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Linear multi-objective drift analysis

Jonathan E. Rowe

School of Computer Science,
University of Birmingham, Birmingham, B15 2TT,
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Abstract

The tools of drift analysis enable bounds on run-times (or first hitting times)
of stochastic processes, such as randomised algorithms, based on bounds on
the expected progress at each time step in terms of a distance measure. In
this paper, we generalise the multiplicative drift theorem to apply to processes
which are best described by more than one distance function. We provide four
examples to illustrate the application of this method: the run-time analysis
of an evolutionary algorithm on a multi-objective optimisation problem; the
analysis of a variant of the voter model on a network; a parallel evolutionary
algorithm taking place on islands with limited migration; a synchronous network
epidemiology model. In the latter example, we show that populations with
limited neighbourhoods (such as the ring topology) are able to resist epidemics
much more effectively than well-mixed populations.

Keywords: run-time analysis, multiplicative drift analysis, multi-objective
optimisation, evolutionary algorithms, voter model, network epidemiology

1. Introduction

Drift analysis has now become a standard tool in the analysis of randomised
search heuristics (see, for example, [9, 10]). The fundamental idea is that, given
an estimate of the expected progress towards some target at each time step, we
can use this to bound the expected time for the process to reach that target.
Upper and lower bound versions exist. We will consider the case of multiplicative
drift [2], and will generalise this to the situation where the process concerned is
described by more than one distance measure.

We begin, then, by considering a finite state space X and a random process
X0, X1, X2, . . . on this set. Suppose we are interested in the first hitting time,
T , of a target set S ⊆ X . We describe the progress towards this target set by
means of a distance function.

Definition 1. Given a set X and a target set S ⊆ X a distance function, with
respect to S, is a function d : X → R such that:
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x ∈ S =⇒ d(x) = 0 and

x /∈ S =⇒ d(x) > 0.

It should be noted that we do not necessarily expect a distance function to
be a metric.

We estimate the progress of the random sequence towards S by bounding
the expected change in the distance. This then allows us to bound the expected
first hitting time of the target.

Theorem 1 (Multiplicative drift [1, 2]). Let X0, X1, X2, . . . be a random
sequence from the finite set X . Let S ⊆ X be a target set, and let d : X → R
be a distance function with respect to S. Let T be the first hitting time of the
target set S.

Suppose, for all states x /∈ S, we have

E[d(Xt+1) |Xt = x] ≤ δd(x)

for some constant 0 < δ < 1. Then:

E[T |X0 = x0] ≤ 1 + log(d(x0)/d∗)

1− δ

where
d∗ = min{d(x) |x /∈ S}.

The probability that the first hitting time exceeds

log(d(x0)/d∗) + c

1− δ

for any c > 0 is no more than
e−c.

It should be noted that, while there is a sharp tail bound on the probability
that the expected hitting time exceeds the upper bound, the bound can, in some
situations, be rather conservative. A simple example that illustrates this is the
unexploded bomb problem, in which there are n bombs that, at a given time
step, each have probability p of exploding. If there are currently k unexploded
bombs, then the expected number of unexploded bombs at the next time step
is (1 − p)k. The multiplicative drift theorem them tells us that the expected
time until they have all exploded is bounded above by (1 + log n)/p. This is
quite a good estimate when p is small, but as p approaches 1, the expected time
actually approaches 1 and not 1 + log n. The upper bounds are better when the
process described typically only makes small jumps.

Our goal in this paper is to extend the multiplicative drift theorem to the
case where the underlying random sequence is best described by more than one
distance function, and where the progress in each distance function considered
separately is not necessarily monotonic. We will, in particular, look at the
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situation where the expected change in each distance function is a linear function
of all the distances, and provide conditions under which first hitting time bounds
can be proved. This turns out to be relatively straightforward for the case of two
distance functions. Dealing with a larger number of functions requires sufficient
structure in the problem to make progress. However, it is possible, in some
situations, to deal even with an arbitrary number of dimensions. Our result will
inherit the strengths (in terms of the sharp tail bound) and the weaknesses (in
terms of the conservatism) of the original multiplicative drift theorem.

We will illustrate our result with four examples. Firstly, we will look at
proving the run-time of a simple evolutionary algorithm on a multi-objective
optimisation problem. Then we will look at the so-called voter model on a
graph, examining a variant in which each voter has an inherent preference. A
generalisation of that model allows us to analyse an evolutionary process tak-
ing place in parallel on multiple islands, with migration between neighbouring
islands. Finally, we look at a synchronous model of epidemiology on a net-
work and derive conditions for which epidemics will fail to take hold in the
population. In particular, we will show that a population with very limited
neighbourhood structure (we will consider a ring topology) is far better able to
resist an epidemic than a well-mixed population.

