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Organometallic conjugates of the drug sulfadoxine for combatting 
antimicrobial resistance 

Prinessa Chellan,[a],†,* Vicky M Avery,[b] Sandra Duffy, [b] James A. Triccas,[c] Gayathri Nagalingam,[c] 
Christina Tam, [d] Luisa W. Cheng, [d] Jenny Liu,[e] Kirkwood M. Land,[e] Guy J. Clarkson,[a] Isolda Romero-
Canelón,[a] Peter J. Sadler*,[a] 

 

Abstract: Fourteen novel arene RuII, and cyclopentadienyl (Cpx) 

RhIII and IrIII complexes containing an N,N’-chelated pyridylimino- 

or quinolylimino ligand functionalized with the antimalarial drug 

sulfadoxine have been synthesized and characterized, including 

three by x-ray crystallography.  The rhodium and iridium 

complexes exhibited potent antiplasmodial activity with IC50 

values of 0.10 – 2.0 µM in either all, or one of the three 

Plasmodium falciparum assays (3D7 chloroquine sensitive, Dd2 

chloroquine resistant and NF54 sexual late stage gametocytes) 

but were only moderately active towards Trichomonas vaginalis. 

They were active in both the asexual blood stage and the sexual 

late stage gametocyte assays, whereas the clinical parent drug, 

sulfadoxine, was inactive. Five complexes were moderately active 

against Mycobacterium tuberculosis (IC50 < 6.3 µM), while 

sulfadoxine showed no antitubercular activity. An increase in the 

size of both the Cpx ligand and the aromatic imino substituent 

increased hydrophobicity, which resulted in an increase in 

antiplasmodial activity.  

 
Introduction 
Infectious diseases remain the leading cause of morbidity and 

mortality in Sub-Saharan Africa with Mycobacterium tuberculosis, 

HIV/AIDS and malaria remaining the biggest killers.[1] In 2015, an 

estimated 1.8 million people died from TB infection, an appallingly 

high number since it is preventable. The HIV/AIDS epidemic and 

the emergence of multidrug resistant M. tuberculosis has made 

development of novel drug therapies a pressing task. According 

to the World Health Organisation, people living with HIV are ≈ 26-

31 times more likely to develop TB compared to healthy 

individuals, and 35 % of HIV deaths reported was a result of TB 

infection, making it the primary killer of HIV-positive individuals.[2] 
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An added complication for these same individuals is their 

exposure to parasitic diseases, such as malaria.  An estimated 

212 million cases and 429,000 deaths occurred in 2015, as a 

result of malaria caused by Plasmodium falciparum infection.[3]  

Currently, the standard first line therapy for uncomplicated P. 

falciparum malaria infections is artemisinin-based combined 

therapy (ACT).[4, 5]  

ACT is a combination of artemisinin or an artemisinin derivative 

and a partner drug with a separate parasite target (and longer in 

vivo half-life) in order to increase efficacy and decrease the risk of 

development of resistance. As well as TB, resistance of P. 

falciparum to all drugs inclusive of artemisinin and its derivatives, 

has been reported in several parts of Asia.[6, 7] The majority of new 

drug candidates for both TB and malaria currently in development 

are organic analogues of previously used clinical drugs, or 

specifically for malaria, novel chemistry clustering into only a 

handful of novel drug targets such as PI4K,[8] and ATP4.[9] The 

application of metal-containing compounds for the treatment of 

parasitic diseases has emerged as a vital area of research. 

Taking advantage of the redox potential of metals, new multi-

targeting drugs can be designed that can kill the parasite through 

induction of oxidative stress.[10-12] A common strategy in drug 

discovery today is the ‘repurposing’ and/or derivatization of drugs 

used for treatment of other illnesses to identify new candidates 

that can be taken to clinical trials more rapidly than completely 

novel drugs.[13, 14] With this strategy in mind, it is possible to design 

new metallo-therapeutics through conjugation of a drug derivative 

and bioactive metal fragments. In the last decade, the study of 

metallo-therapeutics as potential anti-parasitics has gained 

momentum.[15-20] In particular, the discovery of the potent activity 

of ferroquine,[21-23] a ferrocene-chloroquine conjugate, has 

encouraged the design of novel metal complexes containing 

validated drug scaffolds.[4, 24]  

 
Figure 1. A) Structures of pyrimethamine and sulfadoxine; B) Parasitic folate 
synthetic pathway.[25] 
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Sulfadoxine is a drug belonging to the class known as 

sulfonamides and is used in combination with pyrimethamine 

(Figure 1A) to treat malaria caused by the P. falciparum parasite. 

Pyrimethamine and sulfadoxine target two enzymes that are 

crucial to the parasitic folate biosynthetic pathway, i.e. 

dihydrofolate reductase (DHFR) and dihydropteroate synthetase 

(DHPS), Figure 1B.[25] DHFR has been validated as a clinical 

target for several illnesses and protozoan DHFR has been shown 

to be structurally different from the mammalian enzyme.[26] This 

could have relevance for the selectivity of new inhibitors prepared 

from sulfadoxine or pyrimethamine.  

Sulfonamides have been used to treat microbial and parasitic 

infections.[27] Cobalt, copper, nickel and zinc complexes of the 

sulfonamide, 4-{[(E)-(5-bromo-2-hydroxyphenyl)methylidene]-

amino}-N-(4,6-dimethyl-pyrimidin-2-yl)benzenesulfonamide, 

have shown moderate to significant antibacterial activity against 

one or more bacterial strains and good antifungal activity against 

various fungal strains.[28] A library of complexes prepared from (5-

chloro-2-hydroxybenzylidene)aminobenzenesulfonamides with 

the general formula [L2(M)2H2O] (where M is Co, Cu, Zn, Ni or Mn) 

were able to reduce epimastigote proliferation and were cidal for 

trypomastigotes of Trypanosoma cruzi Y strain.[29] 

 

Here we have synthesized new half-sandwich organo-

ruthenium(II), -rhodium(III) and -iridium(III) complexes containing 

chelated pyridyl- or quinolyl-imino ligands derivatized with the 

drug sulfadoxine and screened them for in vitro biological activity 

against various parasite strains and Mycobacterium tuberculosis. 

Remarkably, the conjugation to organometallic fragments 

switched on the activity of sulfadoxine towards several strains of 

microorganisms and the malaria parasite, towards which the 

clinical drugs, pyrimethamine and chloroquine were also inactive. 

Results and Discussion 

Synthesis. The two new Schiff base ligands, N-(5,6-di-

methoxypyrimidin-4-yl)-4-((pyridin-2-ylmethylene)amino)-

benzenesulfonamide (2-pyridyliminesulfadoxine, L1) and N-(5,6-

dimethoxypyrimidin-4-yl)-4-((isoquinolin-3-ylmethylene)amino)-

benzenesulfonamide (2-quinolyliminesulfadoxine, L2) were 

synthesised using a microwave method (Scheme 1) and isolated 

as crude beige and yellow solids, respectively. Attempts to purify 

L1 and L2 were unsuccessful and they were used in subsequent 

reactions without further purification. 

New organometallic conjugates of the clinical antimicrobial drug 

sulfadoxine were synthesised by reaction of L1 and L2 with the 

appropriate ruthenium(II) arene, and rhodium(III) or iridium(III) 

cyclopentadienyl chloride dimers in methanol over 16 h.  

