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Abstract 25 

Infection by most DNA viruses activates a cellular DNA damage response (DDR), which may be to the 26 

detriment or advantage of the virus. In the case of adenoviruses, they neutralise anti-viral effects of 27 

DDR activation by targeting a number of proteins for rapid proteasome-mediated degradation. We 28 

have now identified a novel DDR protein, tankyrase 1 binding protein 1 (TNKS1BP1 also known as 29 

Tab182), which is degraded during infection by adenovirus 5 and adenovirus 12. In both cases, 30 

degradation requires the action of E1B55K and E4orf6 viral proteins and is mediated through the 31 

proteasome by the action of cullin-based cellular E3 ligases. The degradation of Tab182 appears to 32 

be serotype specific as the protein remains relatively stable following infection with adenoviruses 4, 33 

7, 9 and 11.  We have gone on to confirm that Tab182 is an integral component of the CNOT 34 

complex, which has transcriptional regulatory, deadenylation and E3 ligase activity. At least 2 other 35 

members of the complex (CNOT3 and CNOT7) are also reduced in level during adenovirus infection 36 

whereas levels of CNOT4 and CNOT1 remain stable. Depletion of Tab182 with siRNA enhances 37 

expression of E1As to a limited extent during adenovirus infection but depletion of CNOT1 is 38 

particularly advantageous to the virus and results in a marked increase in expression of adenovirus 39 

early proteins. In addition, depletion of Tab182 and CNOT1 results in a limited increase in viral DNA 40 

during infection. We conclude that the cellular CNOT complex is a previously unidentified major 41 

target for adenoviruses during infection. 42 

Importance 43 

Adenoviruses target a number of cellular proteins involved in the DNA damage response for rapid 44 

degradation. We have now shown that Tab182, which we have confirmed to be an integral 45 

component of the mammalian CNOT complex, is degraded following infection by adenovirus 46 

serotypes 5 and 12. This requires the viral E1B55K and E4orf6 proteins and is mediated by cullin-47 

based E3 ligases and the proteasome. In addition to Tab182, other CNOT proteins are also reduced 48 

during adenovirus infection. Thus, CNOT3 and CNOT7, for example, are degraded whereas CNOT4 49 

and CNOT1 are not. siRNA-mediated depletion of components of the complex enhances the 50 
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expression of adenovirus early proteins and increases the concentration of viral DNA produced 51 

during infection. This study highlights a novel protein complex, CNOT, which is targeted for 52 

adenovirus-mediated protein degradation. To our knowledge this is the first time that the CNOT 53 

complex has been identified as an adenoviral target. 54 

Introduction 55 

Adenoviruses are, together with the Papilloma and Polyoma viruses, members of the small DNA 56 

tumour virus family (1). There are in excess of 70 human adenovirus types, subdivided into 7 species, 57 

designated A-G; the most commonly studied are the group C adenoviruses types 2 and 5 (Ad2 and 58 

Ad5) and the group A oncogenic adenovirus 12 (Ad12). Adenoviruses have a linear double-stranded 59 

DNA genome, approximately 35kbp in length. The first gene to be expressed, following infection, is 60 

adenovirus early region 1A (AdE1A) which is present in two major forms-a long form and a short 61 

form translated from 13S and 12S mRNAs, respectively. AdE1A induces progression of the host cell 62 

into a ‘pseudo-S-phase’ through interaction with a number of cellular proteins, such as the Rb family, 63 

CBP/p300 and components of the cellular transcriptional machinery (2-4). It is considered that this 64 

provides an environment conducive to viral replication. Adenovirus E1A is the major adenovirus 65 

oncogene and has long been known to transform cells in culture in combination with a co-operating 66 

oncogene, such mutant Ras or adenovirus E1B (3, 5). 67 

 Shortly after initial infection the host cell initiates a DNA damage response (DDR), seen as 68 

phosphorylation of a number of well-characterised Ataxia telangiectasia mutated (ATM) and ATM 69 

and Rad3-related (ATR) substrates (6-8). It is presumed that this may be due to recognition of the 70 

viral genome as broken cellular DNA or perhaps due to stress caused by infection itself. The virus, in 71 

turn, is able to inhibit the DDR, primarily by degradation and/or mis-localization of its key 72 

components (7-12). The cellular DDR comprises a series of pathways which have evolved to deal 73 

with different forms of DNA damage, such as double strand breaks (DSBs), single strand breaks 74 

(SSBs), and the formation of bulky adducts and base mismatches (13-15). The response to DSBs is 75 

largely based on the activities of three kinases – ATM, ATR, and DNA dependent protein kinase 76 
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(DNA-PK). DSBs can be detected by both the MRN complex (comprising MRE11, Rad50 and NBS1) or 77 

the Ku 70/80 heterodimer which can lead to repair by homologous recombination (HR) or non-78 

homologous end joining (NHEJ), respectively. Recognition of DSBs by MRN is followed by the 79 

recruitment of ATM, which is activated by acetylation by Tip60 while binding of Ku70/80 results in 80 

auto-phosphorylation of DNA-PK that is required for NHEJ (16-18). Histone H2AX and multiple down-81 

stream targets are phosphorylated by ATM which has the effect of recruiting a large number of 82 

components to the lesion to initiate repair, as well as to cause cell cycle arrest so that damaged DNA 83 

is not replicated (13-17). ATR is activated in response to single-stranded DNA (ssDNA) which can 84 

arise as a result of DSB repair and stalled replication forks. Regions of ssDNA are coated with 85 

replication protein A (RPA) which, in turn, recruits ATR and the ATR interacting protein, ATRIP. 86 

Further complexes, comprising Rad9-Rad1 and Hus1 (9-1-1) and Rad17-replication factor C2 (RFC2) 87 

clamp loader, together with TOPBP1 are recruited to ssDNA, RPA and ATR leading to cell cycle arrest 88 

and repair (17-19). 89 

It was originally shown that when cells were infected with a mutant Ad5 virus, lacking the E4 region, 90 

viral genomes were joined end to end to form concatamers which could not be packaged into viral 91 

capsids (20). It was later demonstrated that during infection with wt virus, cellular E3 ligases are hi-92 

jacked by the virus and used to degrade key cellular DDR proteins; for example, p53 is degraded by 93 

both Ad5 and Ad12 and requires the action of the E1B55K and E4orf6 viral proteins (21-23). In the 94 

case of Ad5 the viral proteins recruit an E3 ligase, comprising elongins B and C, Rbx and cullin 5, 95 

which ubiquitylates p53 and this is then degraded by the proteasome (9). Similarly, Ad12 also 96 

facilitates the degradation of p53, but through a cullin 2-based E3 ligase (12). Other DDR proteins 97 

degraded during Ad5 and Ad12 infection include MRE11, DNA ligase IV and BLM (10, 11, and 24). In 98 

addition to DDR components a number of other unrelated proteins are also degraded during Ad5 99 

infection. These substrates include DAXX, integrin3α and TIF1γ (25-27). During infection 100 

adenoviruses also cause translocation of proteins associated with the DDR. For example, ATR, ATRIP, 101 

Rad 17, 53BP1, BRCA1, TOPBPI, RPA and hnRNPUL-1 have all been observed at sites of viral 102 
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replication in the nucleus, known as viral replication centres (VRCs) (6, 8 and 28). In addition, it is 103 

notable that certain DDR proteins, such as p53 and MRE11, are translocated to aggresomes where 104 

they may be degraded (29-31).  105 

Tab182  (also known as tankyrase 1 binding protein 1 [TNKS1BP1]) has previously been shown to be 106 

an ATM and/or ATR substrate which is highly phosphorylated following exposure to ionizing 107 

radiation (IR) and to bind to tankyrase 1 (32, 33). It appears to be required for efficient DSB repair 108 

and facilitates PARP1-dependent autophosphorylation of DNA-PK although its precise role is not 109 

clear at present (34, 35 and our unpublished data). In addition, Tab182 has a role in regulation of the 110 

actin cytoskeleton (36). Tab182 has previously been suggested to be a component of the mammalian 111 

CNOT complex although its role in that context is unknown. The CNOT complex is a multi-protein 112 

complex, highly conserved in eukaryotes (37-39). In humans, the CNOT complex is composed of 113 

components CNOT1 to 11 (CNOT9 and CNOT11 have the alternative nomenclature RQCD and 114 

C2orf29, respectively) (40, 41). In yeast, where most studies of CCR4-NOT have been performed, 115 

there are 9 core subunits-Cer4, Caf1, Caf40, Caf130 and NOTs1-5, although no Tab182 ortholog has 116 

been identified (38, 42 and 43). The human CNOT complex consists of a stable inner complex 117 