2. Multi-objective drift

Now suppose our process is described by several distance functions d1, . . . , dm
such that the intersection of the corresponding target sets is not empty. This
intersection is now our new target set S. The expected change in each of these
distances can depend on each other as follows. Let A be a non-negative m×m
matrix. Then we suppose that, for each di and x /∈ S, we have

E[di(Xt+1) |Xt = x] ≤
∑
j

Ai,jdj(x).

In order to find a measure of our overall progress, we will define a new
distance function, which will be a convex combination of d1, . . . , dm.

Suppose that A has a left eigenvector v which contains only real, positive en-
tries. We can assume that this eigenvector is normalised so that its components
sum to 1. Let λ be the corresponding eigenvalue.

vA = λv.

We will use the normalised v to define our new distance function. Letting
d(x) be the (column) vector (d1(x), . . . , dm(x)), our new distance function is
simply v · d(x).

Theorem 2 (Linear multi-objective drift). Let X0, X1, X2, . . . be a random
sequence from the finite set X . Let d1, . . . , dm be distance functions with re-
spect to target sets S1, . . . , Sm respectively, and suppose S =

⋂
Si is non-empty.
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Writing d(x) = (d1(x), . . . , dm(x)) as a column vector, suppose there is a non-
negative matrix A such that, for all x /∈ S:

E[d(Xt+1) |Xt = x] ≤ Ad(x)

component-wise. If A has a left eigenvector v which contains only real, positive
entries, and which has a corresponding real eigenvalue 0 < λ < 1, then the
expectation of the first hitting time T of the set S (that is, the set of states for
which all distances are zero) is bounded above by:

E[T |X0 = x0] ≤ 1 + log(v · d(x0)/d∗)

1− λ

where
d∗ = min{v · d(x) |x /∈ S}.

Proof
We let v ·d(x) be a new distance function. Since components of v are positive,
this function is zero only when all of d1, . . . , dm are zero. Then

E[v · d(Xt+1) |Xt = x] = v · E[d(Xt+1) |Xt = x]

≤ v · (Ad(x))

= (vA) · d(x)

= λv · d(x).

Since 0 < λ < 1, this means we can apply the multiplicative drift theorem to
our new distance function. �

We remark that the sharp tails bounds of Theorem 1 apply directly: the prob-
ability that the run-time exceeds the upper bound is vanishingly small.

In many applications, distances are integers in some bounded range. In this
case, we can get the following simpler bounds:

Corollary 3. If for all x /∈ S we have 1 ≤ di(x) ≤ n for each distance function
d1, . . . , dm then

E[T |X0] ≤ 1 + log(n/d∗)

1− λ
where

d∗ = min{v · d(x) |x /∈ S}.

Noting that, in this situation, d∗ must be at least the value of the smallest
component of v, we also have:

E[T |X0] ≤ 1 + log(n/v∗)

1− λ

where
v∗ = min

i
vi.
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In the special case that the matrix A is irredicible, the Perron-Frobenius
theorem tells us immediately that there is an eigenvector v with all real, positive
components. The corresponding eigenvalue is real and positive, and has the
largest absolute value of all the eigenvalues of A. It is therefore equal to the
spectral radius of the matrix ρ(A). Moreover, any eigenvector with all positive
components is associated with this eigenvalue.

When there are only two distance functions, the spectral radius can be writ-
ten down explicitly. This enables us to derive a simple check that the linear
multi-objective drift theorem is applicable.

Lemma 4. Let A be an irredicuble, non-negative 2× 2 matrix(
a1,1 a1,2
a2,1 a2,2

)
.

Then ρ(A) < 1 if and only if

(1− a1,1)(1− a2,2) > a1,2a2,1.

Proof
The eigenvalues of A satisfy∣∣∣∣ a1,1 − λ a1,2

a2,1 a2,2 − λ

∣∣∣∣ = 0

so the spectral radius is the larger of the two roots:

λ =
a1,1 + a2,2 +

√
(a1,1 + a2,2)2 − 4(a1,1a2,2 − a1,2a2,1)

2
.

Solving for λ < 1 gives the required condition. �

3. Example — multi-objective optimisation

Suppose we have the following multi-objective problem on {0, 1}n.
Minimise:

f1(x) = OneMax(x) =
∑n
i=1 xi

f2(x) = Diff(x) =
∑n
i=1(1− xi)xn−i+1.

The first objective is the standard test function which counts the number
of ones in a string. The second measures the extent to which the string is
a palindrome: all palindromic strings have optimal fitness for this objective.
We use a simple multi-objective version of the Random Local Search (RLS)
algorithm (see Algorithm 1).
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Algorithm 1 Multi-objective Random Local Search

1: Let x be chosen randomly from {0, 1}n.
2: while true do
3: Pick i ∈ {1, . . . n} uniformly at random.
4: Let y be x with bit i flipped.
5: If either f1(y) < f1(x) or f2(y) < f2(x) then let x = y.
6: end while
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Figure 1: A typical run for the (OneMax,Diff) problem, with n = 100, starting from the all
ones string. Upper line is OneMax, lower line is Diff.

