscillations and the low resonance component is a signal consisting of non-oscillatory 

transient of unspecified shape and duration [11]. The harmonic components in the 
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denoised signal exhibit sustained oscillatory behavior and hence can be separated into 

the high resonance component. In contrast, the periodic impulse signal generated by 

bearing faults can be found in low resonance component [12,13]. 

For the RSSD method, two tunable-Q  wavelet transforms (TQWT) [11] are used 

to represent two different signal components with different oscillatory behaviors, as 

described by quality factor Q . Morphological component analysis (MCA) [30] is then 

used to minimize the objective function for signal decomposition using the split 

augmented Lagrangian shrinkage algorithm (SALSA) [31].   

The TQWT is actually a two-channel bandpass filter bank with real-valued 

scaling factors. Three levels of the TQWT analysis filter and synthesis filter are 

shown in Figure 3 (a) and (b), respectively. The low-pass filter H0(ω) and the high-

pass filter H1(ω)are constructed as follows Eq. (18) and (19). 

 

0

1 | | (1 )

( 1)
( ) ( ) (1 )

1

0 | |

H

  

  
     

 

  

  


 
   

 
  

 (18) 

 

 

1

0 | | (1 )

( ) ( ) (1 )
1

1 | |

H

  

 
     

 

  

  



   

 
  

 (19) 

 

where )( is a function, for  || ,  cos2)cos1(5.0)(  . Eq. (18) and Eq. 

(19) show that the low-pass and high-pass filters are determined by the low pass,  , 

and high pass, β, scaling parameters. The pair of scaling parameters (α, β) should 

satisfy Eq. (20). r  is the redundancy of the TQWT, i.e. the oversampling rate of 

subbands of the two-channel filter bank.     

 2
, 1

1

. . 0 1, 0 1, 1

Q r

s t


 

   

  


     

 (20) 

 

 

Please insert the Figure 3 into here  
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Hence, the result of the TQWT depends on the selection of quality factor, Q , and 

the redundancy, r . Also, in order to include all information from the analysis signal, a 

maximum decomposition level for the TQWT of maxL  is used in this paper.  

 

max

log
4( 1)

1
log( )

1 2 /

N

Q
L

Q

Q r

  
  

  
 

  
 

 (21) 

Suppose that the collected wayside acoustic signal, x , can be represented as 

 
1 2  x x x n  (22) 

where 1x  is the harmonic interference component with high oscillatory behavior; 2x  

is the bearing fault feature component which has low oscillatory behavior; and n  is 

the noise.  

In order to estimate 1x  and 2x  individually, the sparse representation bases 1Φ  

and 2Φ  based on two TQWTs with different oscillatory behaviors are constructed. 

Two coefficients 1w  and 2w  are then chosen such that the error of the reconstructed 

signal, 1 1 2 2x -Φ w -Φ w , satisfies a threshold,  , which is related to the noise energy 

in the signal, x . Thus, 1w  and 2w  can be estimated as follows 

 

1 2

1 2 1 1 2 21 1 2
,

arg min . .s t    
w w

w w x Φw Φ w  (23) 

Eq. (23) can be replaced by the unconstrained minimization below 

 

1 2

2

1 1 2 2 1 1 2 22 1 1
,

arg min     
w w

x Φ w Φ w w w  (24) 

where the Lagrange multipliers 1  and 2  are selected according to the power of the 

noise, which is calculated by Eq. (25) [32] 

 
1 1 2

2 2 2
(1 )

  

  

 


 

 (25) 

where θ has an effect on the energy distribution between the high and low resonance 

components. To avoid put too much energy into one of the two components, and too 

little into the other, in this paper θ is set to 0.5. 1  and 2  represent the wavelets 

corresponding to coefficients w1 and w2, respectively.  
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In the RSSD method, the SALSA method is used to solve the minimisation 

problem of the objective function in Eq. (24) using the following update equations 

 (k 1) ( ) ( )( , / )k ksoft    u w d  (26) 

 ( 1) (k 1) ( )k k  v u d  (27) 

 
( 1) ( 1)1

( )
2

k kx


   


d Φ Φ v  (28) 

 ( 1) ( 1) ( 1)k k k   w d v  (29) 

where ( , )soft Ty  is the soft-threshold rule for the threshold T , k is the iteration 

number,   is a penalty parameter, 1 2[ , ]TΦ Φ Φ ,  ΦΦ I , and 1 2[ , ]Tw w w . 