(CNOT1, CNOT2, CNOT3, CNOT9 and CNOT10) with CNOT6 and its homologue 6L, CNOT7 and CNOT8 118 

being less strongly associated. CNOT4 seems to be weakly associated, whereas Tab182 and C2orf29 119 

(CNOT11) are more strongly bound (40, 44 and 45). Many different enzymatic activities have been 120 

attributed to the CCR4-NOT complex in yeast and CNOT in mammals. It is considered to be a major 121 

deadenylase, responsible, with Pan2-Pan3, for shortening of the poly (A) tails of cytoplasmic RNAs 122 

(38, 46 and 47). The components CNOT7 and CNOT8, together with CNOT6 and CNOT6L, are 123 

deadenylase subunits. Further components of the complex have E3 ligase, translational repression, 124 

RNA export and nuclear surveillance activities (38, 48-50). CNOT4 is the E3 ubiquitin ligase but seems 125 

to interact only weakly with the remainder of the complex (40). CNOT1 forms a scaffold on which 126 

the CNOT and deadenylase modules are formed (41, 51 and 52). The central region of CNOT1 127 

interacts with the deadenylase subunits, with CNOT7 forming a bridge between CNOT1 and CNOT6L 128 

 on A
pril 10, 2018 by U

niversity of B
irm

ingham
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


[6] 
 

(39). The C-terminal region of CNOT1 binds to the remainder of the NOT module which comprises 129 

CNOT2 and CNOT3.  130 

A number of studies have implicated the CCR4-NOT complex in the DDR in yeast. In the majority of 131 

these, sensitivity assays were performed using yeast strains that were mutant for various CCR4-NOT 132 

components. For example, loss of CCR4 and Caf1 render the yeast sensitive to IR, hydroxyurea (HU) 133 

and camptothecin, an inhibitor of DNA topoisomerase I (53-55). Similarly, NOT1-5 mutant yeast 134 

strains have been shown to be sensitive to HU (53). These data suggest that the CCR4-NOT complex 135 

is involved in the response to a number of forms of DNA damage and replication stress although the 136 

mechanisms involved remain unclear.  137 

Here we demonstrate that Tab182 is degraded during Ad5 and Ad12 infection in an E1B55K- and 138 

E4orf6-dependent manner. We have confirmed that Tab182 is a component of the CNOT complex 139 

and that levels of at least two other components of the complex are similarly reduced during 140 

adenovirus infection. Significantly, depletion of Tab182 or disruption of the CNOT complex enhances 141 

expression of adenovirus E1A at the transcriptional level early in infection. 142 

Results 143 

Tab182 is degraded during adenovirus infection. 144 

It has previously been suggested that Tab182 may have a role in the DDR based on the observation 145 

that the protein has multiple potential ATM/ATR phosphorylation sites (SQ/TQ) and is 146 

phosphorylated following exposure to IR (33) as well as its recently proposed role in DSB repair (34, 147 

35). In a screen to detect novel DDR components targeted by adenoviruses the effect of viral 148 

infection on Tab182 was examined. It can be seen that, during both Ad5 and Ad12 infection of HeLa 149 

cells, Tab182 levels decline rapidly after 24 hours (Figures 1A and 1B). It is particularly notable that 150 

the levels of Tab182 increase in the initial stages of infection with both serotypes (Figure 1 and 151 

succeeding figures). This appears to be a cell cycle effect, since, in nocodazole ‘shake off’ 152 

experiments, Tab182 expression is greatest during S phase and mitosis and reduced in the G1 phase 153 
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of the cell cycle (data not shown). RT-PCR analysis has demonstrated that the increased protein 154 

expression coincides with increases in Tab182 mRNA (data not shown). 155 

Tab182 degradation requires the E1B55K and E4orf6 viral proteins 156 

Multiple previous studies have demonstrated the roles of AdE1B55K and AdE4orf6 in targeting 157 

cellular proteins for degradation (6-12). To determine whether these components are involved in the 158 

observed reduction in level of Tab182, infection with a panel of mutant viruses was carried out. 159 

Infection with the Ad5 (Ad5 dl1520) and Ad12 (Ad12dl620) EIB55K negative viruses had no effect on 160 

the level of Tab182 (Figures 1C and 1D), indicating a requirement for the larger AdE1B protein for 161 

degradation.  162 

Following infection with various Ad5E4 negative viruses there was no reduction in Tab182 level 163 

when the E4orf6 protein was not expressed, as in H5pm4154 and H5pm4155 (Figures 2A and 2B). 164 

Viruses which fail to express other E4 proteins degrade Tab182 in a manner comparable to wild type 165 

(Figure 2). Thus, H5in351 (E4orf1-), H5in352 (E4orf2-), H5pm4166 (E4orf4-) and H5pm4150 (E4orf3-) 166 

are all able to cause rapid degradation of Tab182 (Figure 2).  The H5dl356 virus, which is E4orf7 167 

negative, appears to express E4orf6 at much lower levels than expected which probably explains 168 

why levels of Tab182 and MRE11 are only very marginally reduced (Figure 2C). H5pm4155, which is 169 

E4orf3 and E4orf6 negative, expresses somewhat reduced levels of E1B55K, compared to the other 170 

viruses shown here (Figure 2C). Reasons for this are not apparent.  Overall, we conclude that 171 

degradation of Tab182 requires, in Ad5 at least, E1B55K and E4orf6. Significantly, in all western blots 172 

shown in Figures 1 and 2 (and Figure 5A) degradation of Tab182 occurs somewhat later than 173 

degradation of MRE11 but at similar times to p53 degradation (data not shown). 174 

In addition, to confirm that reduction in Tab182 levels is not due to a reduction in mRNA, RT-PCR 175 

was carried out on Ad5 and Ad12 infected cells (Figure 3). This clearly shows that Tab182 mRNA 176 

levels are equivalent to, or higher than, uninfected cells up to about 72 hours post infection in 177 

contrast to the sharp reduction in Tab182 protein levels after 24 hours (compare Figures 1 and 3). 178 
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We conclude that loss of Tab182 protein is due to active protein degradation and not host cell shut-179 

off which may occur after 72 hours (Figures 3A and 3B). 180 

To demonstrate that the E1B55K and E4orf6 proteins are solely responsible for degradation of 181 

Tab182 plasmids encoding the two Ad5 and Ad12 proteins were transfected into HeLa cells. Cells 182 

were harvested after 48 hours and lysates subjected to western blotting for Tab182, MRE11 and the 183 

viral proteins (Figure 4). E4orf6 proteins were HA-tagged and were detected with an anti-HA 184 

antibody. It can be seen that Tab182 and MRE11 were degraded in the presence of both Ad5 and 185 

Ad12 E1B55K and E4orf6 proteins. These data confirm that similar viral proteins are required for 186 

both Ad5- and Ad12-mediated degradation of Tab182. When the viral proteins were expressed 187 

singly there was little reduction in Tab182 or MRE11 levels confirming that both E1B55K and E4orf6 188 

are required for degradation (Figure 4). 189 

Degradation of Tab182 is limited to certain virus serotypes. 190 

To determine how widespread the degradation of Tab182 is amongst other adenovirus serotypes, 191 

levels of Tab182 were monitored by western blotting following infection of HeLa cells with Ad4 192 

(group E), Ad7 (group B1), Ad9 (group D) and Ad11 (group B2) (Figure 5). In contrast to Ad5 and 193 

Ad12, infection of HeLa cells with Ad9 and Ad11 viruses had no effect on Tab182 expression except 194 

at very late times when host cell shut off could be a contributory factor (Figures 5B and 5C). 195 

Following Ad4 and Ad7 infection there is a reduction in Tab182 levels at later times and this is more 196 

pronounced than the effects seen with Ad9 and Ad11 but much less marked than degradation after 197 

Ad5 and Ad12 infection (Figures 5B and 5C).  The effects of the viruses on Tab182 levels closely 198 

mirror those on MRE11 and, in the case of Ad4, on p53 (Figure 5). (Ad7, Ad9 and Ad11 all markedly 199 

induce expression of p53 as has been reported earlier (28 and 56)).  We have previously reported 200 

that Ad4 facilitates rapid degradation of various DDR proteins (28) although perhaps to a lesser 201 

extent than Ad5 and Ad12. However, it appears to have only a relatively slight effect on Tab182 202 

(Figure 5B). Whilst there is limited reduction in protein level, it seems likely that the group B1, B2, D 203 

and E viruses do not cause significant degradation of Tab182. 204 

 on A
pril 10, 2018 by U

niversity of B
irm

ingham
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


[9] 
 

Degradation of Tab182 requires the proteasome and E3 ligases. 205 

A number of approaches were adopted to investigate the mechanism by which target proteins are 206 

degraded during Ad5 and Ad12 infection. Initially, to confirm that the degradation of Tab182 is by 207 

the proteasome, cells were treated with bortezomib, a well-characterised proteasome inhibitor, or 208 