The target set is the single string containing only zeros. Notice, however,
that improvement in second objective (increasing the number of matches) can
make the first objective worse. Similarly, removing a one will improve the first
objective but might make the second worse. Looking at a typical run (Figure 1),
starting with the all ones string, we see that the number of ones generally
goes down, whereas the second objective, which starts at an optimum, gets
progressively worse for a while before a general improvement takes place.

If Xt is the state at time t, let ζi(Xt) be the random variable representing
the value of bit i at timestep t. Then

E[ζi(Xt+1) |Xt = x] =

(
1− 1

n

)
xi +

1

n
(1− xi)xn−i+1

since, for bit i to be a one at step t + 1 it is either already a one and is not
changed, or is it a zero at step t, gets mutated, and the mutation is accepted
because the matching bit at position n− i+ 1 is a one.

Summing gives our first distance function:

E[OneMax(Xt+1) |Xt = x] =

(
1− 1

n

)
OneMax(x) +

1

n
Diff(x).
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Figure 2: The average time to the all zero string for the (OneMax,Diff) problem, with random
initial string. Each data point is averaged over 100 runs. Upper bounds from Corollary and
Theorem. Lower bound from OneMax as a single objective.

Now for each bit position i, let

χi(x) = [xi = 0 and xn−i+1 = 1] = (1− xi)xn−i+1.

Then

E[χi(Xt+1) |Xt = x] = (1− 2/n)χi(x) + (1/n)[xi = 1 and xn−i+1 = 1]

since either the mismatch already exists and is not mutated (either mutations
would be accepted) or we have a pair of ones and bit i is flipped (which
again would be accepted). There are two other possible configurations. If
xi = xn−i+1 = 0 then no mutation of these bits would be accepted. And if
xi = 1 and xn−i+1 = 0 then while either mutation would be successful, neither
would create a configuration satisfying χi.

Summing gives:

E[Diff(Xt+1) |Xt = x] = (1− 2/n)Diff(x) + (OneMax(x)−Diff(x))/n

since the number of one-one pairs is given by the total number of ones, less
those for which there is a mismatch. Thus:

E[Diff(Xt+1) |Xt = x] =
1

n
OneMax(x) +

(
1− 3

n

)
Diff(x)

which is our second distance function.
We now have:

A =

(
1− 1/n 1/n

1/n 1− 3/n

)
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which is non-negative and irreducible if n > 3, giving

ρ(A) = 1− 2−
√

2

n

and

v =

(√
2

2
, 1−

√
2

2

)
.

A simple application of the Corollary tells us:

E[T |X0] ≤ n(log n+ log(2 +
√

2) + 1)

2−
√

2
.

However, we can do better than this by a more careful analysis of the new
potential function. When there are k ones in the string, the Diff function is
maximised when the ones come first, followed by the zeros. In the case k > n/2
we have Diff(x) = n− k and

v · (k, n− k) = (1−
√

2/2)n+ (
√

2− 1)k

which is maximised when k = n, for which v · (k, n− k) = n/
√

2. On the other
hand, if k <= n/2, we have Diff(x) = k and

v · (k, k) = k

which is maximised when k = n/2. We conclude that the potential function can
never exceed n/

√
2. To find v∗, consider when the number of ones, k is even

(but not zero). Then the smallest value that Diff(x) can take is zero, and

v · (k, 0) = k/
√

2

which is smallest when k = 2. For odd values of k however, Diff(x) can achieve
a minimum of 1, and then

v · (k, 1) = k/
√

2 + 1−
√

2/2

which attains a value of 1 when k = 1. We can therefore set v∗ = 1. Our
theorem then gives us the run-time bound:

E[T |X0] ≤ n(log n− log
√

2 + 1)

2−
√

2
.

Some experimental runs illustrate this run-time in Figure 2. The starting con-
figurations are randomly chosen strings, and the experiments are averaged over
100 runs. It can be seen that the bound deriving from the Corollary is somewhat
weaker than the more careful analysis. The run-time of the RLS algorithm on
OneMax is given as a comparison.
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4. Example — voter model with inherent preference

In the classic voter model [11], nodes in a network can be in one of two states
(0 or 1). At each time step a node will pick a random neighbour, and then change
its state to match that of the neighbour. In the synchronous version, all nodes
perform this update simultaneously.