After 1w  and 2w  are obtained, the estimated high and low resonance components 

are as follows 

 * *

1 1 1 2 2 2
ˆ ˆ,      x Φw x Φ w  (30) 

 

For RSSD, 4 main parameters need to be determined, namely, the quality factor 

1Q , the redundancy 1r  corresponding to the high resonance component, the quality 

factor 2Q , and the redundancy 2r  corresponding to the low resonance component. In 

this paper, a genetic algorithm (GA) is applied to the parameter optimisation for the 

RSSD method. The kurtosis of the low resonance component 2x̂   is taken as the 

evaluation index F , as shown in Eq. (31) [12]. Therefore, the adaptive selection 

process for the decomposition parameters of RSSD can be turned into a maximisation 

process for the evaluation index. 

 
2

ˆ( )F Kur x  (31) 

 

4 Adaptive fault feature extraction of wayside acoustic signals from train 

bearings  

In this paper, a novel method combining the Improved Signal Value 

Decomposition (ISVD) and Resonance-based Signal Sparse Decomposition (RSSD) 

methods is proposed to adaptively extract fault features for train bearings from 

wayside acoustic signals. In the ISVD-RSSD method, the collected wayside acoustic 

signals are firstly de-noised using the ISVD method before and then the de-noised 

signals are decomposed into high and low resonance components using the RSSD 

method; the low resonance component usually includes bearing fault information. 

Finally, the Hilbert envelope demodulation is applied to the low resonance component. 
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By observing the Hilbert envelope spectrum of the low resonance component, train 

bearing faults can be detected. A flow chart showing the proposed method is shown in 

Figure 4.  

 

Please insert the Figure 4 into here  

 

5 Simulation Experiment 

To demonstrate the effectiveness of the proposed method, a synthesized signal is 

constructed to simulate the bearing fault. This includes a fault feature signal 𝑥1, two 

harmonic signals 𝑥2, 𝑥3  and random noise 𝑥4 . The fault feature signal 𝑥1  is 

constructed using Eq. 7 and its fault feature frequency 𝑓0  is set as 33 Hz. The two 

harmonic signals, x2 and x3, are shown in Eq. (32) where 𝑓1, 𝑓2 and 𝑓3 are set to 50 Hz, 

600 Hz and 42 Hz. These values are selected based on laboratory experiments. In 

addition, a random Gaussian noise with SNR of -5 dB is added. The time domain 

waveform and the Hilbert envelope spectrum of the synthesized signal are shown in 

Figure 5 (a) and (b). Figure 5 shows that the bearing fault information is masked by 

strong harmonic interference and noise, especially the obvious peaks at 𝑓1 , 𝑓2−𝑓3 , 

𝑓2−𝑓3 − 𝑓1 and 𝑓2−𝑓3 + 𝑓1 in Figure 5 (b). 

   

 
{
𝑥2 = (1 + cos (2𝜋𝑓1𝑡))cos (2𝜋𝑓2𝑡))

𝑥3 = cos (2𝜋𝑓3𝑡)
 

 (32) 

 

Please insert the Figure 5 into here  

 

The synthesized signal is subjected to the ISVD method and the result is shown in 

Figure 6. Figure 6 (a) and (b) are the time domain waveform and the Hilbert envelope 

spectrum of the denoised signal. Comparing Figure 5 (a) and Figure 6 (a), it can be 

found that the noise component in the denoised signal is clearly reduced after using 

the ISVD method. However, the bearing fault information is still masked by the 

strong harmonic component, i.e. there are no obvious peaks at 𝑓0 or its harmonics.   

 

Please insert the Figure 6 into here  
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The RSSD method is applied to decompose the denoised signal as shown in 

Figure 6 (a) and the result is demonstrated in Figure 7. The time domain waveform 

and the Hilbert envelope spectrum of the high resonance component are shown as 

Figure 7 (a) and (b). Figure 7 (c) and (d) are the time domain waveform and the 

Hilbert envelope spectrum of the low resonance component. Figure 7 (d) shows that 

there are obvious peaks at 𝑓𝑜  and its harmonics which indicates the existence of a 

bearing fault. Hence, the harmonic components and the bearing fault feature 

component have been separated into the high and the low resonance components 

respectively using the RSSD method. The effectiveness of the ISVD-RSSD method is 

therefore demonstrated.  