DMSO (as a negative control) and harvested after 48 hours. In the presence of bortezomib 209 

degradation of Tab182 and MRE11, following viral infection, was reduced but not completely 210 

inhibited; in the absence of the proteasome inhibitor (DMSO) the proteins were degraded in the 211 

presence of the viruses (Figure 6). In a second experiment it has been shown that inhibition of 212 

NEDDylation (with MLN4924) also results in stabilisation of Tab182 following Ad5 and Ad12 213 

infection. It is now well-established that NEDDylation is required for activation of the cullin 214 

components of the E3 ligases during adenovirus infection (9). In the presence of the inhibitor, 215 

degradation of Tab182 was appreciably reduced as was that of p53, although it is interesting to note 216 

that stabilization of MRE11 was appreciably less than was the case for p53; this apparent differential 217 

may be due to the up-regulation of p53 expression due to AdE1A (Figure 7A and 7B). The active 218 

NEDDylated component of the cullin 2 can be seen as a slower migrating protein in the western blots 219 

shown in Figures 7A and 7B. This is markedly reduced in the MLN4924 treated samples. We conclude 220 

that active (NEDDylated) cullins are required for Tab182 degradation during adenovirus infection. 221 

Different adenovirus serotypes do not all make use of the same cullin components to degrade 222 

cellular proteins. Previously it has been shown that protein degradation following Ad5 infection 223 

utilizes a cullin 5-based E3 ligase whereas Ad12 hijacks a cullin 2-based E3 ligase (9 and 12). To 224 

examine whether this difference extends to the degradation of Tab182, H1299 cells, in which Cul2 or 225 

Cul5 expression had been ablated, were infected with Ad5 and Ad12 and levels of Tab182 monitored 226 

(Figures 7C, 7D and 7E). In the Cul2-negative cells Tab182 is more stable following Ad12 infection 227 

compared with the control cell line indicating that Cul2 is required for degradation of Tab182 by this 228 

serotype (Figures 7D and 7C). In contrast, in the Cul5-negative cells Tab182 levels are comparable 229 

with control cells following Ad12 infection indicating that this cullin component is dispensable for 230 
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Tab182 degradation (Figures 7E and 7C). However, more subtle differences were observed between 231 

the degradation of Tab182, after Ad5 infection, in the Cul2-negative and Cul5-negative cells (Figures 232 

7D and 7E). During Ad5 infection the loss of either cullin may result in some stabilization of Tab182 233 

compared to control H1299 cells but does not clearly abrogate its degradation (Figures 7C, 7D and 234 

7E). As expected MRE11 is stabilized in the Cul5-negative cells but not the Cul2-negative cells after 235 

Ad5 infection. This suggests the possible involvement of Cul2, and/or perhaps an unidentified cullin, 236 

in Ad5-mediated Tab182 degradation. Further work will be required to determine if other proteins 237 

beside cullins 2 and 5 are involved in protein degradation by Ad5. 238 

Tab182 does not localize to viral replication centres 239 

It has previously been shown that a number of DDR proteins localize to the sites of adenovirus 240 

replication in the nucleus, known as viral replication centres (VRCs) (6 and 8). To examine if this 241 

applied to Tab182, HeLa cells were transfected with GFP-Tab182 and left for 24 hours. They were 242 

then seeded onto glass coverslips and infected with Ad5 or Ad12. After a further 24 hours cells were 243 

fixed and stained with antibodies that recognise VRCs (Figure 8). In the case of Ad5, VRCs were 244 

visualised using an antibody against the viral DNA binding protein (DBP) while RPA-32 was used as a 245 

surrogate marker for Ad12 VRCs. No specific recruitment of Tab182 to viral replication centres was 246 

observed following infection with either adenovirus serotype (Figure 8A). As expression of GFP-247 

Tab182 was greater than is the case for the wt protein, in a further experiment soluble proteins 248 

were extracted before antibody staining; again no co-localisation of GFP-Tab182 with VRCs was 249 

observed (Figure 8B).  250 

Tab182 associates with AdE1B55K proteins. 251 

As the adenovirus-mediated degradation of Tab182 is AdE1B55K dependent we investigated 252 

whether the two proteins associated, as is the case, for example, with Ad5E1B55K and p53 (57). To 253 

examine this possibility, initially GST pull-down assays were carried out with purified GST-Tab182 (C-254 

terminal region) and whole cell lysates from E1B55K-expressing Ad12E1HER2 and Ad5E1HEK293 255 

cells. In both cases the E1B55K protein was identified as a binding partner (Figures 9A and 9B). As 256 
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well as GST, GST-PRMT1 was included as an irrelevant (negative) control as it is of comparable 257 

molecular weight to the Tab182 polypeptide. No binding of GST or GST-PRMT1 to E1B55K proteins 258 

was seen. In further experiments, using the same cell lines, E1B55K proteins were co-259 

immunoprecipitated using an antibody against Tab182 (Figures 9C and 9D). No co-260 

immunoprecipitation was seen using an irrelevant antibody against collagen IV. In a further 261 

experiment, Ad5E1HEK293 cells and Ad12E1HER2 cells were transfected with a construct encoding 262 

GFP-Tab182. The lysates were immunoprecipitated with antibodies against AdE1B55K proteins and 263 

co-precipitated Tab182 detected by western blotting (Figure 9E). The slightly higher molecular 264 

weight GFP-Tab182 and the endogenous Tab182 were both seen in some lanes. These results 265 

strongly suggest that, in both Ad5 and Ad12 serotypes, the viral E1B55K proteins interact directly 266 

with Tab182. 267 

Although degradation of Tab182 occurs to only a very limited extent during infection with 268 

adenoviruses other than Ad5 and Ad12 (Figure 5) we considered the possibility that the E1B55K 269 

proteins from these other species may also associate with Tab182. Therefore, HeLa cells were 270 

transfected with constructs encoding HA-tagged Ad9E1B55K (group D) or HA-tagged Ad16E1B55K 271 

(group B1). After 48 hours Tab182 was immunoprecipitated and associated E1B55K protein detected 272 

with an antibody against HA (Figure 9F). It can be seen that whilst the Ad9 protein bound strongly 273 

the Ad16 equivalent could only be seen on over-exposed western blots, indicating a very weak 274 

association (Figure 9G). Similar results were obtained when the constructs were transfected into 275 

Ad5E1HEK293 cells (data not shown). To check whether this differentiation extends to other 276 

adenovirus targets the interaction with p53 was examined. After transfection of both constructs into 277 

Ad5E1HEK293 cells, HA-tagged E1B55K proteins were immunoprecipitated and bound p53 detected 278 

by western blotting (Figure 9H). In contrast to Tab182, both Ad9 and Ad16E1B55K proteins strongly 279 

interacted with p53. 280 

 It is now well-established that the small DNA tumour viruses have many cellular targets in common, 281 

such as pRb, p53 and CBP/p300 (58 and 59). It has already been reported that the E6 protein from 282 
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HPV genus beta, species 2 (HPV17a and HPV38) associates with the CNOT complex (60). To examine 283 

if Tab182 interacts with proteins from other small DNA tumour viruses, a co-immunoprecipitation 284 

experiment was carried out with Tab182 antibody using 293FT cells which express SV40 T antigen. 285 

When Tab182 was immunoprecipitated appreciable SV40T was associated with it (Figure 9I).  286 

Tab182 is a component of the CNOT complex. 287 

It has previously been noted that Tab182 can be co-immunoprecipitated with the CNOT complex 288 

from mammalian cells (40). To confirm this association, Tab182 was immunoprecipitated, using the 289 

rabbit antibody raised against the C-terminal fragment, and the total immunoprecipitate analysed by 290 

mass spectrometry. Results from a representative co-immunoprecipitation experiment are 291 

presented in Table 1. In all cases most components of the CNOT complex were detected although 292 

there were limited variations from one experiment to the next. Specifically, CNOT4 was never 293 

detected in any Tab182 co-immunoprecipitate and CNOT 7 and CNOT 8 were occasionally not 294 

identified. Significantly, neither Tab182 nor CNOT proteins were detected in any of the control 295 

immunoprecipitates carried out with rabbit IgG (data not shown). Proteins which were seen in both 296 

Tab182 and control IgG immunoprecipitations have not been listed in Table 1. The proteins listed are 297 

the only ones which were consistently observed in five Tab182 immunoprecipitation experiments 298 

but not in controls. 299 

In a final set of co-immunoprecipitations we investigated whether AdE1B55K proteins were 300 

associated with other CNOT components. Using the adenovirus E1-expressing cells, CNOT1 was 301 

immunoprecipitated and associated E1B55K proteins detected by Western blotting (Figures 9J and 302 

