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Abstract The effects of the configuration and temperature on the Young’s modulus of 

poly (methyl methacrylate) (PMMA) have been studied using molecular dynamics 

simulations. For the DREIDING force field under ambient temperatures, increasing the 

number of monomers significantly increases the modulus of isotactic and syndiotactic 

PMMA while the isotactic form has a greater modulus. The effects of temperature on 

the modulus of isotactic PMMA have been simulated using the DREIDING, AMBER, 

and OPLS force fields. All these force fields predict the effects of temperature on the 

modulus from 200 to 350 K that are in close agreement with experimental values, while 

at higher temperatures the moduli are greater than those measured. The glass transition 

temperature determined by the force fields, based on the variation of the modulus with 

temperature, is greater than the experimental values, but when obtained from a plot of 

the volume as a function of the temperature, there is closer agreement. The Young’s 

moduli calculated in this study are in closer agreement to the experimental data than 

those reported by previous simulations. . 

Keywords:  Poly (methyl methacrylate) (PMMA), DREIDING, AMBER, OPLS, 

Young’s modulus 

1. Introduction 

Poly (methyl methacrylate), PMMA, is classified as a polyacrylate and is biocompatible and 

non-biodegradable. Consequently, it can be used alone as a matrix material or as a minor 

phase to improve some properties of biodegradable matrices [1]. In addition to its mechanical 

stability and strength, low cost and ease of manufacture, it has some properties that make it a 

valuable material for biomedical and pharmaceutical applications, such as non-toxicity and 

minimal inflammatory reactions with tissues [2]. Examples of biomedical applications 

include microspheres [1, 3], microcapsules [4, 5], dental [6, 7], implants [8, 9], bone cements 

[10, 11], and contact lenses [12, 13].  

For such applications, it is crucial to fully understand the impact of the raw material 

properties on the final products. Hlinak et al. [14] presented a set of critical material 

properties in pharmaceutical formulations and for process developments of solid dosage 
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forms. For example, the elastic modulus of microsphere materials will influence the final 

mechanical properties of the dosage form. This is also the case for other polymeric materials, 

e.g. the degree of polymerization and molecular weight of microcrystalline cellulose show a 

strong positive impact on tablet strength [15, 16]. Therefore it is important to be able to 

measure material properties by laboratory experiments or to predict them by mathematical 

modelling. Such modelling has an advantage compared to an experimental approach since it 

can provide a more fundamental scientific understanding of the parameters governing the 

properties.  

Molecular dynamics (MD) simulation has been increasingly employed to predict the 

mechanical properties of polymers. It is based on an empirical mathematical model of the 

potential energy of atoms and classical equations of motion in order to simulate the 

interactions and dynamics of materials at an atomistic level. However, to derive more reliable 

predictions of the macroscopic properties of polymers, a large number of conditions needs to 

be studied and compared to laboratory data. For PMMA, some MD simulations have been 

performed to study its various properties, however there are discrepancies between the results 

and experimental values.   

Jaramillo et al. [17] developed a PMMA model consisting of 1080 chains, where each 

has 96 monomers, to study how volumetric and deviatoric strains influence the yield 

behaviour for a wide range of loading conditions. They observed that permanent deformation 

occurred when either the deviatoric or volumetric strains reached critical values. Kim et al. 

[18] developed two models based on five and also forty 96-monomer chains in order to 

characterise the molecular structure, thermal properties and energetics of PMMA films. The 

calculated free surface energies agreed closely with experimental measurements and they 

observed that the annealing process had a strong effect on the molecular structure. Sane et al. 

[19] constructed a model of amorphous PMMA consisting of 3 chains, where each chain had 
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50 monomers, and calculated the bulk compliance as a function of temperature. Near room 

temperature, their results were consistent with experimental values, however, the variation of 

the compliance with temperature could not be reproduced completely. 

Soldera and Grohens [20] performed MD simulations of PMMA chains with different 

tacticity to investigate the glass transition behaviour and carried out energetic and local 

dynamics analyses. Their simulated glass transition temperature (Tg) for isotactic PMMA (i-

PMMA) and syndiotactic PMMA (s-PMMA) are higher than experimental values, however, 

the difference in the two values is in close agreement with experimental data. Mohammadi et 

al. [21] attempted to estimate the Tg of i-PMMA by employing the united atom model 

consisting of 3 chains each with 100 monomers. To achieve this objective, the polymer 

properties including the thermal conductivity, volume, thermal expansion and Young’s 

modulus were examined. They found that the Young’s modulus ranged from 1.9 – 1.2 GPa in 

the temperature range of 300 – 600 K. The values at low temperatures up to room 

temperature were less than experimental values while at high temperatures they were higher, 

and the simulated Tg was higher than experimental values. 