We consider a variant of this model, in which there is an inherent preference
for one of the states (state 0). That is, with probability 0 < µ < 1 a node will
copy its state from a random neighbour as before. Otherwise, it will change
its state to 0, with probability p, if it is not already in that state, and with
probability 1− p it will remain in its current state. The system will clearly be
absorbed in the state where all nodes are in state 0, and we seek the expected
time for this to happen. We allow the existence of isolated nodes (i.e. with no
neighbours). For such nodes, with probability µ they will simply retain their
current state (as they have no neighbours to influence them). Failing that, the
state will update to 0 with probability p as with all other nodes.

If there are m nodes, then the stochastic process takes place over the set
{0, 1}m. We let di(x) represent the state of node i in configuration x; νi is the
degree of node i; i ∼ j indicates that nodes i and j are neighbours; and I is the
set of isolated nodes. Then

E[di(Xt+1) |Xt = x] =

{
(1− µ)(1− p)di(x) + µ

νi

∑
j∼i dj(x) if i /∈ I,

((1− µ)(1− p) + µ)di(x) if i ∈ I,

which gives us:

Ai,j =


(1− µ)(1− p) if i = j and i /∈ I,
(1− µ)(1− p) + µ if i = j and i ∈ I,
µ
νi

[i ∼ j] if i 6= j and i /∈ I,
0 if i 6= j and i ∈ I.

Let

wi =

{
νi if i /∈ I,
1 if i ∈ I.

It can be checked that w = (w1, . . . , wm) is a left eigenvector of A, with corre-
sponding eigenvalue λ = (1− µ)(1− p) + µ.

We normalise the eigenvector to get

v =
1

2|E|+ |I|
w

where E is the edge set of the network. Applying the linear multi-objective drift
theorem gives the upper bound on the run-time as:

E[T |X0] ≤ 1 + log(2|E|+ |I|)− log(mini wi)

p(1− µ)
.

We illustrate this result with a set of experiments on the star graph topology.
Mindful of the fact that the multiplicative drift theorem gives tighter bounds
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Figure 3: The average time for all nodes to reach state 0 for the voter model with preference
on the star topology. Migration rate µ = 0.01, local progress rate p = 0.1. Experiments
averaged over 1000 runs. Solid line gives theoretical upper bound.

when progress is made in small steps, we first consider the case where the
migration is low (µ = 0.01) and the local progress is also low (p = 0.1). Figure 3
shows the time to absorption in this case, for increasing graph size.

The unexploded bomb example described above shows that if large steps
towards the target occur, then the mulitplicative drift theorem can give a very
conservative upper bound. We can reproduce this effect in the current model by
increasing the local progress rate to p = 0.99. Figure 4 shows the result of doing
this for different star graph sizes. It can be seen that the time to absorption is
close to a constant, and the theoretical upper bound considerably overestimates
this.

What about the effect of increasing the migration rate µ? This is interesting
in revealing a second reason why the multiplicative drift theorem can be too
conservative. Imagine the state of the star graph where the central node has
state 1 and the others have state 0. If µ is high, and p is low, then in the next
time step, the central node will be 0 and most of the others will be in state
1. The situation will reverse again at the next time step. This oscillation has
the effect of making the variance in the run-time extremely large. Now, recall
that the multiplicative drift theorem has a sharp tail bound: the probability
that a run takes longer than the stated time is very small. Consequently, for
situtations where the run-time exhibits a large variance, the upper bound given
must necessarily be conservative. This is shown in Figure 5 where we have set
µ = 0.9 and p = 0.1. It is worth noting that the standard deviations of the
run-times (not plotted) are approximately the same size as the means.

We now turn to a different example, which explores the effect of the de-
pendence of the run-time result on the minimum vertex degree. Consider a
complete graph on n vertices. The theoretical upper bound for the run-time is

1 + log n

p(1− µ)
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Figure 4: The average time for all nodes to reach state 0 for the voter model with preference
on the star toplogy. Migration rate µ = 0.01, local progress rate p = 0.99. Experiments
averaged over 1000 runs. Solid line gives theoretical upper bound.
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Figure 5: The average time for all nodes to reach state 0 for the voter model with preference
on the star toplogy. Migration rate µ = 0.9, local progress rate p = 0.1. Experiments averaged
over 1000 runs. Solid line gives theoretical upper bound.
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Figure 6: Time to absoprtion for the voter model with preference for the complete graph (left)
and the complete graph augmented with a single vertex (right). Migration rate µ = 0.01, local
progress rate p = 0.1. Experiments averaged over 1000 runs. Solid line gives theoretical upper
bound.

If we now add a vertex, and connect it to just one of the existing vertices, the
theoretical upper bound becomes

1 + log(n2 − n+ 2)

p(1− µ)

which is approximately double the original bound. It is hard to imagine that the
addition of this single vertex could make such a difference in practice. Figure 6
shows that, indeed, the run-times of the two systems are almost identical. The
effect on the upper bound is due to the fact that the minimum vertex degree is
now 1 instead of n− 1.