 

Please insert the Figure 7 into here  

 

The synthesized signal shown in Figure 5 (a) has also been analysed using 

ensemble empirical mode decomposition (EEMD) [27]. The first intrinsic mode 

function (IMF), which has the maximum kurtosis value, is selected and its time 

domain waveform and Hilbert envelope spectrum are shown Figure 8 (a) and (b), 

respectively. Figure 8 (b) shows that there is a peak at 𝑓𝑜 , which indicates the 

existence of a bearing fault. However, an additional substantial peak exists at 𝑓1 and 

there is no obvious peak at the harmonic frequency associated with 𝑓𝑜. Comparing 

with Figure 7 (d), it can be concluded that the method proposed in the paper is 

superior to the EEMD method.   

 

Please insert the Figure 8 into here  

 

 

To test the sensitivity of the proposed method, simulation signals with different 

noise levels are constructed. The Hilbert envelope spectra of the low resonance 

components are generated with different SNR values (from -7 dB to -12 dB), as 

shown in Figure 9. The figure shows that obvious peaks exist at 𝑓𝑜 and its harmonic 

components, which are marked by red circles. This demonstrates good anti-noise 

capability of the proposed method. 

 

Please insert the Figure 9 into here  
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6 Laboratory Experiment  

Laboratory experiments have been undertaken in order to demonstrate the 

capability of the proposed method. In the experiments, acoustic signals are collected 

from bearings mounted on a test rig, as shown in Figure 10(a). The test bearing used 

is shown in Figure 10(b); its parameters are given in Table 3.  It can be seen from 

Figure 10(b) that a minor fault exists in the outer race covering approximately 1.7% 

of the circumference. The signal from the first of the two microphones shown in the 

figure is used in the experiment. 

 

Please insert the Figure 10 into here  

 

Please insert the Table 3 into here  

 

The sampling frequency used, sf , is 12500 Hz. 4096 samples are recorded per 

measurement. The rotational frequency, rf , is 8.3 Hz. Therefore, the frequency with 

which each roller passes a point on the outer race fRPFO is 76.6 Hz, as indicated by Eq. 

(33)  

 
(1 cos )

2
RPFO r

n RD
f f

PD
   (33) 

  

For comparison, signals are also collected from a healthy bearing. The time 

domain waveforms of the collected signals and correspondingly FFT spectra for both 

the healthy and the faulty bearings are shown in Figure 11(a) and (b), respectively. 

Figure 11 shows that there are both noise and harmonic interferences in the recorded 

signals. Especially, the peaks at 79.35 Hz and 64.09 Hz in FFT spectra in Figure 11(a) 

and (b) are generated by the drive system (a DC motor, a shaft, and a connecting belt). 

The harmonic interference generated by the drive system are collected by the 

microphone.  The Hilbert envelope spectra of the test signals are shown in Figure 12. 

The peaks at fRPFO and its harmonics in the figure are masked by a combination of 

noise and harmonic interference. Further peaks which also exist around 720 Hz to 

920 Hz are caused by the coupling of harmonic interference components in envelope 
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demodulation analysis. Thus, conventional spectrum analysis techniques are not 

appropriate for the extraction of the fault features.  

 

Please insert the Figure 11 into here  

 

Please insert the Figure 12 into here  

 

The signals shown in Figure 11 (a) and (b) are subjected to the ISVD method 

such that the corresponding de-noised signals are shown in Figure 13 (a) and (b). 

Figure 14 shows the Hilbert envelope spectra of the de-noised signals. While the 

figures indicate good de-noising results for the ISVD method, the fault feature signals 

are still masked by strong harmonic components. In Figure 14, peaks at 79.35 Hz and 

64.09 Hz indicate the main harmonic components for the healthy bearing and the 

faulty bearing, respectively. However, there is no obvious peak at fRPFO or its 

harmonics in the Hilbert envelope spectrum of the de-noised signal for the faulty 

bearing.  