9K). It is possible that these results show direct interaction of the viral proteins with CNOT1 but 303 

could also indicate interaction with other, as yet unidentified, components of the intact CNOT 304 

complex or even Tab182.  305 

Adenovirus infection leads to a reduction in the levels of other CNOT proteins 306 

In light of the co-immunoprecipitation experiments shown in Table 1 and Figure 9 we examined the 307 

levels of other CNOT proteins during adenovirus infection. Following infection of HeLa cells with 308 
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either Ad5 or Ad12 levels of CNOT1, CNOT3, CNOT4 and CNOT7 were monitored by Western blotting 309 

(Figure 10) In contrast to Tab182, levels of CNOT1 and CNOT4 remained stable throughout the time 310 

course of infection (Figures 10A and 10B).  However, levels of both CNOT3 and CNOT7 were 311 

markedly reduced after infection with both serotypes. In the case of Ad5, levels of CNOT3 decline 312 

prior to the observed decrease in CNOT7 whereas for Ad12 CNOT7 levels decline prior to CNOT3 313 

(Figures10A and 10B). Further work will be required to determine whether these proteins are 314 

degraded in the same fashion as Tab182 and whether levels of other CNOT proteins are reduced 315 

during adenovirus infection but these data suggest that the complex may be a major target for 316 

certain adenoviruses.  317 

Tab182 and CNOT1 depletion favours adenovirus infection  318 

To determine what advantage adenoviruses might derive from the degradation of Tab182 and other 319 

CNOT complex proteins, a time course of infection was followed in HeLa cells treated with Tab182 320 

siRNA. In addition, the effect of depletion of CNOT1 was also examined. CNOT1 forms a scaffold on 321 

which other members of the complex associate (41). We, therefore, reasoned that its depletion 322 

would cause maximal disruption of CNOT complex activity. Cells were infected with Ad5 and Ad12 48 323 

hours after the addition of control, Tab182 or CNOT1 siRNAs. It can be seen from Figures 11A and 324 

11B that, in the absence of Tab182, expression levels of the E1A viral proteins were elevated to a 325 

limited extent compared to controls, during the time-course of infection. Similar results were 326 

obtained with the E1B55K negative viruses, Ad5dl1520 and Ad12dl620, in that AdE1A proteins were 327 

expressed at a higher level in the absence of Tab182 (data not shown). In the samples treated with 328 

control siRNA there is a reduction in the level of Tab182 as degradation proceeds. Expression of 329 

other viral proteins varied marginally between Tab182-depleted and control cells. However, in a 330 

further set of experiments it was shown that when CNOT1 was depleted before infection with Ad5 331 

there was a notable increase in E1A and E1B55K expression compared to controls (Figure 11A). In 332 

Ad12 infected cells there was an even more marked increase in expression of the E1A and E1B55K 333 

proteins, compared to control siRNA treated cells (Figure 11B).  From the western blots it is clear 334 
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that Tab182 depletion has its most marked effect at 24 hours post Ad12 infection. However, 335 

depletion of CNOT1 causes a several fold increase in Ad12E1A expression at 24 hours but, notably, 336 

the level of protein stays consistently high up to 96 hours. The effects on Ad5E1A were less 337 

pronounced, although, again, loss of Tab182 had most effect at 24 hours post infection whereas 338 

depletion of CNOT1 facilitated AdE1A expression up to 96 hours.  339 

It has long been known that adenovirus infection promotes cell cycle progression from G1 into a 340 

‘psuedo S-phase’ accompanied by enhanced expression of cyclin E (reviewed in 61, for example). In 341 

addition, it has also been reported that Ad E1A promotes expression of the tyrosine phosphatase 342 

CDC25A, which is required for the G1 to S-phase transition (62). In an attempt to examine whether 343 

the depletion of Tab182 and CNOT1 affects the ability of adenoviruses to initiate cell cycle 344 

progression the expression of CDC25A was initially examined. It is notable that, in the Tab182 and 345 

CNOT1 depleted cells, there is only very limited induction of CDC25A after infection whereas this is 346 

appreciable in the control infected cells (Figure 11A and 11B). After 24 hours in all cases, expression 347 

returns to a low level comparable with uninfected cells.  We suggest that low level expression of 348 

CDC25A is required by the virus for progression of the infected cells into pseudo S-phase but after 349 

that, to stop further progression, CDC25A may be detrimental to viral replication. It is possible that 350 

reduction in CNOT components decreases CDC25A, retaining the cells in a cell cycle phase more 351 

conducive to viral early protein expression and viral replication. 352 

Tab182 depletion favours progression into S phase after adenovirus infection 353 

In view of the CDC25A western blotting data shown in Figure 11, the effects of depletion of Tab182 354 

or CNOT1 on cyclin E expression were also examined. HeLa cells were again treated with control, 355 

Tab182 and CNOT1 siRNAs, mock-infected or infected with Ad12 and then harvested at various 356 

times up to 96 hours. In the mock-infected cells treated with control siRNA cyclin E is expressed at 357 

constant low level but in those cells treated with Tab182 and particularly CNOT1 siRNAs there is an 358 

appreciable elevation in cyclin E expression (Figure 12A). When a similar set of cells were infected 359 

with Ad12 elevated cyclin E levels were also observed (Figure 12B). Thus, in control infected cells 360 
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there was a limited increase in cyclin E expression but in the absence of Tab182 or CNOT1, 361 

expression of cyclin E is elevated to a much greater extent (Figure 12B). It seems likely, therefore, 362 

that effects seen in the virally infected cells are primarily attributable to CNOT1 and Tab182 363 

depletion rather than the virus itself. The advantage gained by the virus, facilitating E1A expression, 364 

could be due to the fact that the siRNA treated cells have generally progressed slightly further 365 

through the cell cycle, into a phase more favourable for adenovirus early protein expression, as 366 

suggested in the previous section. Ad5 infection of HeLa cells treated with the same siRNAs had little 367 

additional effect on cyclin E expression (data not shown). 368 

Tab182 and CNOT1 depletion enhances the AdE1A mRNA expression 369 

To determine whether depletion of Tab182 or CNOT1 affects AdE1A expression at the transcriptional 370 

level, cells depleted of either Tab182 or CNOT1 were infected with either Ad5 or Ad12 before 371 

isolation of total RNA after 24 hours.  RT-PCR was performed following reverse transcription of total 372 

RNA to amplify Ad5 and Ad12 13S E1As using primers across the CR3 unique region of each protein;  373 

Ct values were calculated, normalised to GAPDH. Depletion of CNOT1 or Tab182 in Ad5 or Ad12 374 

infected cells was verified by western blotting (data not shown). The relative expression of 13S E1A 375 

in infected cells with depleted CNOT1 or Tab182 was compared with mock-transfected, infected 376 

cells. It can be seen from the data presented in Figure 13 that depletion of Tab182 resulted in an 377 

increase in both Ad5 and Ad12 13S E1A mRNAs compared to controls. The depletion of CNOT1 had a 378 

more marked effect, consistent with the western blots shown in Figure 11. 379 

Tab182 and CNOT1 depletion favours the production of viral DNA during infection 380 

To examine whether the advantage gained in the expression of early proteins in Tab182 and CNOT1 381 

depleted cells extends to the production of viral genomes HeLa cells were treated with appropriate 382 

siRNAs and infected with Ad5 and Ad12 48 hours later. After a further 24 hours cells were harvested 383 

and the DNA isolated. The concentration of adenovirus DNA was measured by quantitative PCR as 384 

outlined in the Materials and Methods using primers equivalent to Hexon and GAPDH as a control. 385 

More viral DNA can be seen in the Tab182 depleted cells than in the control cells after both Ad5 and 386 
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Ad12 infection (Figure 14); similarly, there is an even greater increase after CNOT1 depletion, 387 

consistent with increased AdE1A expression. Interestingly, the effect of CNOT1 and Tab182 388 

depletion were very similar during Ad5 infection (Figure 14A) whereas CNOT1 depletion had an 389 

appreciably greater effect than Tab182 depletion in Ad12 infected cells (Figure 14B). 390 

 391 
Discussion 392 

It is now well-established that adenovirus infection triggers a cellular DDR (22). This is counteracted, 393 

in Ad5 and Ad12 at least, by the degradation of multiple cellular proteins. Initially, it was noted that 394 

p53 was a target for proteasome-mediated degradation during adenovirus infection (63 and 64). This 395 

has been followed by demonstrations that other DDR proteins, such as MRE11, BLM and DNA Ligase 396 

IV, are targeted to the proteasome through the actions of the viral E1B55K and E4orf6 proteins (10, 397 