The issue here in fact derives from a third factor that can cause the mul-
tiplicative drift theorem to over-estimate the run-time. The run-time bound
is dependent on the distance of the intial state from the target divided by the
distance of the state closest to the target. If it happens, as here, that visit-
ing this state is rather unlikely, then the bound is going to be correspondingly
conservative.

We have seen, in this section, three possible causes of how the multiplicative
drift theorem can result in a large over-estimate of the run-time:

1. When large steps towards the target can occur.

2. When the variance in the run-time is large.

3. When the state closest to the target is unlikely to be visited.

The linear multi-objective drift theorem presented in this paper naturally in-
herits all these issues.

5. Example — evolution on parallel islands

One can generalise the previous example by considering the process that
takes place at each node, when there is no interaction with neighbours, to be any
process for which the multiplicative drift theorem holds, for some δ. Again, with
probability µ, the state is copied from a random neighbour (or is unchanged, in
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the case of an isolated node), otherwise the local process updates one time step.
We therefore have

E[di(Xt+1) |Xt = x] ≤
{

(1− µ)δdi(x) + µ
νi

∑
j∼i dj(x) if i /∈ I,

(1− µ)δdi(x) + µdi(x) if i ∈ I.

The previous example has δ = 1− p.
So now consider an evolutionary process taking place in parallel on a number

of islands [7]. This process takes place on strings from {0, 1}n, and follows the
(1 + 1)EA on OneMax (see, for example, [3]). To be precise, the state at each
node (island) is a binary string of length n. At each time step, with probability
µ a random neighbour is chosen (if there are any), and the current state is
replaced by a copy of the neighbour’s string (or left unchanged, in the case of
an isolated node). With probability 1−µ, however, a copy of the current string
is made, and each bit is mutated with probability 1/n. If the resulting string
has fewer ones than the original, then it replaces it; otherwise the current string
remains.

Eventually, all islands will hold the string containing all zeros — but how
long will this take?

Let the distance functions be the number of ones in the current string at
each island. For a single step of the (1 + 1)EA, consider the situation where the
current string has k ones. The chance to mutate exactly one of them is(

1− 1

n

)n−1
k

n
≥ k

en

and so the expected next state is bounded above by (1 − 1/en)k. Adapting
the analysis of the previous section, and using δ = 1 − 1/en, gives a run-time
bounded above by:

en(log n+ log(2|E|+ |I|)− log(w∗) + 1)

1− µ
.

where w∗ is the minimum vertex degree, if there are no isolated nodes, or 1
otherwise.

Experimental results in Figure 7 illustrate this result by considering copies
the (1 + 1)EA optimising OneMax on n bits, running on each node of a ring
topology with m = n islands. Migration is set relatively low (µ = 0.1). The
considerations of high variance run-times, discussed in the previous section,
would also apply here.

6. Example — network epidemiology

Models of the spread of infectious diseases usually assume that members of
a population are in a particular state at a given time, for example being infected
with the disease or susceptible to catching the disease (see, for example, [14]). It
is assumed that infected individuals recover according to some rate. Susceptible

13



0 10 20 30 40 50
0

200

400

600

800

1000

String length n

A
v
er

ag
e

ti
m

e

Figure 7: The average time for all islands to solve the OneMax problem on n bits, using a
ring topology with m = n islands, and migration probability µ = 0.1. Each data point is
averaged over 100 runs. Upper bound from derived result. Lower bound from a single copy
of OneMax.

individuals can catch the disease (with some probability) if they come into
contact with an infected individual. The simplest scheme assumes just these
two states, and that when an individual recovers from a disease they become
susceptible again. This is the so-called SIS model. Additional states can be
introduced to represent more realistic features, such as recovered, in which an
individual gains some immunity to the disease by virtue of having been infected.
This gives the SIR model. Additionally, birth and death processes (both from
the disease and from other causes) may be considered, and various schemes for
controlling the disease, such as vaccinations.

The traditional analysis assumes that the population is perfectly mixed,
meaning that an individual is equally likely to encounter any of the rest of
the population. The analysis then proceeds by studying the dynamics of the
proportion of infected individuals, p. We follow [14], but simplify to the SIS
model.

Over a given time period, let r be the probability that an infected individual
recovers, and s the probability that a susceptible individual catches the disease
from an infected individual. We model the process as follows. Let

F (p) = (1− r)p+ sp(1− p)

then we follow the dynamics as

p(t+ 1) = F (p(t)).

Notice that this assumes the dynamics is deterministic. It should also be noted
that we are considering discrete-time dynamics. It is easily shown that the
fixed-points of this system are p = 0 and p = 1− r/s. This latter fixed-point is
only valid if s > r (since otherwise it is negative). We then perform a stability
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analysis:
dF

dp
= 1− r + s− 2sp.