Treatment with ammonium hexafluorophosphate yielded fourteen 

novel cationic N,N’-chelated complexes (1-14) (Scheme 2) as 

microcrystalline yellow or orange solids. Complexes 1-14 were 

characterised by 1D and 2D NMR, ESI-MS, and elemental 

analysis, and for the complexes 2, 10 and 13, by single crystal X-

ray diffraction. The purity of the complexes was confirmed using 

RP-HPLC.  

The amino (NH) proton of the sulfonamide moiety was observed 

as a broad singlet downfield in the 1H NMR spectra for all 

complexes between 9.87 – 10.00 ppm (see Supporting 

Information). For the rhodium pyridyl complexes (2-4), this 

resonance was slightly upfield (δ 9.05-9.10 ppm) compared to the 

quinolylimino sulfadoxine analogues (9-11; δ 9.10-9.45 ppm). 

Similar differences are notable for the iridium derivatives (5-7 and 

12-14). In the Rh and Ir complexes with either the Cp*ph (3, 4, 10, 

11) or Cp*biph (6, 7, 13, 14) ligands, the extended aromatic Cpx 

ligand gave rise to increased shielding of the aromatic proton 

adjacent to the pyridyl or quinolyl nitrogen compared to the 

corresponding Cp* derivative (2, 7, 9 and 12). Similar resonances 

were observed for the arene/Cpx ancillary ligands in all complexes.  

High resolution positive-ion ESI-MS confirmed the identity of the 

complexes, with a base peak corresponding to the cationic 

molecular ([M]+ - PF6
-) ion for all complexes. HPLC analysis 

confirmed the purity of complexes 1-14, each displaying two 

peaks, one for the chloride complex and the other for the aqua 

complex. Though the samples were freshly prepared prior to 

injection in water-acetonitrile, displacement of the chloride ligand 

by water for a proportion of each complex occurred during the 

course of the HPLC analysis.  
The molecular structures of complexes 2, 10 and 13 (Figures 2 - 

4) were determined using X-ray diffraction. Crystals were grown 

by slow evaporation of a mixture of acetone-diethyl ether at 

ambient temperature. Tables S1 and S2 in the Supporting 

Information lists the crystallographic data and short contact 

distances for 2, 10 and 13. Table 1 shows selected bond lengths 

and angles for each structure. 

All of the complexes crystallised in a triclinic system and P-1 

space group. The crystals of 10 and 13 are isomorphic and 

isostructural; with two molecules of complex and three solvent 

molecules in the unit cell.  

The molecular structures (Figures 2 – 4) of 2, 10 and 13 reveal 

the typical piano-stool geometry seen for other η5-Cpx rhodium 

and iridium complexes.[30-33] The imino-sulfadoxine ligand 

chelates the metal in the expected N,N’-bidentate fashion. The 

bond angles and lengths (Table 1) show that the M-Cl bonds are 

slightly longer than the M-C or M-N bonds. The bond lengths 

between the metal and each carbon of the pentasubstituted 

cyclopentadienyl ring are all similar, as are the metal-centroid 

bond lengths in all three structures (ca. 1.50 Å). Rhodium complex 

10 and iridium complex 13 are isomorphous and isostructural and 

their bond lengths and angles are almost identical, probably a 

consequence of the lanthanide contraction at the start of the 3rd 

transition series, resulting in RhIII and IrIII having similar sizes. 

 

  
 

 
Scheme 1. Synthesis of pyridyl- and quinolyl-sulfadoxine ligands L1 and L2. Reaction conditions: (i) microwave synthesis: MeOH/ 373 K/ 150 W/250 psi/ 5 min. 
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Scheme 2. Synthesis of pyridyl- and quinolyl-sulfadoxine PGM complexes (1 -14). Reaction conditions: (i) [MXCl2]2/ RT/ MeOH; (ii) NH4PF6/ RT 

 

 
Figure 2. Molecular structure of rhodium Cp* complex 2 with atom labelling. 
Thermal ellipsoids are drawn at 50% probability level. All hydrogen atoms are 
omitted for clarity. 

 

  

Figure 3. Molecular structure of rhodium Cpxph complex 10 with atom labelling. 
Thermal ellipsoids are drawn at 50% probability level. All hydrogen and solvent 
atoms are omitted for clarity. 
 
 

 

 
 
 
 
Figure 4. Molecular structure of iridium Cp*ph complex 13 with atom labelling. 
Thermal ellipsoids are drawn at 50% probability level. All hydrogen and solvent 
atoms are omitted for clarity. 
 
 
 

Aquation chemistry and relative hydrophobicity. Hydrolysis, 

substitution of the bound chloride by water thus producing a more 

reactive species, and hydrophobicity, which often determines the 

extent of cellular uptake, could be important factors in determining 

the activity of the members of this series of organometallic 

complexes. 

The rate of hydrolysis of complexes 2-7 and 9-14 in 2.5% v/v 

DMSO in water at 37 ºC was monitored using UV-vis 

spectroscopy. Selected spectra are shown in Figure 5 and the 

change in absorbance at 325 nm over time was used to determine 

the half-lives (t1/2, min) and pseudo first-order rate constants (k) 

(Table 2). All UV-vis spectra for complexes 2-7 and 9-11 are 

shown in the Supporting Information (Figures S1-S3). The 

formation of the aqua adduct was confirmed by ESI-MS 

(Supporting Information, Figures S4-S15). 
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Table 1. Selected bond lengths and angles for complexes 2, 10∙1.5C3H6O and 
13∙1.5C3H6O. 

Complex 2 

Bond Lengths (Å) 

Rh1-Cl1 2.3980(6) Rh1-C30 2.161(2) 

Rh1-N1 2.1229(19) Rh1-Ccentroid
a 1.492 

Rh1-N8 2.1040(18) S15-O15A 1.4274(18) 

Rh1-C29 2.174(2) S15-O15B 1.4225(19) 

Rh1-C31 2.191(2) N8-C7 1.282(3) 

Rh1-C27 2.150(2) N1-C2 1.336(3) 

Rh1-C28 2.157(2) N1-C6 1.356(3) 

Bond Angles (º) 

Ccentroid-Rh1-N8a 133.34 O15A-S15-N16 103.66(11) 

Ccentroid-Rh1-Cl1 a 124.49 O15A-S15-C12 109.00(11) 

Ccentroid-Rh1-N1 a 134.65 O15B-S15-O15A 119.53(11) 

O15B-S15-C12 108.88(11) O15B-S15-N16 109.56(11) 

Complex 10 

Bond Lengths (Å)    

N1-Rh1 2.154(2) Rh1-C41 2.174(3) 

Rh1-Cl1 2.3935(7) Rh1-Ccentroid
a 1.496 

Rh1-N12 2.113(2) C11-N12 1.287(3) 

Rh1-C37 2.171(2) N1-C2 1.372(3) 

Rh1-C38 2.176(2) N1-C10 1.333(3) 

Rh1-C39 2.160(3) O19A-S19 1.430(2) 

Rh1-C40 2.182(2) O19B-S19 1.430(2) 

Bond Angles (º)    

Ccentroid-Rh1-N12a 127.90 O19A-S19-O19B 119.54(15) 

Ccentroid-Rh1-Cl1a 127.35 O19A-S19-N20 104.07(14) 

Ccentroid-Rh1-N1a 132.14 O19B-S19-C16 108.49(14) 

O19A-S19-C16 109.41(13) O19B-S19-N20 110.01(14) 

Complex 13 

Bond Lengths (Å) 

N1- Ir1 2.120(3) Ir1-C41 2.173(3) 

Ir1-Cl1 2.3989(9) Ir1-Ccentroid
a 1.501 

Ir1-N12 2.094(3) C11-N12 1.380(4) 

Ir1-C37 2.163(3) N1-C2 1.341(4) 

Ir1-C38 2.183(3) N1-C10 1.333(3) 

Ir1-C39 2.159(4) O19A-S19 1.431(3) 

Ir1-C40 2.186(4) O19B-S19 1.415(3) 

Bond Angles (º) 

Ccentroid-Ir1-N12a 128.80 O19A-S19-O19B 119.8(2) 

Ccentroid-Ir1-Cl1a 127.75 O19A-S19-N20 103.8(2) 

Ccentroid-Ir1-N1a 132.62 O19B-S19-C16 108.87(18) 

O19A-S19-C16 109.05(18) O19B-S19-N20 110.4(2) 
a Values calculated using Mercury 3.3 software 

 

All of the complexes displayed changes in their spectra over time. 