The aim of the current study is to present a further exploration of MD simulations that 

reproduce the effects of tacticity, number of monomers per chain (degree of polymerisation) 

and temperature on the elastic properties of PMMA. The previous work did not include these 

factors, for example, they did not consider the effects of different numbers of monomers on 

the properties and the numbers of monomers were much fewer than commercial PMMA. The 

mechanical properties of PMMA, such as the toughness, improve with increasing molecular 

weight up to a limiting value of ~ 105, which corresponds about 1000 monomer units [22]. 

Therefore, it is necessary to build PMMA models with more monomer units since the 

previous simulations were unable to produce results that were in close agreements with 
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experiments, e.g. in terms of the smaller Young’s modulus at room temperature or higher Tg 

values.  

The suitability of three force fields is also evaluated for reproducing the effects of 

temperature on the Young’s modulus of i-PMMA. In MD simulations, the force field used to 

describe the interaction between atoms and molecules is one of the most important factors 

influencing the accuracy of the simulated system and its properties. The force fields evaluated 

and compared for the first time in this study are the DREIDING [23], AMBER [24], and 

OPLS all-atom [25]. These force fields were selected because they have been employed in 

previous studies of PMMA. The DREIDING force field has been validated by comparing i-

PMMA crystals to X-ray structural analysis data [19] and has been applied to study the Tg of 

s-PMMA [26]. The AMBER force field has been used to study syndiotactic and isotactic 

oligomers of PMMA and is able to reproduce quantitatively the experimental X-ray scattering 

results obtained in dilute solutions of benzene, especially for syndiotactic oligomers 

ofPMMA [27]. The OPLS force field has been validated by direct comparison to structural 

and dynamic neutron scattering measurements, and by comparison via temperature 

extrapolation of activation energies and rotational times for methyl group rotations [28]. It 

also has been used to study the effects of tactility and temperature on the surface structure of 

PMMA at a polymer−vacuum interface [29]. 

2. Modelling and simulation 

The initial structures of PMMA, -[CH2-C(CH3)(OCOCH3)]- , were created using Polymer 

Modeler [30]. To study the various configurations, six models were created (Table 1), where 

each model has 5 chains. Figure 1 shows the structure of a single chain i-PMMA and s-

PMMA models containing 4 monomers visualised using Jmol [31]. The ester groups of i-

PMMA are projected on the same side of the polymer chain while for the syndiotactic form, 
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they are projected in a regular alternation on both sides of the polymer chain. The tacticity of 

polymers influences their physical properties such as the Tg and solubility.  The parameters 

for DREIDING, AMBER and OPLS force fields were those reported in references [19], [27], 

and [28] respectively. 

The Polak-Ribiere version of the conjugate gradient algorithm [32] was employed to 

minimise the energy of the initial structure, with a force stopping criteria of 10-9. The MD 

simulations were then performed under isothermal conditions for 50 ps at two high 

temperatures (600 and 1000 K) with the temperature controlled by a Langevin thermostat. 

Two different initial temperatures were selected in order to study the effects of the annealing 

temperature on the mechanical properties. Subsequently, further simulations of 50 ps duration 

were conducted under isobaric-isothermal conditions at the same temperature and zero 

pressure, where the temperature and pressure were controlled using a Nose-Hoover barostat 

and thermostat respectively. The temperature was cooled to the required value (200, 250, 

300, 350, 400, 450, 500, 550, 600, 650, and 700 K) within 100 ps again using a Nose-Hoover 

barostat and thermostat. The model was then subjected to seven equilibration process cycles 

with each cycle composed of an energy minimization using the conjugate gradient algorithm 

and an equilibration process  for 50 ps under isobaric-isothermal conditions at the specified 

temperature and zero pressure. The measurement of the volume of the samples corresponded 

to a duration of 50 ps after equilibration. 