11 and 24). Whilst this is the case for the group A and group C viruses it certainly does not apply 398 

universally to all adenovirus serotypes (28 and 56). In particular, it has been shown that group B (for 399 

example, Ad7, Ad11 and Ad16) and group D (for example, Ad9) viruses target a much more limited 400 

set of DDR proteins, possibly not extending beyond DNA Ligase IV. Furthermore, it seems that the 401 

E1B55K/E4orf6 complex is not always required as degradation of TOPBP1 requires only Ad12E4orf6, 402 

whereas DAXX degradation utilizes only Ad5E1B55K (12 and 27). 403 

In a screen looking for additional DNA damage response proteins which might be targeted for 404 

adenovirus-mediated degradation we have identified Tab182 and, subsequently other members of 405 

the CNOT complex, CNOT7 and CNOT3, as probable targets. Tab182 was originally shown to interact 406 

with tankyrase 1 (32) and to be highly phosphorylated by ATM and/or ATR after DNA damage by IR 407 

(33). More recently, evidence has been presented to show that Tab182 plays a role in DSB repair and 408 

promotes the association of PARP-1 with the DNA-PK catalytic subunit (34, 35). 409 

There had been suggestions that Tab182 was a peripheral component of the CNOT complex in 410 

mammals (40) and it was identified in various complexes in large scale protein interactome screens 411 

(see, for example,  65-67). We have now confirmed that Tab182 is an integral component of the 412 
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CNOT complex. Depletion of the protein increases the sensitivity of cells to damage induced by 413 

ionising radiation, UV radiation and HU and impairs the cell’s ability to form DNA repair foci 414 

following DNA replication stress (34, 35 and our unpublished data).  415 

Here it has been shown that Tab182 is degraded during Ad5 and Ad12 infection (Figure 1). In both 416 

cases this requires the AdE1B55K and AdE4orf6 proteins but is independent of AdE4orf3 which has 417 

been shown to be required for degradation of other cellular proteins (25) (Figures 1 and 2). 418 

Degradation of Tab182 is inhibited by bortezomib, a proteasome inhibitor, and MLN4924, which 419 

inhibits cullin NEDDylation, preventing its activation (Figures 6 and 7). As is the case for p53 420 

degradation, Ad12 hi-jacks a cullin 2-based E3 ligase (Figure 7), although it appears that ablation of 421 

either Cul2 or Cul5 expression has a similar effect on Tab182 degradation during Ad5 infection 422 

(Figure 7) in that loss of either causes partial protein stabilization. Clarification of this observation 423 

requires further investigation. 424 

To confirm the results of the mutant virus infections, that Tab182 is targeted through AdE1B55K, co-425 

immunoprecipitation assays were carried out and it was found that Tab182 and both the Ad5 and 426 

Ad12 proteins could be immunoprecipitated together. Furthermore, both Ad5 and Ad12 E1B55K 427 

proteins bound to the GST-Tab182 C-terminal region, indicating a direct interaction (Figure 9). 428 

Interestingly, Tab182 binds strongly to Ad9E1B55K but not Ad16E1B55K although it does not appear 429 

to be degraded by either group B1 (Ad7 and Ad16) or group D (Ad9) viruses (Figures 5 and 9). 430 

E1B55K proteins from both Ad9 and Ad16 interact with p53 as might be expected since it is 431 

transcriptionally inactive after Ad9 and Ad7 infection, even though it is present at high level (28). 432 

These observations suggest that interaction of E1B55K with Tab182 may be determined by factors 433 

other than a requirement for protein degradation. A more widespread examination of the 434 

interaction of Tab182 with E1B55K proteins from a number of adenoviruses may elucidate this point. 435 

Tab182 also associates with SV40T antigen in co-immunoprecipitation experiments, suggesting that 436 

the protein could be a target for the family of small DNA tumour viruses (Figure 9I). Significantly, 437 
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previous studies have shown that the CNOT complex associates with HPV17a and HPV38 E6 proteins 438 

although the consequences of this for the virus were not examined at the time (60).  439 

To see how extensive the relationship between adenoviruses and the CNOT complex was, the fate of 440 

other components of the complex was studied following adenovirus infection (Figure 10). Although 441 

only a limited number of CNOT proteins were examined it was seen that levels of CNOT3 and CNOT7 442 

were reduced during Ad5 and Ad12 infection whereas levels of CNOT4 and CNOT1 remained stable. 443 

Although a number of activities have been attributed to the CNOT complex, such as deadenylase, 444 

transcriptional regulation and ubiquitin E3 ligase activity (37-39 and 46-48) it is not clear what 445 

contribution Tab182 makes.  To attempt to understand why adenovirus might target Tab182 (and 446 

other CNOT proteins) adenovirus infection was compared in control and siRNA knock down cells. It 447 

was seen that expression of E1A was enhanced, to a limited extent, in Tab182 depleted cells 448 

although little or no difference was seen in the expression of late proteins (Figure 11). To see if a 449 

similar effect occurred with other members of the CNOT complex, CNOT1, which is considered to be 450 

a scaffold protein required for the integrity of the complex, was depleted. During Ad5 infection E1A 451 

expression was notably increased when CNOT1 was depleted while in the case of Ad12 there was a 452 

greatly enhanced expression of E1A and a marked increase in E1B55K protein, following CNOT1 453 

knock down, compared to controls (Figure 11). The increased effect of CNOT1 protein depletion on 454 

Ad12 compared to Ad5 appears to be consistent with Ad12’s somewhat enhanced ability to degrade 455 

Tab182. The difference in expression of E1A protein is due to an increase in AdE1A mRNA, as shown 456 

by RT-PCR (Figure 13). Whether this effect is directly attributable to a reduction in deadenylase 457 

activity of the CNOT complex will have to await further investigation. Interestingly, it has recently 458 

been shown that the Ad5 E1B55K/E4orf6 complex enhances E1A activity by stabilizing the protein, 459 

leading to increased level, and by increasing the activation of E2F by E1A (68). It is possible that the 460 

effect of the same adenovirus complex on the CNOT complex, as demonstrated here, could 461 

contribute to the increased AdE1A level observed. In a further study it has been shown that the 462 

concentration of viral DNA is increased in Tab182 and CNOT1 depleted cells 24 hours after both Ad5 463 
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and Ad12 infection (Figure 14). More marked effects were seen with CNOT1 depletion than with 464 

Tab182 consistent with the observed increase in AdE1A expression (Figure 11); however, reduction 465 

in Tab182 had less effect on relative Hexon DNA concentration after Ad12 infection than with Ad5, 466 

reasons for this are not clear at present.  467 

The relationship between adenoviruses and the CNOT complex is not clear cut, for whilst the virus is 468 

able to cause degradation of various components this occurs later than any initial enhanced increase 469 

in AdE1A expression seen after the depletion of CNOT proteins described here. It is notable that 470 

there is a sustained increase in AdE1A expression up to 96 hours in the absence of CNOT1 (Figure 471 

11). However, increases in viral DNA concentration were observed after CNOT1 and Tab182 472 

depletion, suggesting that inactivation of the complex will facilitate viral replication to a limited 473 

extent. It is also possible that the aim of the virus, in degrading and presumably inactivating the 474 

CNOT complex, is not necessarily just to facilitate AdE1A expression, but to fulfil some other, as yet 475 

unidentified, role, perhaps linked to an effect on the DDR. It should be borne in mind, when 476 

considering the effects of CNOT1 depletion, that adenoviruses do not actually cause its degradation 477 

and while its loss will probably indicate the effect of inactivation of the CNOT complex it does not 478 

necessarily coincide with what happens in vivo. It is also possible that other CNOT proteins could be 479 

targets for adenovirus-mediated degradation early in infection co-incident with AdE1A expression, 480 

although we have no evidence of this. Significantly, degradation of Tab182 and CNOT7 occurs later in 481 

viral infection than is the case for MRE11 and BLM and is more similar to that seen for p53.  482 

Loss of components of the CNOT complex, for example Tab182, appears to facilitate progression of 483 

cells into late G1/early S-phase, as evidenced by the enhanced expression of cyclin E and transitorily 484 

enhanced expression of CDC25A (Figures 11 and 12). This may provide an environment more 485 

conducive to expression of early viral proteins, particularly E1A. For reasons which are not evident at 486 

present the effect seems to be more marked with Ad12 compared to Ad5. With relevance to the 487 

effects on cyclin E expression, it is worth noting that CNOT1 depletion has a more marked effect 488 
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than does Tab182 depletion, suggesting that its loss enhances cell cycle progression to a greater 489 

extent. However, it is possible that loss of other CNOT proteins could have a comparable effect. 490 