As expected, the rate of hydrolysis decreases with an increase in 

the size of the Cpx ligands in the order 1,2,3,4,5-pentamethyl > 

2,3,4,5-tetramethyl-1-phenyl > 2,3,4,5-tetramethyl-1,1’-biphenyl. 

With respect to the metal, in the case of the pyridyl-sulfadoxine 

complexes 2-7, the rhodium complexes undergo slower 

hydrolysis than the iridium derivatives. The opposite effect is 

observed for the quinolyl-sulfadoxine complexes (9-14). 

The relative hydrophobicity of the iridium and rhodium complexes 

was determined by comparing their retention times on reverse-

phase HPLC.  Often the partition coefficient (LogP) is used as a 

measure of a compound’s lipophilicity, and determined 

experimentally through partitioning between octanol and water.[34, 

35] However, complexes 1-14 are relatively insoluble in water and 

octanol, and thus logP values could not be readily determined. 

 

Figure 5. Time dependence of the UV-vis spectra for complexes 12-14 (50 µM) 
in 2.5% v/v DMSO in water. The isosbestic points are consistent with the 
conversion of the initial chlorido species to the aqua product. Scanning kinetics 
experiments were carried out at 37 ºC over 18 h. 
 

Instead, a comparison of the hydrophobicity within each complex 

series can be made from the retention times of the chloride 

adducts of each complex. A similar approach has been used in 

other reports, e.g. Millett et al.[30]  A 100 µM solution of each 

complex was prepared in 10 % CH3CN/90 % 50 mM NaCl(aq). 

Each complex was eluted with a gradient of mobile phases: (A) 

50 mM NaCl(aq) and (B) 50% CH3CN:50% 50 mM NaCl(aq). The 

high salt concentration was necessary to suppress hydrolysis, 

thus giving only one peak in the HPLC trace for the chloride 

species. The mobile and stationary phases employed for RP-

HPLC result in highly polar molecules eluting faster than less 

polar ones. The retention times (TR) are directly proportional to 

hydrophobicity (Table 2). A clear trend is evident from the data. 

Complexes containing the quinolyl-ligand (9-14) are more 

hydrophobic than the pyridyl derivatives (2-8). Increasing the 

length of the Cpx group also increases hydrophobicity and, in 

general, the rhodium complexes are slightly less hydrophilic than 

their iridium counterparts. A scatter plot correlating the rate of 

aquation and hydrophobicity (Figure 6) shows that within each 

series, the more hydrophobic complexes undergo water 

exchange of their chloride ligand at a much slower rate. The η5-

π-donor ligand influences this substitution in two ways, by 

increasing the hydrophobicity of the binding site and by steric 

effects. 

 
Table 2. Half-lives and rates of hydrolysis of complexes 2-7 and 9-14 in 2.5% 
DMSO/97.5% water v/v and retention times of complexes on RP-HPLC. 

Complex t1/2 (min) a k (x 10-3 min-1) a Retention time 
(min) 

2 12.9 (1.7) 53.9 (7.1) 6.61 + 0.03 

3 42.9 (4.8) 16.1 (1.8) 10.03 + 0.01 

4 182.9 (15.6) 3.79 (0.32) 13.93 + 0.09 

5 23.9 (1.8) 29.0 (2.2) 8.08 + 0.04 

6 95.7 (7.1) 7.27 (0.53) 11.27 + 0.02 

7 172.9 (8.1) 4.01 (0.19) 15.27 + 0.18 

9 5.35 (0.32) 129.5 (7.8) 9.27 + 0.01 

10 7.20 (0.21) 96.2 (2.8) 12.49 + 0.01 

11 90.2 (4.1) 7.68 (0.35) 16.19 + 0.04 

12 59.1 (1.6) 11.7 (0.3) 11.53 + 0.14 

13 81.3 (3.7) 8.53 (0.38) 13.73 + 0.16 

14 141.4 (3.7) 4.90 (0.13) 17.27 + 0.13 

a Half-lives t1/2 and pseudo first order rate constants with standard error in 
parentheses. 
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Figure 6. Plot of the half-life for aquation versus the RP-HPLC retention times 

of the chloride species as a measure of relative hydrophobicity.  Legend:   Rh 
pyridyliminosulfadoxine;     Ir pyridyliminosulfadoxine;     Rh quinolylimino-
sulfadoxine;     Ir quinolyliminosulfadoxine. 

In vitro Biological Activity. Complexes 1-14 were screened for 

in vitro inhibitory activity against three P. falciparum strains (3D7 

chloroquine-sensitive, Dd2 chloroquine-resistant and NF54 Late 

Stage Gametocytes (LSG), the T. vaginalis parasite strain G3 and 

M. tuberculosis H37Rv. To determine whether the complexes are 

selectively active as antimicrobial agents, they were also tested 

against the human ovarian cancer (A2780) and the human 

embryonic kidney (HEK293) cell lines. The data are shown in 

Tables 3 and 4. None of the complexes was toxic to the human 

embryonic kidney cell line, HEK293 up to the highest tested 

concentration of 80 µM demonstrating selectivity index values 

ranging from 4 to 320 for the Plasmodium parasite 3D7 in relation 

to HEK293 mammalian cells, and only three of the fourteen 

complexes (7, 11, 14) showed low to moderate inhibitory effects 

on the A2780 cell line, suggesting good antimicrobial selectivity. 

Overall, the rhodium and iridium complexes (2-7 and 9-14) 

displayed moderate to high potency as antimicrobial agents while 

their parent drug, sulfadoxine, is not active.  

As antimalarial agents, the ruthenium complexes, 1 and 8, were 

not active up to 20 µM. The rhodium complexes (2-4 and 9-11) 

were generally more active than the iridium derivatives (5-7 and 

12-14) (Table 3 and Figure 7). Complexes 2-7 and 9-14 were 

active against LSG, while the drugs sulfadoxine (SFD), 

pyrimethamine (PY) and chloroquine (CQ) was inactive. This 

indicates that these complexes are active against both the 

asexual and sexual stages of the parasite life cycle, in contrast to 

the clinical drugs sulfadoxine, which is inactive for both asexual 

and sexual lifecycle stages. This is an important factor to note for 

future design.  