 

Please insert the Figure 13 into here  

 

Please insert the Figure 14 into here  

 

The de-noised signals, as shown in Figure 13 (a) and (b), are decomposed using 

RSSD with optimised parameters; the results of which are shown in Figure 15 and 

Figure 16. Figure 15 (a) and (b) are the time domain waveforms and FFT spectra of 

the high and low resonance components for the healthy bearing, respectively. Figure 

16 (a) and (b) are the time domain waveforms and FFT spectra of the high and low 

resonance components for the faulty bearing, respectively. It can be seen from Figure 

15 (a) and Figure 16 (a) that the harmonic interference elements (with 79.35 Hz and 

with 64.09 Hz, respectively) are decomposed into the high resonance component. 

Other components with low oscillatory behaviour, such as bearing fault information, 

are included in the low resonance component shown in Figure 15 (b) and Figure 16 

(b). 
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Please insert the Figure 15 into here  

 

Please insert the Figure 16 into here  

 

 

The Hilbert envelope spectra of the high and low resonance components are 

shown in Figure 17 and Figure 18 respectively. Figure 17 shows that the main 

harmonic components in the test signals, as identified in Figure 14, are decomposed 

into the high resonance component. Furthermore, the Hilbert envelope spectrum of 

the low resonance component for the faulty bearing demonstrates peaks at fRPFO, 

2fRPFO and 3fRPFO, as shown in Figure 18. These indicate the presence of the outer race 

fault. The clear presence of the 2
nd

 and 3
rd

 harmonics of fRPFO alongside the 

fundamental peak in the signal allows greater confidence in the association of the 

signals with the specific bearing geometry and thus fault detection. This increase in 

confidence is a key benefit derived from the use of the ISVD-RSSD method. The 

ISVD-RSSD parameters used in the laboratory experiment are shown in Table 4. 

Please insert the Figure 17 into here  

 

Please insert the Figure 18 into here  

 

Please insert the Table 4 into here  

 

In order to evaluate the significance of the ISVD component of the ISVD-RSSD 

algorithm, the test signal as shown in Figure 11(b) (the raw data recorded from the 

faulty bearing) can be directly decomposed using the RSSD method. The Hilbert 

envelope spectrum of the obtained low resonance component is shown in Figure 19. 

The figure shows that the strong noise components and residual harmonics are still 

present. The signal also demonstrates no obvious peaks at fRPFO or its harmonics 

which would likely result in missed diagnosis. Hence, it can be shown that de-noising 

the signals, using a technique such as ISVD, prior to the application of the RSSD 

method is essential.  

 

Please insert the Figure 19 into here  
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The raw signal from the faulty bearing, as shown in Figure 11 (b), can also be 

analysed using ensemble empirical mode decomposition (EEMD) [27]. The second 

intrinsic mode function (IMF), which has the maximum kurtosis value, is selected and 

shown in Figure 20. The figure demonstrates no obvious peaks at fRPFO or its 

harmonics, which could also result in missed diagnosis. Hence the ISVD-RSSD 

method is considered more suitable than a basic EEMD. 

 

Please insert the Figure 20 into here  

 

7 Field Experiment 

In order to test the performance of the ISVD-RSSD method in a real railway 

environment, acoustic signals were collected from the wayside as a test train was 

passing along a section of continuously welded (jointless) track. The test train 

consisted of a single car of a DMU hauling two test wagons, as shown in Figure 21(a). 

The speed of the test train through the monitored section was 13.1 m/s, i.e. 

approximately 278 RPM for a wheel size of 0.9 m. For safety reasons, it was not 

possible to operate a train with known faulty bearings, so instead a loudspeaker was 

fitted to the third axle of the train [33]. An acoustic signal recorded in the laboratory 

from a train bearing (TAROL 130/230-U-TVP) with a minor fault was played over 

the loudspeaker in order to simulate a vehicle with a bearing fault. In order to align 

with the speed of the train, the rotational speed used during the recording was 

approximately 270 RPM. The parameters of the test bearing are shown in Table 5. 

The roller fault frequency RFFf  is approximately 35 Hz as calculated using Eq. (34). 