In summary, Ad5 and, in particular, Ad12 have been shown to target Tab182 and other CNOT 491 

proteins for proteasome-mediated degradation during viral infection. Loss of Tab182 and CNOT1 492 

favours enhanced expression of AdE1A and E1B55K proteins in the early stages of infection. 493 

Materials and methods 494 

Cell lines, viruses and plasmids.  495 

HeLa (obtained from ATCC), HEK293FT (Invitrogen), Ad5E1HEK293 (a generous gift from Frank 496 

Graham), and Ad12E1HER2 (69) cells were grown in DMEM supplemented with 8% foetal calf serum 497 

(FCS). H1299-based cell lines in which Cul2 or Cul5 expression had been ablated were a generous gift 498 

from Paola Blanchette and Phil Branton. The cells were grown in DMEM supplemented with 8% FCS 499 

and 1 µg/ml puromycin (Cul2-) or 8 % FCS, 1 µg/ml puromycin and 100 µg/ml hygromycin (Cul5-). 500 

Ad4, Ad5, Ad7, Ad9, Ad11 and Ad12 viruses were obtained from ATCC or were a generous gift from 501 

Jo Mymryk. The following Ad5 mutant viruses were used: Ad5dl1520 (Ad5E1B55K-) (70), H5in351 502 

(E4orf1-), H5pm4154 (E4orf6-), H5pm4155 (E4orf3-, E4orf6-), H5pm4166 (E4orf4-), H5dl356 (E4orf7-) 503 

and H5in352 (E4orf2-) (23, 26, 71-73). In addition, an Ad12 E1B55K negative mutant virus 504 

(Ad12dl620) was used (74). HeLa cells were generally infected at a multiplicity of infection of 5 505 

plaque forming units (pfu)/cell. Ad5 and Ad12 E1B55K DNA was cloned into pcDNA3 and Ad5 and 506 

Ad12 E4orf6-HA tag DNA was also cloned into pcDNA3 as previous described (75). NEDDylation was 507 

inhibited by addition of MLN4924 to the cell culture medium at a concentration of 4 µM and 508 

proteasomal activity was inhibited with bortezomib (0.5 µM). 509 

siRNA treatment to deplete Tab182 and CNOT proteins  and protein transfections. 510 

HeLa cells were plated at a density of 4x105 per 6 cm dish. After 24 hours they were transfected with 511 

control or ON-TARGETplus SMART pool siRNAs (0.2 nmol/dish) (GE Dharmacon) directed against 512 

Tab182 or CNOT1 proteins using Oligofectamine (Invitrogen) following the manufacturer’s protocol. 513 

After 24hours cells were split 1→3 and after a further 24hours infected with virus. For protein 514 
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transfections cells were grown to 70% confluency and then incubated with DNA constructs (2µg/6cm 515 

dish or 5µg/10cm dish) which had been previously mixed for 20 minutes with Lipofectamine 2000 516 

(Invitrogen) in Opti-Mem (Gibco) following the manufacturer’s protocol. After 24 hours cells were 517 

incubated with fresh medium and harvested 24 hours later.  518 

Cloning Tab182  519 

Total cellular RNA was isolated from a lymphoblastoid cell line from a normal individual using 520 

the Qiagen RNeasy Mini Kit and was reverse transcribed into cDNA using the oligo-dT primer 521 

d(T)23VN and the Protoscript II First Strand cDNA Synthesis Kit (New England Biolabs). PCR 522 

was used to amplify the complete Tab182 cDNA sequence using the forward primer (For 1) 5’- 523 

GAGCGGGTCGACGATGAAAGTGTCTACTCTCAGG-3’ and the reverse primer (Rev13) 5’-524 

CGTGATGTCGACTCAGACCTTCTTCTTCTTCAGTTT-3’. Both primers contain the recognition 525 

sequence for the restriction enzyme Sal I (underlined). The forward primer contains the 526 

translation initiation codon for Tab182 (italics) and the reverse primer contains the translation 527 

termination codon for Tab182 (italics; strand antiparallel to sense strand). The Tab182 cDNA 528 

sequence was amplified using Q5 High-Fidelity DNA Polymerase (New England Biolabs). An 529 

initial denaturation step of 98⁰C for 30 seconds was followed by 30 cycles of 98⁰C for 5 seconds, 530 

62⁰C for 15 seconds and 72oC for 4 minutes. A final extension of 5 minutes at 72⁰C followed the 531 

30 cycles. The PCR products were analysed by gel electrophoresis and a product of the correct 532 

size (5190 base pairs) was identified.  The products were digested with Sal I-HF and the excised 533 

Tab182 band purified by gel electrophoresis.  Tab182 was cloned into the pEGFP-C3 plasmid. 534 

Sequence determination was performed using an Applied Biosystems 3500xL Genetic Analyzer. 535 

Sequences were analysed on-line using BLAST at the National Center for Biotechnology Information 536 

(NCBI). Sequences were all wild type. Codon 322 can encode threonine (ACT) or serine (AGT) and the 537 

ratio is approximately equal in the general population. The sequences isolated from the individual 538 

used to make the cDNA for this cloning exercise were all found to encode serine at amino acid 322. 539 

Isolation of RNA and cDNA Synthesis 540 
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Cellular RNA was extracted using the SV Total RNA Isolation System (Promega) following the 541 

manufacturer’s protocol. To remove any DNA contamination, RNA was treated with DNase I 542 

(Promega). RNA quantity and quality were evaluated by optical density measurements (260/280 nm 543 

ratios) and by agarose gel electrophoresis. First-strand cDNA synthesis was performed using 544 

SuperScript™ II Reverse Transcriptase (RT) (Invitrogen) and random primers according to the 545 

manufacturer’s instructions. 546 

Isolation of genomic DNA 547 

Cellular DNA was extracted using the QIAamp DNA Mini Kit (Qiagen) following the manufacturer’s 548 

protocol. In order to remove any protein or RNA contamination 15 µl Proteinase K (10 mg/ ml) 549 

(Sigma-Aldrich) and 4 µl RNase A (20 mg/ml) (Invitrogen) were added to each sample. DNA quantity 550 

and quality were evaluated by optical density measurements (260/280 nm ratios) and by agarose gel 551 

electrophoresis. 552 

Primer design and RT-PCR  553 

Cellular RNA or DNA was extracted as described above. The sequences of the primers used for RT-554 

PCR are as shown in Table 2. Specificity of the primers was checked with NCBI/Primer-BLAST. 555 

The RT-PCR reactions were performed in the Mx3005P system (Stratagene) using real-time 556 

PowerUp™ SYBR® Green Master Mix (Applied Biosystems). Quantitative RT-PCR was carried out in a 557 

final volume of 20 μl containing 2 µg or 10ng of cDNA or DNA, respectively, 5 pmol of the forward 558 

primer, 5 pmol reverse-primer and 10 μl of PowerUp™ SYBR® Green Master Mix. Thermocycling 559 

program was performed for 10 min at 95ºC for the pre-cycling step to denature the cDNA and to 560 

activate Dual-Lock™ Taq DNA Polymerase, and then followed by 35 cycles of denaturation at 95ºC 561 

for 30 sec, annealing at 55ºC for 1 min and extension at 72ºC for 1 min. To confirm the expected 562 

amplifications 2% agarose gel electrophoresis with ethidium bromide staining was performed. Viral 563 

AdE1A or Hexon and host cell Tab182 and CNOT1 Ct values were normalized to Ct values of GAPDH 564 
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amplified from the same sample [for example, ΔCt = Ct (Tab182) − Ct (GAPDH)], and the 2−ΔΔCt 565 

method was used to calculate the relative-expression. Each experiment was performed in triplicate. 566 

Western blotting and antibodies. 567 

Cells were harvested after washing with ice-cold phosphate buffered saline (PBS) and solubilised in 8 568 

M urea, 50 mM Tris HCl pH7.4, and 0.15 M β-mercaptoethanol. Proteins were fractionated on 569 

polyacrylamide gels in the presence of 0.1 M Tris, 0.1 M Bicine, and 0.1% SDS. For western blotting, 570 

proteins were electrophoretically transferred to nitrocellulose membranes before incubation with 571 

antibodies overnight at 4⁰C. Antibodies used in the study were as follows: Tab182 (an antibody 572 

raised in rabbits against GST-Tab182 [C-terminal fragment]), MRE11, CNOT3, CNOT4, CNOT7, (all 573 

from GeneTex), CNOT1 (Proteintech), cullin2, cyclin E1, RPA32 (Abcam), p53 (raised in rabbits), 574 

cullin5, GAPDH, collagen IV, SV40T (Santa Cruz Biotechnology), and β actin (Sigma-Aldrich). Rabbit 575 

antibodies against Ad5 Hexon and Ad12 Fiber protein were gifts from Vivien Mautner and Paul 576 