Of note was the reduced activity of 2 and 9 against the 

chloroquine resistant strain Dd2, indicating potential parasite 

resistance. The ruthenium complexes (1 and 8) were not active, 

suggesting that the metallo-sulfadoxinyl derivatives of rhodium(III) 

and iridium(II) have greater potential for design as new 

antiplasmodial therapeutics. This is an interesting result; there are 

numerous reports of ruthenium-arene complexes displaying 

antiplasmodial activity.[4, 24, 36]  It is possible that complexes 1 and 

8 may be active at concentrations >20 µM. There are few 

published accounts where RhIII and IrIII analogues of RuII 

complexes were also tested for antiplasmodial activity in the same 

study.[15, 17, 37, 38] In most of these reported studies, the type of 

ligand used contained different pharmacophores compared to 1-

14 and furthermore their intracellular targets are likely to be 

different, which may account for why the ruthenium-sulfadoxinyl 

complexes 1 and 8 are not active. This result further emphasises 

that it is not just the metal that is important for biological activity; 

but also, the choice of ligand, the oxidation state of the metal, and 

charge on the complex, all of which may play a role.  

 
Table 3. IC50 values for complexes 1-14, chloroquine (CQ), sulfadoxine (SFD) 
and pyrimethamine (PY) against the Pf strains 3D7, Dd2 and LSG, HEK293 cell 
line and the selectivity index (SI) for HEK293 vs 3D7 activities. 

 Pf 3D7 Pf Dd2 
Pf LSG 
NF54 

HEK293 SI 

Complex IC50 (µM)a 
IC50 

(µM) a 
IC50 (µM) 

a 
IC50  

(µM) b 
HEK293/ 

3D7 

1 ≈ 20 ≈ 20 > 20 > 80 4 

2 
1.55 

(0.613) 
> 20 ≈20 > 80 52 

3 
0.34 

(0.06) 
0.52 

(0.18) 
0.93 

(0.36) 
> 80 235 

4 
0.98 

(0.14) 
1.54 

(0.12) 
2.09 

(0.047) 
> 80 82 

5 
1.71 

(0.05) 
1.64 

(0.10) 
> 20 > 80 47 

6 
1.88 

(0.15) 
2.53 

(0.97) 
4.75 

(0.04) 
> 80 43 

7 
1.97 

(0.13) 
2.15 

(0.31) 
1.85 

(0.22) 
> 80 41 

8 > 20 > 20 > 20 > 80 -- 

9 
1.38 

(0.43) 
≈ 20 

1.85 
(0.08) 

> 80 58 

10 
0.38 

(0.24) 
0.54 

(0.19) 
1.10 

(0.09) 
> 80 211 

11 
0.44 

(0.09) 
0.65 

(0.03) 
1.48 

(0.39) 
> 80 182 

12 ≈ 20 ≈ 20 ≈ 20 > 80 -- 

13 
1.47 

(0.04) 
2.26 

(0.37) 
2.39 

(0.32) 
>80 54 

14 
0.25 

(0.04) 
0.17 

(0.07) 
1.23 

(0.29) 
> 80 320 

CQ 
0.012 

(0.001) 
0.06 

(0.01) 
> 20 > 40 4167 

SFD > 20 > 20 > 20 -- -- 

PY 
0.005 

(0.0001) 
≈ 20 > 20 > 40 8000 

a Average ± Standard deviation for 3 biological replicates performed in duplicate 
point given in parentheses; b HEK293 tested in duplicate point for 11 doses with 
the highest concentration tested being 80 µM. 

 

Structure-activity trends reveal that the quinolylimino-sulfadoxine 

(L2) complexes are in general more active than their pyridyl-

iminosulfadoxine (L1) counterparts. The complexes containing 

Cp*ph or Cp*biph (3, 4, 10 and 11) ligands show activities that are 

>1.5x higher than their unsubstituted Cp* ring derivatives (2 and 

9). Of the pyridyl containing complexes, the Cp*phRh complex 3 

displayed the highest activity against all three Pf strains (IC50 = 

0.34 µM (3D7), 0.52 µM (Dd2) and 0.93 µM (LSG). Compared to 

the iridium derivative (6), complex 3 was 5.5 x more active against 

3D7 (IC50 of 6 = 1.88 µM) and 5x more active against both Dd2 

(IC50 of 6 = 2.53 µM) and LSG (IC50 of 6 = 4.75 µM). Interestingly, 

complex 3 had similar IC50 values to its quinolyl analogue 10 for 

all 3 pf assays (IC50 = 0.38 µM (3D7), 0.54 µM (Dd2) and 1.10 µM 

(LSG)), showing that for these two complexes, the extension of 

the aromatic imino group from pyridyl to quinolyl did not enhance 

its activity. 
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Figure 7. Graphical representations of the IC50 data for (A) drugs sulfadoxine 
(SFD), pyrimethamine (PY), chloroquine (CQ) and rhodium complexes 2-4, 9-
11; and (B) iridium complexes 5-7, 12-14, in the 3 P. falciparum assays, 3D7 

(green), Dd2 (blue) and LSG (red). 

 

It was evident that for the Ir complexes 5-7, there was no 

significant increase in activity towards 3D7 and Dd2 strains as the 

length of the cyclopentadienyl ligand increases, but there was an 

increase in antiplasmodial activity against the LSG strain (Table 

2). The quinolyl iridium complexes, 12-14, become more active 

with an increase in size of the cyclopentadienyl ligand. Out of all 

complexes tested, complex 14 displayed the highest activity in the 

asexual 3D7 and Dd2 assays (IC50 = 0.25 µM (3D7), 0.17 µM 

(Dd2)), perhaps a consequence of the combined effect of the 

quinoline and extended arene. Of note complex 14 also 

demonstrates greater than 320-fold selectivity for the 3D7 

parasite in relation to HEK293 mammalian cells (Table 3). In fact, 

complexes 3, 10, 11 and 14 all have good starting selectivity 

indices for Plasmodium over HEK. The presence of the 

quinolylimino and tetramethylcyclopentadienylbiphenyl ligand 

makes complex 14 highly lipophilic which may result in increased 

uptake and a higher concentration of the drug reaching its target 

site. The complexes were slightly less active against the 

chloroquine-resistant strain Dd2, apart from complex 14 which 

was more active. Overall, complexes containing Rh are more 

potent than the Ir derivatives, although Ir complex 14 had the 

highest activity out of all the compounds tested (Figure 7).  

In all 3 Pf assays, the pyridyl complexes (3, 4, 6 and 7) were less 

active that their quinolyl derivatives (10, 11, 13 and 14).  The 

combination of the size of the aromatic imino group and the 

increase in extension of the pentasubstituted Cpx ligand appears 

to influence activity beneficially. The structural importance of the 

Cpx ligand and the aromatic imino group could be linked to the 

transport of these complexes to their intracellular targets. All 

potential antimalarials that target intracellular parasite functions 

need to cross three membranes by either lipid diffusion or flux 

through one or more transporters.[39] These membranes, in the 

order a drug would encounter them, are the host erythrocyte 

membrane (HEM), parasitophorous vacuolar membrane (PVM), 

and the parasite plasma membrane (PPM). Studies on 

antimalarial drug transport have found that an unusual plasmodial 

surface anion channel (PSAC) is induced in the HEM of infected 

cells to increase transport of essential ions and organic solutes.[39] 

This channel allows transport of solutes that are charged or 

uncharged with a molecular weight of greater than 600 Daltons, 

thus making it accessible to a variety of compounds.[40] Previous 

studies have shown that a number of potential drug leads utilize 

this channel to enter infected erythrocytes.[41-43] Complexes 2-7 

and 9-14 are charged with molecular weights greater than 600 

g/mol which may allow them to move through the HEM using this 

channel and also the PVM.  Once in the erythrocyte cytosol, drugs 

need to traverse the PVM, which surrounds the parasite during its 

intracellular cycle. A large conductance ion channel exists at the 

PVM which mediates transport of both organic and inorganic 

cations and anions.[44, 45] Drug transport through the PPM is still 

not well understood with the general consensus being that most 

transporters at the PPM have highly controlled substrate 

specificity, so it is difficult to speculate on how complexes 2-7 and 

9-14 traverse this membrane to enter the parasite. Nevertheless 

the positive charge on these complexes, their molecular weights 

and the increase in hydrophobic nature based on the imino group 

and the Cpx ligand may allow increased transport through the first 

two membranes in the order of Cp*biph > Cp*ph > Cp* and quinolyl 

> pyridyl so that a greater concentration of complex can pass 

through the PPM by a yet-undiscovered mechanism to reach its 

site of action.  