 

Please insert the Figure 21 into here  

 

Please insert the Table 5 into here  

 

  2(1 ( cos ) )RFF r

PD RD
f f

RD PD
   (34) 

 

A wayside acoustic monitoring system as illustrated in Figure 22 was used to 

collect the wayside acoustic signals. This system included a 16 element linear 
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microphone array, three pairs of light-gates, a sonic anemometer and recording 

equipment. The light-gates were used to trigger the recording system and to measure 

the speed of the train in order to align the audio signals with the position of the 

bearings. A beamforming algorithm [33,34] was used to remove the Doppler Effect 

from the signals collected by the wayside acoustic monitoring system. In the 

experiment, the train took approximately 0.38 seconds to pass through the detection 

zone. The sampling frequency used was 12500 Hz, and each recoding consisted of 

4096 samples. In addition to the recorded faulty signal, a recording of a healthy 

bearing was also used. The time domain waveforms of both faulty and fault free 

signals, with the Doppler Effect removed, are shown in Figure 23, and their Hilbert 

envelope spectra are shown in Figure 24. Figure 24 shows significant levels of 

background noise, along with two main harmonic components at 30.52 Hz and 61.04 

Hz in the Hilbert envelope spectrum for the faulty bearing. These peaks, however, do 

not correspond to the fault frequencies for this bearing, and as such conventional 

spectrum analysis is unable to extract the week fault feature from the wayside 

acoustic signal.  

 

Please insert the Figure 22 into here  

 

Please insert the Figure 23 into here  

 

Please insert the Figure 24 into here  

 

Using the ISVD-RSSD method, the signals recorded during the field experiment 

and shown in Figure 23 (a) and (b) can be decomposed into high and the low 

resonance components as shown in Figure 25 and Figure 26 respectively. The 

parameters used in the ISVD-RSSD method for the field experiment are provided in 

Table 6. Figure 27 shows the Hilbert envelope spectra of the high resonance 

components for both the healthy and faulty bearing signals. The figure shows that the 

two main faulty bearing harmonic components (at 30.52Hz and 61.04Hz) identified 

using the standard Hilbert envelope analysis are decomposed into the high resonance 

component. With the harmonic interferences removed, obvious peaks exist at fRFF, 

2fRFF and 3fRFF in the Hilbert envelope spectrum of the low resonance component of 
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the faulty bearing signal. This is shown in Figure 28 and corresponds to the presence 

of the roller bearing fault. 

       Please insert the Table 6 into here  

 

Please insert the Figure 25 into here  

 

Please insert the Figure 26 into here  

 

Please insert the Figure 27 into here  

 

Please insert the Figure 28 into here  

 

As with the laboratory experiment, the significance of the ISVD component of the 

ISVD-RSSD method can be evaluated. The recorded test signal for the bearing fault, 

as shown in Figure 25(b), is decomposed using the RSSD method alone and the 

Hilbert envelope spectrum of the obtained low resonance component is shown in 

Figure 29. The figure shows many residual noises and harmonic components. 

Although a peak corresponding to fRFF can be seen, the residual components can still 

easily result in missed diagnosis. Hence it is considered that the ISVD method is 

necessary to de-noise the collected signal before using the RSSD method.  

 

Please insert the Figure 29 into here  

 

The test signal, as shown in Figure 23(b), can also be decomposed using 

ensemble empirical mode decomposition (EEMD). The first intrinsic mode function 

(IMF) is selected due to it having the maximum kurtosis value and its corresponding 

time domain waveform is shown in Figure 30(a). The figure shows no obvious peak at 

fRFF or any of its harmonics. This is likely to result in a missed diagnosis when using 

the EEMD method. 

 

Please insert the Figure 30 into here  

 

To further verify the effectiveness of the proposed method, an additional field 

experiment, based on a roller fault, was conducted. The experimental conditions were 
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the same as in the experiment described above. The time domain waveform and the 

Hilbert envelope spectrum of the analysis signal are shown in Figure 31 (a) and (b), 

respectively. The figure shows that there are harmonic components and that there is a 

high level of noise in the analysis signal.  