So at the fixed-point p = 0, we have asymptotic stability if s < r. If s >
r then this fixed-point becomes unstable (the differential is greater than 1),
and the other fixed-point becomes asymptotically stable. The condition s = r
thus represents a critical threshold between the disease disappearing from the
population, and it remaining.

An immediate issue with this model if we consider the stochastic process is
that the state in which all individuals are susceptible represents the absorbing
state of the system regardless of the parameter settings, and so in the long-term
the population will arrive in this state and remain there forever. One hopes,
therefore, to show that the threshold represents a condition distinguishing be-
tween the rapid convergence to the absorbing state, and the infection remaining
present for a “long” transient period of time (e.g. exponential in the size of the
population) before absorption.

We also, of course, need to address the assumption that the population is
perfectly mixed, and this leads us to consider the process occuring on a net-
work (or graph) in which nodes represent individuals, and edges describe which
individuals may interact with each other. There is a considerable literature on
such network models, and a good recent review can be found in [13]. Analysis
of such systems usually involves making approximations such as mean-field as-
sumptions. Exact results exist in a limited number of cases, for example when
the graph is complete or has the star topology, in the context of continuous time
updates (see [6], which also gives loose bounds for general network topologies).

We will consider the SIS process on a graph, using a synchronous update
rule, as with cellular automata (see [5] — a common alternative is to assume that
individuals update their state according to a Poisson process). Let x1, . . . , xn ∈
{0, 1} represent the state of the n individuals in the population, where 0 indicates
susceptible and 1 indicates infected. Over a single time step, individuals update
their states simultaneously according to the following rule:

If xi(t) = 1 then xi(t+ 1) = 0 with probability r, else xi(t+ 1) = 1.

If xi(t) = 0 then select a neighbour j uniformly at random. If xj(t) = 1 then
xi(t+ 1) = 1 with probability s. Otherwise xi(t+ 1) = 0.

We will assume that there are no isolated individuals, since these cannot
influence whether or not an epidemic takes hold in the network.

In this scheme, the deterministic dynamical equations are now seen to rep-
resent expectations:

E[xi(t+ 1) |x1(t), . . . , xn(t)] = (1− r)xi(t) +
s(1− xi(t))

νi

∑
j∼i

xj(t)

where ∼ indicates the neighbour relation and νi is the degree of node i. We show
that the condition s < r is indeed sufficient to ensure the rapid disappearance
of the disease.
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Theorem 5. In the synchronous SIS model on a graph with infection rate s
and recovery rate r, if s < r then the population will entirely recover from the
disease in expected time bounded above by

1 + log(2|E|/ν∗)

r − s

where E is the edge set of the graph and ν∗ the smallest degree of the graph.

Proof
From the above description, it follows that

E[xi(t+ 1) |x1(t), . . . , xn(t)] ≤ (1− r)xi(t) +
s

νi

∑
j∼i

xj(t).

This gives us:

Ai,j =

{
1− r if i = j,
s
νi

[j ∼ i] if i 6= j.

It can be checked that ν = (ν1, . . . , νm) is a left eigenvector, with corresponding
eigenvalue λ = 1− r+ s. The result then follows from the linear multi-objective
drift theorem. �

It is not hard to imagine that the condition s < r might not be necessary
to ensure rapid absorption. Consider the ring topology, for example, with half
(that is, n/2) of the nodes infected. If the infected nodes alternate with the
susceptible nodes around the ring, then one expects rn/2 of them to recover,
and sn/2 of the susceptible nodes to become infected. One can see that in
this situation a balance is acheived when r = s. However, if the n/2 infected
individuals lie contiguously on the ring, then again rn/2 will be expected to
recover, but only s nodes in expectation will get infected (that is, either or
both of the two nodes bordering the contiguous block of infected individuals).
For these situations, a much stronger infection rate will be required to prevent
progress towards the absorbing state.

To analyse the situation on a ring more closely, we first consider the count
of how many infected individuals there are in the population. That is, let

Z(t) =
∑
i

xi(t).

Then we have

E[Z(t+ 1) |x1(t), . . . , xn(t)] = (1− r)Z(t) +
s

2

∑
i

(1− xi)
∑
j∼i

xj(t).

Now ∑
i

(1− xi)
∑
j∼i

xj(t) = U + V
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where
U =

∑
i

(1− xi)xi−1

and
V =

∑
i

(1− xi)xi+1

where we add and subtract modulo the number of nodes. However, we now see∑
i

(1−xi)xi−1 =
∑
i

xi−1−
∑
i

xi−1xi =
∑
i

xi+1−
∑
i

xixi+1 =
∑
i

(1−xi)xi+1

and so in fact U = V . Therefore we have

E[Z(t+ 1) |x1(t), . . . , xn(t)] = (1− r)Z(t) + sV (t).