The clinical parent drug, sulfadoxine, displayed no antiplasmodial 

activity: demonstrating that conjugation to organometallic 

fragments enhances activity. Interestingly, the rhodium and 

iridium complexes (3, 4, 6, 7, 9-11, 13 and 14) were all active in 

the LSG assay, while the clinical drugs chloroquine, sulfadoxine 

and pyrimethamine were inactive as expected. This is an 

important result for the design of new antimalarial metallo-drugs. 

Mature/late stage gametocytes of Plasmodium are responsible 

for parasite transmission from the mammalian host to the 

mosquito, thus propagating the spread of the disease.[46] 

Targeting LSG can lead to transmission-blocking; breaking the 

cycle of reinfection and reduce the prevalence of malaria cases. 

Complexes 3, 4, 6, 7, 9-11, 13 and 14 demonstrate that 

modification of the drug sulfadoxine with organometallic 

fragments beneficially alters its activity towards different stages of 

the malaria parasite’s life cycle. 

Against the trichomonas vaginalis strain G3 (Table 4), all of the 

complexes displayed no or limited activity at 100 µM. The 

ruthenium complexes 1 and 8 had the lowest inhibitory effect on 

the parasite, 30% and 14%, respectively. For the rhodium 

complexes 2-4, and 9-11, and iridium complexes 5-7, 12-14, there 

was an increase in percent inhibition in the order: Cp*biph > Cp*ph 

> Cp*. Similar to the antiplasmodial data, the best antitrichomonal 

activity was observed for the rhodium complexes, 3, 4, 10 and 11 

(88, 92, 89 and 92% growth inhibition, respectively), but the 

iridium complex 14 (96%) displayed the best activity overall. The 

IC50 values showed that all these complexes exhibited 50% 

parasite inhibition at similar concentrations (IC50 = 15.2-18.1 µM). 

 
 

A 
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Table 4. MIC50 in M. tuberculosis, IC50 in A2780 and % inhibition against Tv 
strain G3 for complexes 1-14, sulfadoxine (SFD), pyrimethamine (PY), 

rifampicin (RFP) and isoniazid (INZ). 

 
M. 

tuberculosis 
A2780 Tv G3 

Complex MIC50 (µM) IC50 (µM) 
% inhibition 

(x102) 
(100 µM)b 

IC50 
(µM) b 

1 100 NA a 0.30 (0.09) -- 

2 3.13-6.25 NA a 0.66 (0.02) -- 

3 3.13 
NA a 

0.88 (0.02) 
15.77 
(0.95) 

4 12.5 
> 100 

0.92 (0.02) 
18.11 
(0.91) 

5 50 NA a 0.64 (0.10) -- 

6 25 NA a 0.64 (0.08) -- 

7 25 22.7 (0.4) 0.80 (0.02) -- 

8 > 100 NA a 0.14 (0.13) -- 

9 25 NA a 0.74 (0.12) -- 

10 6.25 
NA a 

0.89 (0.02) 
15.25 
(0.92) 

11 50 
22.1 (0.3) 

0.92 (0.03) 
17.93 
(0.90) 

12 100 NA a 0.78 (0.01) -- 

13 3.13 NA a 0.75 (0.08) -- 

14 3.13 
20.038 
(0.004) 

0.96 (0.01) 
15.24 
(0.89) 

SFD 25-50 -- -- -- 

PY NA a -- -- -- 

RFP 0.003 -- -- -- 

INZ 0.3-0.6 -- -- -- 

a NA = not active, b R2 squared value in given in parentheses. 

 

The MIC50 values for complexes 1-14 were determined against M. 

tuberculosis H37Rv along with the drugs, sulfadoxine, 

pyrimethamine, rifampicin and isoniazid. Once again, the 

ruthenium(II) arene complexes were inactive. For the 

pyridylimino-sulfadoxine conjugates, the rhodium Cpx complexes 

2-4 (MIC50 = 3.13 - 6.25 µM, 3.13 µM and 12.5 µM, respectively) 

were more potent than the iridium Cpx derivatives 5-7 (MIC50 = 

~50 µM, 25 µM and 25 µM, respectively). This is in contrast to the 

quinolylimino-sulfadoxine complexes, where the iridium 

complexes 13 and 14 (MIC50 = 3.13 µM) are more active than the 

rhodium derivatives (MIC50 = 6.25 µM 10 and 50 µM 11). Five of 

the fourteen complexes screened displayed notably good 

activities of < 6.25 µM, considerably more potent than the parent 

clinical drug sulfadoxine (MIC50 = 25-50 µM). All of the rhodium 

and iridium complexes were more active than pyrimethamine. At 

concentrations needed to induce 50% inhibition of the 

mycobacterial isolates, none of the complexes was as active as 

the antibiotics, rifampicin and isoniazid. There does not appear to 

be a straight forward structure-activity relationship for 

antimycobacterial activity. In the parasitic assays, the rhodium 

complexes showed better activities than the iridium derivatives, 

but contrastingly, the Rh pyridylimino complexes were more 

active than the Rh quinolylimino complexes in the M. tuberculosis 

assays. The opposite effect was noted for the iridium complexes. 

The most promising complexes for further development appear to 

be 2 (MIC50 = 3.13-6.25 µM), 3 (MIC50 = 3.13 µM), 13 (MIC50 = 

3.13 µM) and 14 (MIC50 = 3.13 µM). Structurally, these four 

complexes have only the sulfadoxinyl fragment in common. 

Plots of the half-lives for the aquation of the rhodium and iridium 

complexes against their Pf and Tv parasite activities (Figures 

S16A-D) showed that when comparing the activity within each 

series of complexes (2-4, 5-7, 9-11 and 12-14), in general, 

complexes that undergo water exchange at a slower rate 

displayed better activities as antiplasmodial and antitrichomonal 

agents. This suggested that as antiparasitics, the active species 

was the chloride complex and that rapid exchange of the chloride 

ligand with water rendered the complex inactive (shorter half-life). 

Replacement of a methyl group in the pentamethylcyclo-

pentadienyl ligand with a phenyl or biphenyl substituent slowed 

down aquation of the complex which could allow the active 

chloride complex to remain intact until it reached its intracellular 

target.  It is also important to note here, that the kinetics of 

aquation of the complexes were studied in salt free solution. 

Chloride present in biological media and in cells will affect the 

hydrolysis equilibria. 