 

Please insert the Figure 31 into here  

 

The analysis signal as shown in Figure 31 (a) is subjected to the proposed method 

and the result is shown in Figure 32. Figure 32 (a) and (b) are the time domain 

waveform and the Hilbert envelope spectrum of the obtained low resonance 

component. The figure shows that there are obvious peaks at RFFf  and its harmonics, 

which indicate the existence of a roller fault. Hence, the effectiveness of the proposed 

method is further demonstrated.   

 

Please insert the Figure 32 into here  

 

Conclusion  

In this paper, a novel method based on a combination of the ISVD and RSSD 

methods is proposed. The ISVD-RSSD method has successfully been used to 

demonstrate adaptive fault feature extraction of train axle bearing faults from wayside 

acoustic signals. The RSSD component of the method has been shown to be able to 

nonlinearly separate the fault signals, which manifest as impacts, from harmonic 

elements; presenting them in high and low resonance components respectively. This 

decomposition capability has, however, been shown to be significantly influenced by 

interference arising from noise within the source signals. Wayside acoustic signals 

usually include significant levels of noise due to their environment and the 

surrounding other components of the train. In order to better extract the fault / impact 

components, ISVD is introduced as a preprocessor to de-noise the wayside acoustic 

signals.  

This paper has also shown that the parameters of the ISVD-RSSD method can be 

adaptively selected to obtain the best decomposition effect. The method has been 
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evaluated using both laboratory and field experiments. The following conclusions are 

obtained through consideration of both tests: 

 (1) The ISVD method can be used to remove background noise from wayside 

acoustic signals. Envelope Spectrum Entropy and stepwise optimisation have been 

introduced as strategies for the adaptive selection of parameters for the S-G filter and 

have been shown to produce good results. However, the optimisation time for the 

parameters of the filter are 560 s and 570 s in the laboratory experiment and the field 

experiment respectively. The efficiency of the optimisation processes in the ISVD 

method need to be improved as a topic of further research.  

 (2) The RSSD method has been shown to be appropriate for the exclusion of 

harmonic components thus allowing the extraction of bearing fault feature signals 

based on them having different oscillatory behaviour. The adaptive parameter 

selection method based on GA has been shown to be functional, but also a time-

consuming process. Improving the performance of this element will be the focus of 

further research. 

(3) The ISVD-RSSD method has been compared to the conventional spectrum 

analysis and EEMD approaches. When used for the detection of faults in train axle 

bearings from wayside acoustic signals, the results indicate significant performance 

improvements when using the ISVD-RSSD method. 
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Figure 1: Simulated fault feature signal  
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Figure 2: (a) Optimal embedding dimension (b) singular values 

 

Embedding Dimension m

E1
mo=10

S
in

g
u

la
r 

V
al

u
es

 σ
i  

  
 

S
in

g
u

la
r 

V
al

u
es

 σ
i  

  
 

Rank of  1S

(a) (b)



26 

 

 

Figure 3: Tunable- Q  wavelet transforms: (a) the analysis filter banks (b) the synthesis filter 

banks  
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Figure 4: Flow chart describing the proposed method 

  

 

Optimization of  the embedding dimension and rank  

Singular value decomposition

Optimization of  S-G filter Parameters using SOS 

Filtering of singular vectors 

Acoustic signal

De-noised signal

ISVD

Optimization of decomposition parameters using a GA

Resonance-based sparse signal decomposition 

RSSD

High-resonance 

component

Low-resonance 

component

Hilbert envelope demodulation

Fault detection



28 

 

 

Figure 5: The time domain waveform and the Hilbert envelope spectrum of the synthesized 

signal. (a) time domain waveform; (b) Hilbert envelope spectrum.   
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Figure 6: The time domain waveform and the Hilbert envelope spectrum of the denoised signal in 

simulation experiment. (a) time domain waveform; (b) Hilbert envelope spectrum.   
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Figure 7: The result of the RSSD method for the denoised signal. (a) time domain waveform of 

high resonance component and (b) its Hilbert envelope spectrum; (c) time domain waveform of 

low resonance component and (d) its Hilbert envelope spectrum. 
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Figure 8: EEMD analysis of synthesized signal (a) Time domain waveform of second IMF (b) 