Define the indicator function

ξi = [xi = 0 and xi+1 = 1]

so that V =
∑
i ξi. To determine the expected value of V at time t + 1 we

therefore examine the expectation that ξi takes the value 1 at this time, which
is just the same as the probability that it takes that value. This, of course,
depends on the previous time step and there are four cases to consider.

Case 1 Suppose at time t we have xi = 1 and xi+1 = 1. Then the probability
that ξi = 1 at the next time step is r(1− r).

Case 2 Suppose at time t we have xi = 1 and xi+1 = 0. Now not only does node
i have to recover, but node i+ 1 has to become infected. The probability
for these two events to occur is at most rs.

Case 3 Suppose at time t we have xi = 0 and xi+1 = 1. Now node i must
not become infected and node i+ 1 must not recover. The latter happens
with probability 1− r. The probability that i gets infected is at least s/2
(since it has at least one infected neighbour). So the chance that it is not
infected is at most 1− s/2. Thus, the probability that ξ = 1 in this case
is at most (1− r)(1− s/2).

Case 4 Suppose at time t we have xi = 0 and xi+1 = 0. We divide this into
two sub-cases, depending on the value of xi+2. For if xi+2 = 0, then it is
impossible for node i+ 1 to become infected. If, however, xi+2 = 1, then
it becomes infected with probability s/2. We also need node i to not be
infected. All we can say about this is that this happens with probability
at most 1. Thus the probability, in this case, of having ξi = 1 is bounded
above by [xi+2 = 1]s/2.
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Putting all these cases together, we have

E[ξi(t+ 1) |x1, . . . , xn] ≤ [xi = 0][xi+1 = 0][xi+2 = 1]s/2

+ [xi = 0][xi+1 = 1](1− r)(1− s/2)

+ [xi = 1][xi+1 = 0]rs

+ [xi = 1][xi+1 = 1]r(1− r).

Summing gives

E[V (t+ 1) |x1, . . . , xn] ≤ (s/2)
∑
i

[xi = 0][xi+1 = 0][xi+2 = 1]

+ (1− r)(1− s/2)
∑
i

[xi = 0][xi+1 = 1]

+ rs
∑
i

[xi = 1][xi+1 = 0]

+ r(1− r)
∑
i

[xi = 1][xi+1 = 1].

Taking these sums one at a time, we see∑
i

[xi = 0][xi+1 = 0][xi+2 = 1] ≤
∑
i

[xi+1 = 0][xi+2 = 1] = V.∑
i

[xi = 0][xi+1 = 1] = V.∑
i

[xi = 1][xi+1 = 0] =
∑
i

[xi−1 = 1][xi = 0] = U = V.∑
i

[xi = 1][xi+1 = 1] =
∑
i

[xi = 1][xi+1 = 1] +
∑
i

xi −
∑
i

xi

=
∑
i

[xi = 1][xi+1 = 1] +
∑
i

xi −
∑
i

xi+1

=
∑
i

xi −
∑
i

(1− xi)xi+1 = Z − V.

So overall we have

E[V (t+ 1) |x1, . . . , xn] ≤ (s/2)V + (1− r)(1− s/2)V + rsV + r(1− r)(Z − V )

which gives:

E[V (t+ 1) |x1, . . . , xn] ≤ r(1− r)Z + (1− 2r + 3rs/2 + r2)V.

We now have two distance functions (Z and V ) whose expected progress is
bounded by a linear function. Applying the lemma for two distance functions,
we see that the time to hit the state where all infection has disappeared (since
both Z and V are zero) is logarithmic if

r(2r − 3rs/2− r2) > sr(1− r).
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Figure 8: The number of infected nodes (left) and mixed edges (right) in a typical run on a
ring of 1000 nodes, starting with all of them infected. r = 0.1 and s = 0.15.
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Figure 9: The number of infected nodes (left) and mixed edges (right) in a typical run on a
ring of 1000 nodes, starting with 10% of them infected. r = 0.1 and s = 0.15.

Simplifying, this yields the condition

s <
2r(2− r)

2 + r
.

We can see from this that a population with the ring topology can withstand
much higher infection rates than a well-mixed population. For small values of
r, the infection rate can be almost double the recovery rate, and the infection
still disappear rapidly. We will now look at some experiments to investigate this
further.

7. Experiments

The first experiment looks at the progress in each of two variables: the total
number of infected nodes (Z), and the number of mixed edges (U + V ). In
Figure 8 a typical run is shown for a ring of 1000 nodes, starting with them
all infected. When there are a large number of infected nodes, the number of
mixed edges will be small (zero to begin with) and there will typically be a loss
in infected nodes with a corresponding gain in mixed edges. After a while, the
number of mixed-edges also begins to decrease, as the number of nodes becomes
rather low, before the infection finally disappears.
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Figure 10: The average time to the elimination of the disease. Each data point is averaged
over 100 runs. The solid line is the upper bound. r = 0.1 and s = 0.15.