For the mycobacterial assay, there does not appear to be a 

correlation between the rate of aquation and bioactivity. Rhodium 

complex 3 (MIC50 = 3.13 µM) has similar activity to the iridium 

complexes 13 and 14 (MIC50 = 3.13 µM for both complexes) yet 

the latter have longer half-lives (t1/2 = 42.9 min (3), 81.3 min (13) 

and 141.4 min (14). Complexes 5 and 12 were not active and 

displayed half-lives of 23.9 and 59.1 min, respectively. Clearly 

other factors such as the affinity for chloride and reactions with 

other intracellular components may also be involved in 

determining the antitubercular activity of these rhodium and 

iridium complexes. Figure 8 summarises the general activity 

trends observed for the organometallic sulfadoxine complexes. 

Activity is dependent on the metal, with ruthenium being inactive 

and rhodium generally the most active. Attachment of one or two 

phenyl rings to Cp* (to give Cpxph or Cpxbiph increases activity and 

increasing the size and planarity of the heteroaromatic ring of the 

imino group increases activity. Increasing the aromaticity of the 

sulfadoxinyl and cyclopentadienyl ligands renders the complex 

more lipophilic. However, this did not always result in an increase 

in activity (Figures S17A-D). In fact, the complexes that display 

‘intermediate’ relative hydrophobicity (3, 6, 10) generally showed 

the best biological activity across all assays.  

The high activity of the iridium complex 14 is attributable to the 

cooperative effect of the quinolylimino and Cp*biph functionalities 

which could potentially facilitate transport across lipid membranes 

to reach intracellular parasite targets.  

Figure 8. Features of structure-activity trends for complexes 1-14. 
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Conclusions 
Functionalisation of the drug sulfadoxine with pyridyl- or quinolyl-

imino groups followed by organo-metallation yielded 14 new half-

sandwich organo-ruthenium(II), -rhodium(III) and -iridium(III) 

complexes. In these complexes, the imino and pyridyl/quinolyl 

nitrogens provided an N,N-chelation site for the metal . Screening 

for in vitro biological activity against various parasite strains and 

Mycobacterium tuberculosis revealed that the ruthenium arene 

complexes were not active, and in general the rhodium Cpx 

complexes were more active than their iridium counterparts, 

although iridium complex 14 displayed the best inhibitory activity 

out of all complexes screened. The parent drug, sulfadoxine, was 

not active in most of the assays, while the complexes were active; 

affirming the concept that derivatisation of drugs with organo-

metallic fragments can beneficially affect bioactivity. Against the 

malaria parasite, most of the complexes displayed inhibitory 

activity in the sexual LSG assay, while the clinical drugs, 

pyrimethamine, sulfadoxine and chloroquine were inactive. This 

demonstrates that conjugation of organometallic groups to a drug 

can alter its biological target, as noted by others.[15, 21, 22, 47-56] 

All the complexes studied contain a reactive metal-Cl bond which 

readily underwent aquation, although the rates varied widely, 

being slowest for the complexes with Cpxbiph ligands with half-lives 

of >2 h (4, 7 and 14), and fastest (minutes) for Cp* complexes (2 

and 9). From this library, several complexes are promising for 

further development as antiparasitic and antitubercular agents. 

Work on structural modifications of L1 and L2, as well as studies 

of the interactions of complexes 2-7 and 9-14 with potential 

biological targets, is currently underway. 

 

 

Experimental Section 

Chemicals and reagents. RuCl3·3H2O, RhCl3·3H2O, and IrCl3·3H2O were 

purchased from Precious Metals Online (PMO pty Ltd). All reagent 

solvents were obtained from Fisher Scientific and Sigma-Aldrich. 

Sulfadoxine (99 %), 2-pyridine carboxaldehyde, α-phellandrene and 

1,2,3,4,5-pentamethylcyclopentadiene were purchased from Sigma 

Aldrich. 2-Quinoline carboxaldehyde was obtained from VWR Chemicals 

Limited. All reagents and chemicals were used as received. Deuterated 

solvents (CD3CN, CDCl3, MeOD-d4, D2O, DMSO-d6) were purchased from 

Cambridge Isotopes Limited. Dichloro(p-cymene)ruthenium(II) dimer, 

dichloro(pentamethylcyclopentadienyl)rhodium(III) dimer, dichloro(penta-

methylcyclopentadienyl)iridium(III) dimer, dichloro(4-(tetramethyl(bi-

phenyl)cyclopentadienyl)iridium(III) dimer, dichloro(4-(tetramethyl(bi-

phenyl)cyclopentadienyl)rhodium(III) dimer, dichloro(tetra-

methyl(phenyl)cyclopentadienyl)iridium(III) dimer and dichloro(tetra-

methyl(phenyl)cyclopentadienyl)rhodium (III) dimer  were synthesised 

using a reported microwave method.[57]  

Instrumentation. NMR data were acquired on either 400 MHz Bruker 

DRX-400, 500-MHz spectrometer Bruker DRX-500 or Varian 300 MHz 

spectrometers at ambient temperature unless otherwise stated. 1H-NMR 

chemical shifts were internally referenced to residual protiated MeOD-d4 

(3.49 ppm), DMSO-d6 (2.50 ppm), acetone-d6 (2.05 ppm), or CDCl3 (7.26 

ppm). Elemental analysis was carried out on a CE-440 Exeter Elemental 

Analyzer by the Warwick Analytical Service. Electronic absorption 

spectroscopy spectra were recorded on Varian Cary 300 or Cary 300Bio 

UV-vis spectrometers using 1-cm path-length cuvettes. High resolution 

mass spectral data were obtained using methanolic solutions (50% MeOH 

in H2O) on a Bruker Esquire 2000 instrument with electrospray as the 

ionization method. Microwave syntheses were carried out in a CEM 

Discover SP microwave reactor.  

Purity measurements by HPLC were carried out using the Agilent 1200 

system with a VDW and 100 μL loop. The column used was an Agilent 

Zorbax Eclipse Plus C18, 250 × 4.6 mm with a 5 μm pore size. The mobile 

phase was H2O 0.1% TFA/MeCN 0.1% TFA at gradients of t = 0 min 10% 

B, t = 30 min 80% B, t = 40 min 80% B, t = 41 min 10% B, and t = 55 min 

10% B over a 55 min period. The flow rate was 1 mL.min−1, and the 

detection wavelength was set at 254 nm with the reference wavelength at 

either 360 or 510 nm. Samples were dissolved in 10% CH3CN/90 % H2O 

at ca. 100 μM. Sample injections were half the loop volume (50 μL) with 

needle washes of MeOH and H2O between injections. It was assumed that 

all species in a sample have the same extinction coefficient at 254 nm. All 

peaks were manually integrated.  

Synthesis of sulfadoxineimino ligands. Ligands L1 and L2 were 

prepared using the following procedures. Both compounds were isolated 

as crude solids and used for preparation of complexes 1-14 without further 

purification. 

N-(5,6-dimethoxypyrimidin-4-yl)-4-((pyridin-2-ylmethylene)amino)-

benzenesulfonamide (2-pyridyliminesulfadoxine) (L1). Sulfadoxine 

(1.00 g, 3.22 mmol), 2-pyridine carboxaldehyde (0.345 g, 3.22 mmol) and 

anhydrous calcium oxide powder (0.050 g) were suspended in methanol 

(3 mL) in a microwave vial. The vial was sealed and placed in the 

microwave oven and the reaction was allowed to proceed, with stirring, 

under the following conditions: T = 373 K, P = 150 W, t = 5 min. Upon 

cooling to room temperature, the reaction mixture was diluted with 

methanol (5 mL) and filtered through celite on a medium-pore scintered 

funnel to remove the calcium oxide. The solvent of the filtrate was 

evaporated under reduced pressure and the crude residue redissolved in 

methanol (1 mL) and then passed through a small plug of florisil. After 

evaporation of the solvent, the oily solid isolated was washed with copious 

amounts of chloroform and dried to yield the crude product (L1) as a beige 

amorphous solid.  