Freimuth, respectively. A mouse monoclonal antibody against Ad5DNA binding protein (DBP) was a 577 

gift from Pieter van der Vliet. Antibodies against Ad5E1A (M73), Ad12E1A (5DO2), Ad12E1B55K 578 

(XPH9), Ad5E1B55K (2A6), p53 (DO1) and HA (12CA5) were purified from monoclonal supernatants.  579 

GST pull-down assays and co-immunoprecipitation 580 

The C-terminal fragment of Tab182 (amino acids 824-867+1221-1729) was expressed in E.coli as a 581 

GST fusion protein as described (49). For GST pull-down and co-immunoprecipitation assays cells 582 

were harvested in ice-cold PBS and lysed in 0.4 M NaCl, 40 mM Tris HCl pH7.4, 5 mM EDTA, 1% 583 

NP40. Insoluble protein was removed by centrifugation (45K, 30 minutes, 4⁰C). Lysates were 584 

incubated overnight either with GST fusion protein or appropriate antibody. Protein complexes were 585 

retrieved on glutathione-agarose beads or Protein G-agarose beads as appropriate. After washing 586 

with lysis buffer, bound proteins were released with either 25mM glutathione, pH8.2 (GST fusion 587 

proteins) or SDS sample buffer (immunoprecipitated samples) and fractionated by SDS-PAGE prior to 588 

western blotting. 589 

Mass spectrometry 590 
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[24] 
 

Proteins were immunoprecipitated as described above except that the antibody-antigen complexes 591 

were released with 8 M urea, 50 mM NH4HCO3 for 30 minutes at ambient temperature. Proteins 592 

were reduced in 50 mM DTT, 50 mM NH4HCO3 at 56⁰C for 30 minutes and then carboxymethylated 593 

in 100 mM iodoacetamide at ambient temperature in the dark for 30 minutes. Proteins were 594 

retrieved using Amicon centrifugal filters (30K molecular weight cut off) which were washed four 595 

times with 50 mM NH4HCO3. The filters, with the bound immunoprecipitated proteins, were 596 

incubated overnight at 37⁰C with trypsin (1 µg) in 50 mM NH4HCO3. Tryptic peptides were retrieved 597 

by centrifugation, dried and analysed using a Bruker amaZon ion trap mass spectrometer. Peptides 598 

were identified using the ProteinScape central bioinformatics platform (Bruker). 599 

Immunofluorescence microscopy   600 

HeLa cells were grown on glass cover slips. After 24 hours cells were infected or mock infected with 601 

Ad5 or Ad12 (5pfu/cell) for 30 hours. Cells were fixed in 3.6% para-formaldehyde in PBS for 10 602 

minutes and permeabilized in 0.5% TritonX-100 in PBS for 5 minutes. Fixed cells were stained with 603 

primary antibodies for 1 hour, washed three times in PBS and stained with secondary antibodies also 604 

for 1 hour. DNA was stained with DAPI. When pre-extraction was used cells were treated with pre-605 

extraction buffer (10 mM PIPES, 20 mM NaCl, 3 mM MgCl2, 300 mM sucrose, 0.5% Triton X-100) for 606 

7 minutes on ice before fixing with 3.6% para-formaldehyde and antibody staining  as above. 607 

Fluorescence images were taken using a Nikon E600 Eclipse microscope333 equipped with a 60X oil 608 

lens, and images were acquired and analysed using Volocity Software 334 v4.1 (Improvision). 609 
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 799 

Figure legends 800 

Figure 1: The Degradation of Tab182 following infection with adenovirus serotype 5 or adenovirus 801 

serotype 12 is dependent on the adenovirus E1B55K protein. HeLa cells were infected with 802 

adenovirus serotype 5 (A), or serotype 12 (B) at 5 pfu/cell. HeLa cells were also infected with 803 

adenovirus serotype 5 E1B55K negative virus Ad5dl1520 (C), and adenovirus serotype 12 E1B55K 804 

negative virus Ad12dl620 (D) at 10 pfu/cell. Cells were then harvested at various time points (0, 8, 805 

24, 48, 72 and 96 hours) post-infection. Cell lysates were subjected to SDS-PAGE and Western 806 

blotting using the indicated antibodies. 807 

Figure 2: The Degradation of Tab182 following infection with adenovirus serotype 5 is dependent 808 

on the adenovirus E4orf6 protein. HeLa cells were infected with Ad5 E4 mutants H5in351 (E4orf1-) 809 

(A), H5pm4154 (E4orf6-) (A), H5pm4155 (E4orf3-E4orf6-) (B), H5pm4166 (E4orf4-) (B), H5dl356 810 

(E4orf6-E4orf7-) (C) H5in352 (E4orf2-) (C) and H5pm4150 (E4orf3-) (D) at 10 pfu/cell. Cells were then 811 

harvested at various time points (0, 8, 24, 48, 72 and 96 hours) post-infection. Cell lysates were 812 

subjected to SDS-PAGE and Western blotting using the indicated antibodies.  813 

Figure 3: Tab182 gene expression is enhanced in adenovirus infected cells.  HeLa cells 814 

were infected with Ad5 or Ad12 at 5 pfu/cell. Cells were harvested at various time points (0, 815 

8, 24, 48, 72 and 96 hours) post-infection. Cellular RNA was extracted from Ad5 (A) and 816 

Ad12 (B) infected cells and first-strand cDNA synthesis carried out. The RT-PCR reactions 817 

were performed using Tab182-specific primers and real-time PowerUp™ SYBR® Green 818 

Master Mix. To determine the relative Tab182 gene expression, calculated Tab182 Ct values 819 

were normalized to Ct values of GAPDH amplified from the same sample [ΔCt = Ct (Tab182) 820 
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− Ct (GAPDH)], and the 2−ΔΔCt method was used to calculate relative expression. Each 821 

experiment was performed in triplicate. . Western blots of the Ad5 and Ad12 infected HeLa cells 822 

were performed to confirmTab182 degradation (data not shown). 823 

 824 

Figure 4: The Degradation of Tab182 during adenovirus serotype 5 and 12 Infection is dependent 825 

on the adenovirus E1B55K and E4orf6 proteins. 2 μg of plasmid DNA as shown was transfected into 826 

HeLa cells and 48 hours later cells were harvested and subjected to SDS-PAGE and Western blotting 827 

using the indicated antibodies. Ad5 and Ad12 E4orf6 proteins were detected with an antibody which 828 

recognised the HA tag. GAPDH is included as a loading control. 829 

Figure 5: Tab182 level following infection by Group B, D and E adenoviruses. HeLa cells were 830 

infected with: (A) Ad5 (group C) and Ad12 (group A), (B) Ad4 (group E) and Ad9 (Group D), and (C) 831 

Ad11 (group B2) and Ad7 (group B1) at 5 pfu/cell. Cells were harvested at 8, 24, 48, 72, 96 and 120 832 

hours post infection. Cell lysates were subjected to SDS-PAGE and Western blotting using antibodies 833 

against Tab182, MRE11, p53 and β-actin. Hexon expression was confirmed, as a marker of viral 834 

infection, by Ponceau S staining of Western blots for total protein. 835 

Figure 6: The down-regulation of Tab182 protein levels during Ad5 and Ad12 infection can be 836 

rescued by the proteasomal inhibitor Bortezomib. HeLa cells were infected with Ad5 (A) or Ad12 (B) 837 

at 5 pfu/cell. Cells were treated with 0.5 µM Bortezomib or DMSO control and harvested after 48 838 

hours. Cell lysates were subjected to SDS-PAGE and Western blotting using the indicated antibodies. 839 

Figure 7: The Degradation of Tab182 during Ad5 and Ad12 infection is dependent on cullin 840 

function. HeLa cells were infected with Ad5 and Ad12 at 5 pfu/cell. Cells were treated with the 841 

Nedd8 inhibitor MLN4924 (4 µM) 1 hour before infection and retreated immediately post-infection. 842 

Cells were harvested at various time points (0, 8, 24, 48, 72 and 96 hours) post-infection. Cell lysates 843 

were subjected to SDS-PAGE and Western blotting using the indicated antibodies (A) and (B). H1299 844 

cells (C) or H1299 cells with ablation of Cul2 (D) or Cul5 (E) expression were infected with either Ad5 845 
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or Ad12 and harvested at 0, 8, 24, 48, 72 and 96 hours post-infection. Cell lysates were subjected to 846 

SDS-PAGE and Western blotting with the antibodies shown. 847 

Figure 8: Tab182 does not localise to viral replication centres during adenovirus infection. GFP-848 

Tab182 was transfected into HeLa cells and 24 hours later cells were infected with Ad5 or Ad12. (A), 849 