To compute the Young’s moduli, MD simulations of uniaxial extension were 

implemented using LAMMPS [33] with periodic boundary conditions. Each model was 

stretched sequentially in orthogonal directions to a true strain of 2% at a constant strain rate 

of 109 s-1. The stretching duration was 21 ps. The mean values of the Young’s moduli were 

calculated from the gradients of the stress-strain curves.  
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3. Result and discussion 

Table 2 presents the Young’s modulus for the two PMMA configurations calculated from the 

simulations using the DREIDING force field at 300 K.  For comparison, experimental values 

at strain rates of 4 x 10-5 and 4 x 10-2 s-1 are 3.4 and 6.3 GPa respectively [34]. Information 

about the tacticity of the sample was not available, however, commercial PMMA materials 

generally have 50-70% syndiotactic, about 30% atactic, and <10% isotactic [35] 

configurations.  

To the authors’ knowledge, data have not been published for the Young’s modulus of 

both pure i- PMMA and s-PMMA. However, increasing the chain regularity and isotacticity 

of polypropylene has been shown to be accompanied by proportionally greater increase in the 

stiffness [36]. Moreover, the barrier energy of the ester methyl groups for rotation in i-

PMMA is greater than in s-PMMA [37] [38], which implies higher local order and stronger 

non-bonded interactions with neighbouring groups. The current simulations show that the 

dihedral angle energy for i-PMMA is greater than for s-PMMA e.g. for 400 monomer 

models, the energy is 4182 and 3763 kcal/mole for i-PMMA and s-PMMA respectively. 

Therefore, it is expected that i-PMMA has a greater stiffness than s-PMMA, which is 

consistent with the simulated data shown in Table 2. 

It can be seen in table 2 that the Young’s moduli of the samples containing 400 

monomers are greater than the published experimental data in [34] measured at the lowest 

strain rate, but smaller than the one measured at the fastest strain rate. It is well known that 

the Young’s modulus of a polymer increases with increasing strain rate [34]. The simulations 

involved a much higher strain rate than the highest experimental value, however, the moduli 

are lower. This can be explained by the differences between the simulations and experiment, 

in term of number of monomers and thermal history, as discussed below.  
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In [34] information is not given about the number of monomers, however, commercial 

PMMA materials may consist of about 1300 – 22,000 monomers [39]. While the largest 

model considered here has only 400 monomers, which is relatively small compared to 

commercial PMMA, but is a higher molecular weight than considered previously in 

published models (100 monomers or less). The smaller molecular weight of the models 

contributes to the lower Young’s modulus compared to the experimental values. It has been 

shown that the molecular weight of PMMA influences the flexural modulus of cross-linked 

dentures based on this polymer [7]; increasing the molecular weight from 120,000 to 220,000 

(corresponding to an increase in the number of monomers from about 1,200 and 2,200 

respectively) significantly increases the modulus. The molecular weight of PMMA also 

influences the modulus at room temperature measured using the dynamic mechanical analysis 

technique (DMA) [40] and the modulus of elasticity measured using transverse deflection 

[41]. The current work also shows a similar trend of an increase in the Young’s modulus with 

an increase of the number of monomer units (Table 2). It may be concluded that the 

DREIDING force field is satisfactorily in this respect. 

The mechanical behaviour of glassy polymers is known to be dependent on their 

thermal history, such as quenching and annealing. Annealed samples of polycarbonate, 

poly(vinyl chloride), polystyrene, and poly(methyl methacrylate) have been shown to have a 

greater yield stress and Young’s modulus than the quenched samples [42-44]. Quenched 

polymer samples have a greater enthalpy change measured by differential scanning 

calorimetry, which is consistent with the greater degree of structural disorder preserved by 

quenching [43]. By quenching, the mobility of polymer molecules is reduced therefore they 

cannot organize themselves periodically to form a crystal structure, hence the relatively 

smaller yield stress and modulus. The fast cooling rate for preparing the samples in the MD 
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simulations also contributes to the calculated Young’s modulus being smaller than the 

experimental values. 

Table 3 presents the influence of the annealing temperature on the Young’s modulus 

of i-PMMA and s-PMMA calculated at various temperature using the DREIDING force field. 

There is not a significant discrepancy between the values calculated from the two annealing 

temperatures; the difference between them is within the statistical deviation of the 

calculation. However, at a temperature of 500 K, the model annealed at 1000 K tends to give 

a smaller Young’s modulus, which is closer to experimental values. It should be emphasised 

that the selection of the current annealing temperatures (600 and 1000 K) did not significantly 

influence the Young’s modulus of the polymers calculated at ambient temperatures. 