N-(5,6-dimethoxypyrimidin-4-yl)-4-((isoquinolin-3-ylmethylene)-

amino)benzenesulfonamide (2-quinolyliminesulfdoxine) (L2). 

Sulfadoxine (1.00 g, 3.22 mmol), and 2-quinoline carboxaldehyde (0.506g, 

3.2 mmol) were suspended in methanol (3 mL) in a microwave vial. The 

vial was sealed and placed in the microwave oven and the reaction was 

allowed to proceed, with stirring, under the following conditions: T = 373 K, 

P = 150 W, t = 5 min. Upon cooling to ambient temperature, the reaction 

mixture was diluted with methanol (5 mL) and filtered through celite on a 

medium-pore scintered funnel to remove the calcium oxide. The solvent 

from the filtrate was evaporated under reduced pressure and the crude 

residue redissolved in DCM (1 mL) and then passed through a small plug 

of florisil. After evaporation of the solvent, the oily solid isolated was dried 

under high vacuum to yield the product (L2) as a yellow crystalline solid. 

Synthesis of RuII, RhIII and IrIII pyridyl- and quinolyl-sulfadoxine 

complexes. 

General Synthetic Method. The ligand, either 2-pyridylimine-sulfadoxine 

(L1) or 2-quinolylimine-sulfadoxine (L2) (2 mol equiv.) was dissolved in 

methanol (15 mL) and the ruthenium, rhodium or iridium dimer (1 mol 

equiv.) was added. The reaction solution was stirred for 16 h at room 

temperature. Acetone (10 mL) was then added to redissolve any 

precipitate followed by ammonium hexafluorophosphate (2 mol equiv.). 

After stirring at room temperature for a further 2 h, the solution was filtered 

through celite and the volume was reduced to approximately 3 mL. The 

product was then precipitated from solution by addition of diethyl ether, 

isolated by vacuum filtration, washed with diethyl ether, and dried. Full 

characterization data of complexes 1-14 is given in the Supporting 

Information. 
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X-ray crystal structures 

Complex 2. Single crystals of 2 were grown by slow evaporation of a 

solution of the complex in acteone. A suitable crystal was selected and 

mounted on a glass fibre with Fromblin oil on an Xcalibur Gemini 

diffractometer with a Ruby CCD area detector. The crystal was kept at 

150(2) K during data collection. Using Olex2,[58] the structure was solved 

with the XS[59] structure solution program using Direct Methods and refined 

with the ShelXL[59] refinement package using Least Squares minimisation. 

The NH on N16 was located in a difference map. It was allowed to refine 

freely but given a Uiso 1.5 times the Uequiv of the parent nitrogen. It forms 

the short contacts listed in Table S2 in the Supporting Information . 

Complex 10. Single crystals of 10 were grown from acetone/diethyl ether. 

A suitable crystal was selected and mounted on a glass fibre with Fromblin 

oil and placed on an Xcalibur Gemini diffractometer with a Ruby CCD area 

detector. The crystal was kept at 150(2) K during data collection. Using 

Olex2,[58] the structure was solved with the ShelXT[60] structure solution 

program using Direct Methods and refined with the XL[59] refinement 

package using Least Squares minimisation. The asymmetric unit contains 

the Rh complex, a PF6 counter ion and one and a half molecules of 

acetone. Acetone C201-C203 lies very close to an inversion centre and 

was modeled at half occupied behind a PART -1 instruction. The NH was 

located on the sulphonamide nitrogen in a difference map. It was allowed 

to refine freely but given a Uiso 1.5 times the Uequiv of the parent nitrogen. 

It forms a short contact to a solvent acetone, Table S2. 

Complex 13. Single crystals of 13 were grown from acetone/diethyl ether. 

A suitable crystal was selected and mounted on a glass fibre with Fromblin 

oil and placed on an Xcalibur Gemini diffractometer with a Ruby CCD area 

detector. The crystal was kept at 150(2) K during data collection. Using 

Olex2,[58] the structure was solved with the ShelXT[60] structure solution 

program using Direct Methods and refined with the ShelXL[59] refinement 

package using Least Squares minimisation. The asymmetric unit contains 

the iridium complex, a PF6 counter ion and one and a half molecules of 

acetone. This occurs twice in the unit cell. The half-occupied molecule of 

acetone sits very close to an inversion centre and was refined behind a 

PARTS -1 instruction. The NH was located in a difference map on the 

pyrazine amine and allowed to refine freely but given thermal paramaters 

Uiso 1.5 times the Uequiv of the parent N20. It forms a short contact to the 

full occupied acetone oxygen, table S2. A SIMU restraint was used to give 

the thermal ellipsoids of the partially occupied acetone reasonable thermal 

parameters. This structure is isostructural (same structure) and isomorphic 

(same unit cell and space group) as 10.  

Hydrolysis studies. Hydrolysis of all complexes was monitored by UV–

vis spectroscopy and the products verified by HR-ESI-MS. For UV–vis 

spectroscopy, the complexes were dissolved in DMSO and diluted with 

Milli-Q® purified H2O to give 50 µM solutions with a final ratio of 

DMSO:H2O of 2.5:97.5 v/v. The absorbance was recorded at several time 

intervals between 200-600 nm over 16 h at 310 K. Plots of the change in 

absorbance with time were computer-fitted to the pseudo-first-order rate 

equation, A = C0 + C1e-kt (where C0 and C1 are computer-fitted constants 

and A is the absorbance corresponding to time) using Origin version 9.1.0 

to give the half-lives (t1/2, min) and rate constants (k, min-1).  

Relative Hydrophobicity Studies. Relative hydrophobicity 

measurements by RP-HPLC were performed using the Agilent 1200 

system with a variable wavelength detector (VWD) and 100 μL loop. The 

column used was an Agilent Zorbax Eclipse Plus C18, 150 × 4.6 mm with 

a 5 μm pore size. Mobile phase used was H2O 50 mM NaCl/H2O/MeCN 

1:1 50 mM NaCl at gradients of t = 0 min, 20% B; t = 15 min, 100% B; t = 

25 min 100% B; t = 27 min 20% B; and t = 35 min 20% B over a 35 min 

period. Flow rate was 1 mL.min−1, and the detection wavelength was set 

at 254 nm with the reference wavelength at 360 nm. Sample injections 

were half the loop volume (50 μL) with needle washes of H2O between 

injections. Samples were dissolved in 10% MeOH/90% H2O in 50 mM 

NaCl at ca. 100 μM. Reported retention times (tR) and standard deviations 

(SD) are from duplicates of triplicate measurements. 