Corresponding Hilbert envelope spectrum 
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Figure 9: Influence of noise on the proposed method 
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Figure 10: Test rig and test bearing with outer race fault  
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Figure 11: Time domain waveform of signals recorded in the laboratory experiment and 

corresponding FFT spectra (a) healthy bearing (b) faulty bearing 
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Figure 12: Hilbert envelope spectra of signals recorded in the laboratory experiment 
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Figure 13: Time domain waveform of the de-noised signals (a) healthy bearing (b) faulty bearing 
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Figure 14: Hilbert envelope spectra of the de-noised signals 
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Figure 15:  Time domain waveforms and FFT spectra of resonance components for healthy 

bearing (a) high resonance component (b) low resonance component 
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Figure 16: Time domain waveform and FFT spectra of resonance components for faulty bearing 

(a) high resonance component (b) low resonance component 
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Figure 17: Hilbert envelope spectra of the high resonance component 
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Figure 18: Hilbert envelope spectra of the low resonance component 
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Figure 19: Hilbert envelope spectrum of the low resonance component of the raw signal 
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Figure 20: EEMD analysis of the test signal recorded from the faulty bearing (a) Time domain 

waveform of second IMF (b) Corresponding Hilbert envelope spectrum  
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Figure 21: (a) Test train. (b) Test bearing with roller fault 
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Figure 22: Overview of the wayside acoustic monitoring system 
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Figure 23: Time domain waveforms of test signals (a) healthy bearing (b) faulty bearing 
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Figure 24: Hilbert envelope spectra of the test signals recorded during the field experiment 
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Figure 25: Time domain waveforms of resonance components for the healthy bearing (a) high 

resonance component (b) low resonance component 
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Figure 26: Time domain waveforms of resonance components for the faulty bearing (a) high 

resonance component (b) low resonance component 

  

A
m

p
li

tu
d

e

Time (s)

Time (s)
A

m
p

li
tu

d
e(a)

(b)



50 

 

 

 

 
Figure 27: Hilbert envelope spectra of the high resonance components 

  

Frequency (Hz) 

A
m

p
li

tu
d
e

30.52 Hz

61.04 Hz



51 

 

 

 
Figure 28: Hilbert envelope spectra of the low resonance components 
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Figure 29: Hilbert envelope spectrum of the low resonance component 
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Figure 30: EEMD analysis of the test signal from the faulty bearing (a) Time domain waveform 

of first IMF (b) Corresponding Hilbert envelope spectrum  
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Figure 31 The analysis signal including roller fault information (a) Time domain waveform (b) 

Hilbert envelope spectrum 
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Figure 32 The obtained low resonance component for the analysis signal (a) Time domain 

waveform (b) Hilbert envelope spectrum 
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                          Table 1 Parameters of the simulation signal 

M Am β fre T 

50 1 -420 520 Hz 1/100 s 
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Table 2 De-noising results for the conventional methods and the ISVD method 

 Signal1 Signal2 Signal3 Signal4 

SNROriginal -15 dB -10 dB -5 dB 0 dB 

SNRSVD -7.3 dB -5.18 dB -0.98 dB 2.58 dB 

SNRLPSR -6.73 dB -5.09 dB -3.42 dB 0.76 dB 

SNREEMD -4.82 dB -2.76 dB - 0.62 dB 1.06 dB 

SNRISVD -3.53 dB 1.05 dB 3.38 dB 4.35 dB 
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Table 3 Test bearing parameters 

Type Number of rollers 

n 

Roller diameter 

RD 

Pitch diameter 

PD 

Contact angle 

Β 

801023AB 21 5.3 mm 42.5 mm 13.8
o
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       Table 4 ISVD-RSSD parameters used in the laboratory experiment 

 m d nW Q1 r1 Q2 r2 

Healthy 8 3 5 6.25 9.12 1.07 3.07 

Faulty  8 3 15 13.99 4.04 2.8 3.27 
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Table 5 Test bearing parameters in field experiment 

Type Number of rollers 

n 

Roller diameter 

RD 

Pitch diameter 

PD 

Contact angle 

Β 

TAROL 

130/230-U-TVP 
22 24 mm 187 mm 6.9

o
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       Table 6 parameters for the ISVD-RSSD method used in the field experiment 

 m d nW Q1 r1 Q2 r2 

Healthy 6 4 23 32.46 27.66 1.81 3.19 

Faulty  4 4 23 5.76 4.69 1 4.43 

 

 