However, for investigating the effect of temperature, the annealing temperature was set at 

1000 K since the results were in closer agreement with experimental data at high 

temperatures. 

The effect of temperature on the Young’s modulus calculated using the three force 

fields is presented in Figure 2. For this purpose, an i-PMMA model with 400 

monomers/chain and an annealing temperature of 1000 K was used. As would be expected, 

the figure shows that increasing the temperature reduces the Young's modulus. A similar 

trend has been found for the storage modulus of PMMA measured by DMA, for example [45] 

and [46].  

At room temperature, the Young’s modulus is about 3.74, 3.69 and 4.68 GPa for the 

simulations using the DREIDING, AMBER, and OPLS force fields respectively; the 

measured storage modulus at 1 Hz is about 3 [46] and 5 GPa [45]. The storage modulus is 

approximately equal to the elastic modulus for a single, rapid stress at low strain in the linear 

viscoelastic region [47]. Therefore under ambient temperatures, the three force fields are able 

to reproduce the Young’s modulus in close agreement with the experimental data. At  
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temperatures between 200 - 300 K, all force fields also predicted that the Young’s modulus is 

in close agreement with experimental data, which are between 4.8 – 3 GPa [46] and 7.3 – 5 

GPa [45], where the OPLS predicted a greater modulus than the other two force fields. 

It can be observed in Figure 2 that for all force fields there is a sharp decrease (about 

1 GPa) in the Young’s modulus for the temperature range of 450 to 500 K. This indicates a 

transition between the glassy and rubbery regions of PMMA. In [45] and [46], such 

reductions (about 2.1 and 1.3 GPa respectively) were measured between 380 and 400 K 

corresponding to the Tg (381 and 388 K respectively). These Tg values indicate that the 

samples are composed mainly of syndiotactic configurations.  

According to [48], the measured Tg of s-PMMA is between 328 and 397 K depending 

on the degree of polymerisation, while for i-PMMA it is between 295 and 323 K, and also 

depends on the degree of polymerisation. The current values for i-PMMA are higher than the 

measured Tg. It is known that the Tg determined by thermomechanical techniques depends 

on the deformation rate. Therefore, the origin of the discrepancy could be the much higher 

strain rate applied in the MD simulations compared to those applied in the DMA. The higher 

strain rate in the current simulations results in a shorter time for the polymer chains to 

reorientate when stretched, and hence the Tg is higher.  

At high temperatures (> 350 K), the current simulations using all force fields cannot 

reproduce the measured values of the Young’s modulus although the OPLS predicted greater 

modulus values than the other two force fields. For example, at 400 K the measured values of 

the Young’s modulus are about 0.1 [46] and 0.03 GPa [45]. It is possible that the greater 

values computed here arise from the much greater imposed strain rates, which restricts the 

mobility of the chains under uniaxial tension. For the DREIDING potential, Sane et al [19] 

reported that the bulk compliance of PMMA at high temperatures (> 350 K) also cannot be 

reproduced accurately compared to experimental values.  
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When a polymer is stretched, the chains-ends are moved apart and the conformations 

are changed. The methyl side groups (CH3 and OCOCH3) of PMMA hinders the free rotation 

about the main C-C bonds, which is required to change the conformation. For example, in 

neutron scattering experiments, the ester methyl group is assumed to be in one of three states, 

with a dihedral angle of C-O-C-H approximately equal to 0 and ± 120o and that the observed 

motion involves jumps between these states [49]. Thermal energy is required to activate such 

jumps in order to overcome the dihedral torsional energy, where at low temperatures the 

available thermal energies are insufficient. The temperature at which this jump can occur is 

related to the Tg. The computed changes in the dihedral torsional energy of i-PMMA as a 

function of temperature are presented in Figure 3. At about 350K, there is a small change in 

the gradient of the change in dihedral energy. This temperature corresponds to the computed 

Tg of i-PMMA. This is less than the value (450 to 500 K) determined from the Young’s 

modulus – temperature curve (Figure 2). However, it is more consistent with the measured 

range of 295 – 323 K [48].  