In contrast, Figure 9 shows a run, again with 1000 nodes, but starting with
a random 10% infected. Most of these infected nodes will be isolated, and with
a strong chance of infecting their neighbours. We therefore see the number of
infected nodes increasing initially, while the number of mixed edges decreases.
Eventually, the infected nodes form blocks such that the further increase in
infection is offset by the larger number recovering, and the infection disappears.

From these examples, it can be seen that the drift in each variable, considered
separately, is not necessarily monotonic towards the final state. The direction
of drift depends on the particular configuration at the time.

We now look at the time to the elimination of the disease, compared to
the upper bound given theoretically. Experiments show that the upper bound
considerably over-estimates the time required. Figure 10 shows the theoretical
upper bound in the case of r = 0.1 and s = 0.15 across a range of population
sizes, together with experimental data, each averaged over 100 runs. In each
case, the start state was with every node infected. The constants in the up-
per bound were calculated from the eigenvalues and eigenvectors of the matrix
containing the coefficients of the drift equations.

Of more interest is the prediction that the critical threshold for the infection
rate causing the disease to remain in the population, is considerably higher than
s = r. Our analysis shows that levels of s close to 2r still lead to the disease
being eliminated rapidly. Given the worst-case bounds that were applied, one
would expect the true threshold to be even higher.

To test this experimentally, we fixed a particular value of r = 0.1 and then
examined the time to absorption setting s at various multiples of r, until a level
was reached when the run did not terminate within a reasonable time. For this
purpose, we used a fixed population size of 100 individuals, and again started
with all of them infected. The results, shown in Figure 11 show the actual
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Figure 11: The average time to the elimination of the disease, for different infection rates.
The ring has 100 nodes, and each data point is averaged over 100 runs (all initialy infected).
The vertical line is the lower bound for the threshold. r = 0.1.
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Figure 12: The empirically estimated critical infection rate (dots), for different recovery rates,
compared to the theoretical lower bound of (solid line). Ring topology, 100 nodes.

threshold for s is somewhat higher than the lower-bound derived.
The critical threshold for the infection rate, for different recovery rates, was

estimated experimentally by conducting a binary search on possible values to
identify the largest value (to 2 decimal places) for which the infection disap-
peared within a reasonable time (for a 100 node ring, this was set to 50,000
time steps). The results, shown in Figure 12, illustrate these compared to the
theoretical lower bound. It is of interest that for recovery rates r > 0.45, the
infection dies out no matter how large the infection rate is.

The conservative nature of our bounds can be seen from these results, arising
partly from the use of the multiplicative drift theorem, and partly because of
the worst-case assumptions on the distribution of infected nodes in the case
analysis.
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8. Conclusions

We have presented a generalisation of the multiplicative drift theorem to the
case where a process or algorithm is best described by more than one distance
function. This allows the run-time analysis of situations of this sort — we have
given examples from multi-objective evolutionary algorithms, parallel evolution
on islands with migration and stochastic process on networks such as a simple
epidemiology model.

The proposed tool is not strictly more powerful than multiplicative drift,
in that it provides conditions under which a new single distance function with
mutliplicative drift exists. However, the defining of suitable distance functions
for particular problems can be a challenge and there are cases, as in our exam-
ples, where there may be several relevant natural distances, none of which in
themselves follow the multiplicative drift condition. The result is particularly
useful when there are two distance functions, where the relevant eigensystem is
easy to compute explicitly. Problems with a larger number of objectives need
sufficient structure for this to be achieved.

We have illiustrated three possible causes of how the multiplicative drift
theorem can sometimes result in a large over-estimate of the run-time:

1. When large steps towards the target can occur.

2. When the variance in the run-time is large.

3. When the state closest to the target is unlikely to be visited.

The linear multi-objective drift theorem presented in this paper naturally in-
herits all these issues.

For single distance functions, multiplicative drift can be seen as a special
case of variable drift [8, 12], where the expected progress is bounded by an arbi-
trary function (subject to minor conditions). It is hard to see how to generalise
this case to multiple distance functions, without adding considerable extra as-
sumptions. For example, the differential equation method, due to Wormald [15]
can apply if the progress is known fairly exactly in each distance function, and
where additionally the probability of making large jumps is small. Even with
such extra assumptions, the error inherent in Wormald’s theorem can make it
hard to produce the run-time bounds which we would like to see [4]. Pursuing
these lines of thought and resolving these issues would be a worthwhile line of
research.
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