30 hours later cells were fixed, extracted and probed with the appropriate antibodies. (B) 30 hours 850 

after infection cells were pre-extracted as described in the Materials and Methods section before 851 

fixing and then staining with antibodies. In both (A) and (B) Ad5 infected cells were probed with DBP 852 

antibody, whilst Ad12 infected cells were probed with RPA32 antibody. Nuclear DNA is stained with 853 

DAPI. 854 

Figure 9: Adenovirus early region E1B55K interacts with Tab182 in vitro and in vivo. Ad12E1HER2 855 

(A) and Ad5E1HEK293 (B) cell lysates containing 500 µg total protein were incubated with 5 µg 856 

either GST-Tab182, GST-PRMT1 or with GST alone. Protein complexes were captured by glutathione-857 

agarose beads, subjected to SDS-PAGE and Western blotting with the antibodies indicated. 858 

Ad5E1HEK293 (C) and Ad12E1HER2 (D) cell lysates (500 µg total protein) were incubated with 859 

antibodies against Tab182, collagen IV together with IgG (non-specific binding controls). Immuno-860 

complexes were isolated using Protein-G agarose beads and subsequently resolved by SDS-PAGE and 861 

Western blotting using antibodies against Ad5/Ad12 E1B55K proteins. (E) GFP-Tab182 was 862 

transfected into Ad5E1HEK293 and Ad12E1HER2 cell lines which were harvested after 48 hours. Cell 863 

lysates (500µg total protein) were incubated with Ad5 and Ad12 E1B55K antibodies together with 864 

IgG. Western blotting was with an antibody against Tab182. (F) HeLa cells were transfected with 865 

pcDNA3 or pcDNA3 constructs expressing HA-tagged Ad9E1B55K or Ad16E1B55K. After 48hours 866 

lysates (500µg total protein) were immunoprecipitated with an antibody against Tab182 or rabbit 867 

IgG. Western blotting was with an antibody against HA. (G) is an over-exposed version of a portion of 868 

the western blot shown in (F). (H) Ad5E1HEK293 cells were transfected with pcDNA3 or pcDNA3 869 

constructs expressing HA-tagged Ad9E1B55K or Ad16E1B55K. After 48hours lysates (500µg total 870 

protein) were immunoprecipitated with an antibody against HA or mouse IgG. Western blotting was 871 
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with an antibody against p53. (I) 293FT cell lysates (500µg protein) were incubated with antibodies 872 

against Tab182, collagen IV or IgG control. Western blotting was with an antibody against SV40 T 873 

antigen. Ad5E1HEK293 (J) and Ad12E1HER2 (K) cell lysates (500 µg total protein) were incubated 874 

with antibodies against CNOT1, collagen IV together with IgG. Western blotting was with antibodies 875 

against Ad5/Ad12 E1B55K proteins.  In all cases the whole cell lysates contained 15 µg of protein. 876 

Although only limited areas of the western blots are shown no additional bands were seen in the 877 

original autoradiographs. 878 

Figure 10: Adenoviruses 5 and 12 degrade components of the CNOT complex. HeLa cells were 879 

infected with adenovirus serotype 5 (A) or 12 (B) at 5 pfu/cell. Cells were harvested at 0, 8, 24, 48, 880 

72 and 96 hours post infection, subjected to SDS-PAGE and Western blotting using the indicated 881 

antibodies.  882 

Figure 11: AdE1A protein expression is enhanced in adenovirus-infected, Tab182- or CNOT1-883 

depleted cells. HeLa cells were transfected with control, Tab182 or CNOT1 siRNAs. 48 hours later, 884 

control, Tab182 and CNOT1 siRNA treated cells were infected with adenovirus serotype 5 (A) or 885 

serotype 12 (B) at 5 pfu/cell. Cells were then harvested at various time points (0, 8, 24, 48, 72 and 96 886 

hours) post-infection. Cell lysates were subjected to SDS-PAGE and Western blotting using the 887 

indicated antibodies.  888 

Figure 12: Expression of cyclin E and is enhanced in Tab182 and CNOT1 depleted cells. HeLa cells 889 

were transfected with control, Tab182 or CNOT1 siRNAs. 48 hours later, control, Tab182 and CNOT1 890 

siRNA treated cells were mock infected (A) or infected with adenovirus serotype 12 (B) at 5 pfu/cell. 891 

Cells were then harvested at various time points (0, 8, 24, 48, 72 and 96 hours) post-infection. Cell 892 

lysates were subjected to SDS-PAGE and Western blotting using the indicated antibodies. 893 

Figure 13: The relative expression of Ad13S E1A mRNA is increased in infected cells in the absence 894 

of CNOT1 or Tab182. HeLa cells were transfected with control, Tab182 or CNOT1 siRNAs and 48 895 

hours later infected with Ad5 (A) or Ad12 (B) at 5 pfu/cell. Cellular RNA was extracted from infected 896 

cells and first-strand cDNA synthesis carried out. The RT-PCR reactions were performed using 897 
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Ad13SE1A CR3 region specific primers and real-time PowerUp™ SYBR® Green Master Mix. To check 898 

E1A relative gene expression, calculated E1A Ct values were normalized to Ct values of GAPDH 899 

amplified from the same sample [ΔCt = Ct (E1A) − Ct (GAPDH)], and the 2−ΔΔCt method was used to 900 

calculate relative gene expression. Data are the mean of 3 repeats. The statistical significance was 901 

determined using Student’s t-test, p-values less than 0.05 (*) or 0.01 (**) were considered 902 

significant. Error bars represent SEM. 903 

Figure 14: Viral DNA synthesis is increased in Tab182 and CNOT1-depleted cells after adenovirus 904 

infection. HeLa cells were treated with control, Tab182 and CNOT1 siRNA for 48 hours and then 905 

infected with Ad5 (A) or Ad12 (B) at 5 pfu/cell. After 24 hours cells were harvested and the total DNA 906 

isolated. Quantitative PCR was performed to determine relative concentration of viral DNA. Hexon 907 

Ct values were normalized to Ct values for GAPDH DNA amplified from the same sample. Data are 908 

the mean of 3 repeats. The statistical significance was determined using Student’s t-test, p-values 909 

less than 0.05 (*) or 0.01 (**) were considered significant. Error bars represent SEM. 910 

 911 

 912 

 913 

 914 
 915 

Legend to Table 1 916 

Table1 Proteins identified by mass spectrometric analysis after co-immunoprecipitation with 917 

Tab182 antibody. HeLa cells were immunoprecipitated with a rabbit antibody raised against the C-918 

terminal fragment of Tab182 and analysed as described in the Methods section. These data are 919 

representative of five independent experiments. 920 

Table 2 Primers used in this study  921 

 922 

Table1 923 

       Protein Peptide Percentage Mascot Score  
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number coverage 

Tab182 68 49.4 3491 

CCR4-NOT1 38 17.4 1472 

CCR4-NOT3 7 10.2 237 

CCR4-NOT7 6 28.8 211 

CCR4-NOT2 5 12.2 245 

CCR4-NOT6L 1 1.8 21 

CCR4-NOT10 1 1.3 29 

C2orf29 (NOT11) 1 2.4 56 

RCD1 (NOT9) 6 20.4 224 

        

PRMT3 9 18.5 377 

FHL2 12 52.3 470 

    

 924 

Table 2 925 

Gene  Sequence (5'->3') 

                       Forward primer 

                       Reverse primer 

Length Start Stop Product 

Size  

(bases) 

E1A-Ad5 (CR3) TAGATTATGTGGAGCACCCCG  

GCCACAGGTCCTCATATAGCAA  

21 

22 

990 

1099 

1010 

1078 

110 

E1A-Ad12 (CR3) AGTCCTGTGAGCACCACCG 

GTAGGCTCGCAGATAGCACA 

19 

20 

980 

998 

1053 

1034 

74 

Tab182 CTGCTCTGAGGGACTCCTTG 

CTGGGTCTCCTCTAGGGCTT 

20 

20 

2310 

2448 

2329 

2467 

158 

GAPDH (RNA) GAGTCAACGGATTTGGTCGT 

ACAAGCTTCCCGTTCTCAG 

20 

19 

53 

218 

72 

236 

183 

GAPDH (DNA) 
 

CGGCTACTAGCGGTTTTACG 
AGAAGATGCGGCTGACTGT 

20 
20 

6534369 
6534538 

6534388 
6534557 

188 

Hexon-Ad5 GCCACGGTGGGGTTTCTAAACTT 
GCCCCAGTGGTCTTACATGCACATC 

23 
25 

18862 
18967 

18882 
18989 

127 

Hexon-Ad12 GCCACGGTGGGGTTTCTAAACTT 
GCCCCAGTGGTCTTACATGCACATC 

23 
25 

17764 
17869 

17784 
17891 

127 

 926 
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