M. tuberculosis Resazurin Assay of Growth Inhibition. The minimal 

inhibitory concentration (MIC) of compounds was determined using a 

modified version of the resazurin viability assay.[61] All compounds were 

initially prepared as 100 mM stocks in 100% DMSO and then adjusted to 

the required concentration in diluent (0.1% DMSO). Compounds (0.2− 100 

μM) were added to wells in 2-fold dilutions and incubated for 7 days with 

M. tuberculosis H37Rv previously diluted to an OD600nm of ca. 0.001. 

Resazurin (10 μL; 0.05% w/v; Sigma-Aldrich, Australia) was then added, 

and plates were incubated for 24 h at 310 K. The MIC was calculated by 

visual determination of colour change within wells or detection of 

fluorescence at 590 nm using a FLUOstar Omega microplate reader (BMG 

Labtech, Germany). 

Evaluation of in vitro activity against P. falciparum asexual blood 

stages. Compounds were solubilized in DMSO to a final concentration of 

5 mM. The stock compounds were then diluted further in DMSO to 

generate 3 doses per log dose response dilutions within 384-well 

polypropylene compound storage plates. The dose response dilution 

plates were then diluted 1 µL into 25 µL of sterile water and 5 µL 

transferred into 384-well imaging plates. The confocal image analysis 

assay is published in detail elsewhere.[62] In brief, the P. falciparum 3D7 

and Dd2 strains were kept in continuous culture (RPMI supplemented with, 

25 mM Hepes, 50 µg/mL hypoxanthine, 2.5 mg/mL Albumax II® plus 5% 

human serum) with sorbitol synchronization performed over two 

successive intra erythrocytic lifecycles to provide ring-stage parasites for 

use within the assays. On the day of assay, ring-stage parasite culture was 

adjusted to 2% parasitemia and 0.3% hematocrit and 45 µL of which was 

added to the compound-containing imaging plates. The assay plates were 

incubated for 72 h at 5% O2, 5% CO2 and 90% N2.  The plates were 

removed from incubation and allowed to equilibrate at room temperature 

prior to staining with 4',6-diamidino-2-phenylindole (DAPI). The imaging 

assay plates were then imaged on the Opera confocal imaging system. 

Using Accapella scripting software the number of classified parasites was 

determined for each assay well. Percent inhibition of parasite proliferation 

was calculated and normalized to assay control data of 0.4% DMSO and 

5 µM Puromycin. Percent inhibition of parasite numbers (normalized to 5 

µM puromycin) was plotted against log concentration of the compounds 

using a 4 parameter log dose, non-linear regression analysis, with 

sigmoidal dose response (variable slope) curve fit using Prizm 4.0. No 

constraints were placed on the top, bottom or Hill slope of the curve fit in 

the graphing software. 

Evaluation of gametocytocidal in vitro activity. The assay is described 

elsewhere in detail.[63] In brief, the assay uses highly synchronous stage 

IV gametocytes induced from a transgenic NF54-pfs16-Luc-GFP parasite 

strain.[64] The gametocytes were harvested by magnetic isolation on day 8 

and then added (45 µL of 10% gametocytes at 0.1% haematocrit) to the 

test compounds in 384 well imaging plates as described for the asexual 

blood stage P. falciparum assay above. Following the addition of the 

parasite to the test compounds, the plates were incubated for 72 h under 

reduced oxygen tension (5% CO2, 5% O2, 80% N2). After incubation, 

Mitotracker Red CMH2XRos was added to the plates, which were then 

incubated overnight in standard conditions. After overnight incubation, the 

plates were imaged on the Opera confocal imaging system. Images for 

GFP and Mitotracker Red were overlaid and the number of elongated 

viable gametocytes per image determined using a script based on 

Acapella software developed for use with the Opera imaging system. The 

average Mitotracker Red fluorescence intensity was determined for 

objects greater than a determined size. Objects which were more than 

three times longer than they are wide were identified using the GFP 

images and are representative of gametocytes. Objects which were 

elongated and had Mitotracker Red fluorescent intensity above the cut-off 

limit were then identified as viable gametocytes. Using DMSO and 5 µM 
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puromycin as controls, the relative percent inhibition was calculated for the 

compounds. IC50 values were then calculated as described for the P. 

falciparum asexual blood stage assay described above.  

Human embryonic kidney (HEK293) mammalian cell cytotoxicity. 

HEK293 cells were cultured in DMEM culture media supplemented with 

10% Foetal Bovine Serum (FBS). The cells were harvested and dispensed 

into 384 well sterile black, clear base microtiter plates at 2000 cells/well 

(45 µL). The plates were left to settle and the cells attach overnight in a 

standard tissue culture incubator at 5% CO2, 37oC and 60% humidity. After 

overnight incubation, 5 µL of diluted compound (as described in the section, 

Evaluation of in vitro activity against P. falciparum asexual blood stages) 

was added to the cell containing plates and incubated for a further 72 h. 

After incubation the supernatant from the wells was removed and 40ul of 

40 µM resazurin in DMEM media (FBS free) added to all wells. The plates 

were incubated for 6 h then measured for fluorescent intensity using the 

PerkinElmer Envision. The data were analysed as in the Plasmodium 

falciparum methods section. 

Evaluation of in vitro Trichomonas vaginalis Growth Inhibition. 

Protozoal parasites were cultured for 24 h at 310 K. To perform the initial 

susceptibility screens on T. vaginalis (G3 genome strain), compounds 

were dissolved in DMSO to final concentrations of 100 μM; 5 μL aliquots 

of these suspensions were diluted in 5 mL of TYM diamond’s media to 

obtain a final concentration of 100 μM. After 24 h, cells were counted using 

a hemacytometer. Cell counts were normalized to the DMSO controls, in 

order to allow direct comparison and averaging of the various trials. These 

data sets were then transformed using Prism Software, GraphPad, by 

taking the log of the drug concentrations for the trials, and inputting this 

transform into a log (inhibitor) versus response-variable slope regression 

option. Within this non-linear regression, constraints were set to force the 

maximum value (top) to 1 and the minimum value (bottom) to 0. The slope 

was left variable, and then determined through which regression was 

performed. The sample size consisted of 4 independent trials carried out 

on four different days (to account for possible variation in parasite culture). 

The assays were performed in 15 mL culture tubes, with both wildtype 

parasites and 0.1% DMSO-only treated parasites serving as control tubes 

to normalize for the effects of the solvent and in vitro conditions. After 24 h, 

cells were counted using a hemacytometer. The IC50 values for 

compounds 3, 4, 10, 11 and 14 were determined by running assays for 

increasing drug concentrations, 5–40 μM, and performing a regression 

analysis using Prism software from GraphPad. Calculated IC50 values of 3, 

4, 10, 11 and 14 were then re-confirmed by testing again using the same 

assay described above. 

Cancer Cell culture. A2780 ovarian cancer cells were obtained from the 

European Cell Culture Collection, grown as adherent monolayers in fully 

prepared Roswell Park Memorial Media (RPMI-1640 containing 10% FCS, 

5% glutamine and 5% penn/strep) and were passaged using trypsin-EDTA 

when they had reached a 80% confluence. They were kept in a humidified 

5% CO2 atmosphere at 310K. 

In vitro antiproliferative activity assay. Briefly, A2780 ovarian cancer 

cells were seeded in a 96-well plate at a density of 5000 cells/well. After 

48 h of incubation in drug-free medium, cells were exposed to various 

concentrations of the metal complexes to be tested. A 24h drug exposure 

period was allowed, before removing the drug by suction, washing the cells 

with PBS and allowing three doubling times for recovery in drug-free 

medium. At the end of this period, cell survival was assessed using the 

sulforhodamine B assay as a measure of protein content in the treated 

cells compared to that of untreated controls. The experiments were carried 

out in duplicates of triplicates and their standard deviations were calculated. 
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