 The cooling rate to prepare the sample in the MD simulations is much faster than the 

experimental rates, which contributes to the higher Tg. It is well known that cooling rate 

affects the Tg viz., increasing cooling rate increases Tg [50]. It has been shown for poly(vinyl 

acetate) that a ~5000 times faster cooling rate increased the Tg by about 8 K [51]. The effect 

of the cooling rate effect on the Tg also has been studied by MD simulations using a coarse-

grained polymer model [52]; increasing the cooling rate by three orders of magnitude 

increased the Tg by about 9%. By cooling polymer melts very fast (i.e. quenching it) to far 

below the melting temperature, the mobility of the polymer molecules is immobilised to the 

extent that they cannot undergo translational or rotational motion in order to rearrange 

themselves periodically since there is insufficient vibrational energy. Thus, there is a 

correlation between increasing cooling rates and an increase in the Tg.  
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The Tg  also corresponds to the change in the gradient in a dilatometrical plot of the 

volume as a function of the temperature. Figure 4 shows such a plot based on the current 

computed data, where the Tg is about 350 K, which is consistent with the value obtained in 

Figure 3. Again, this is higher than the measured range of 295 -323 K [48], possibly because 

of the higher cooling rates applied in the simulations, however it is more realistic than the 

previously published results of 430 K [20, 21] using other force field and the united atom 

model. The technique applied here to further equilibrate the model after cooling from a high 

annealing temperature, as described in the previous section, has reduced the effect of high 

cooling rates on the Tg hence the it is in closer agreement with the experimental values. A 

comparison between the experimental and simulated values of the Tg can be seen in Table 4. 

The Tg has been considered to be related to the sudden change of expansion in the 

free volume of a polymer, for example as discussed in [53]. In Figure 3, it can be seen that at 

temperatures greater than the Tg of the current PMMA model, the change in the dihedral 

energy is greater than at temperatures less than the Tg. The thermal energy at high 

temperatures is sufficient for PMMA molecules to vibrate and overcome the energy barrier to 

rotation required for jumping to a different state. This mechanism increases the free volume, 

creating more space availabe for the polymer to undergo rotation and translation, and 

eventually reducing the Young’s modulus above the Tg. 

4. Conclusion 

The effects of the number of monomers and tacticity on the Young’s modulus of PMMA at 

ambient temperatures can be satisfactorily simulated using the DREIDING force field. 

Increasing the number of monomer units increases the Young’s modulus of both isotactic and 

syndiotactic PMMA, which also has been observed experimentally. The calculated Young’s 

modulus of isotactic PMMA is greater than the value for the syndiotactic form. In general, 
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the  DREIDING, AMBER and OPLS force fields have similar performances in predicting the 

effects of temperature on the Young’s modulus and Tg of isotactic PMMA. The effects of 

temperature on the Young’s modulus from low temperatures to ambient values calculated 

using all force fields showed a similar trend to those measured. At ambient temperatures, all 

force fields reproduced the Young’s modulus in close agreement with experimental values. 

However, for all force fields, because of much greater strain rates of the simulations 

compared to experiments, the computed Tg is higher and the Young’s moduli predicted at 

temperatures above the Tg are greater. In contrast, the Tg predicted by all force fields from 

volume-temperature curves, is in closer agreement with experimental values. For the modulus 

at temperatures above the Tg, the OPLS force field is less accurate than the other two force 

fields. 
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Table 1. PMMA models for the simulations 

No Configuration Number of 

monomers in  each 

chain 

Total number of 

atoms 

1 Isotactic PMMA (i-PMMA) 100 7510 

2 Isotactic PMMA (i-PMMA) 200 15010 

3 Isotactic PMMA (i-PMMA) 400 30010 

4 Syndiotactic PMMA (s-PMMA) 100 7510 

5 Syndiotactic PMMA (s-PMMA) 200 15010 

6 Syndiotactic PMMA (s-PMMA) 400 30010 
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Table 2. Effect of configuration on the mean values Young’s modulus calculated in three 

orthogonal directions at 300 K using the DREIDING force field 

Number of 

monomer 

Young’s modulus (GPa) 

s-PMMA i-PMMA 

100 2.82 ± 0.56 3.12 ± 0.68 

200 2.74 ± 0.25 3.69 ± 0.60 

400 3.60 ± 0.67 3.95 ± 0.47 
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Table 3. Effect of annealing temperature on Young’s modulus at various temperature using 

the DREIDING force field. 

Temperature 

(K) 

Young’s modulus (GPa) 

Annealing temperature = 

600 K 

Annealing temperature = 

1000 K 

200 4.53 ± 0.55 4.14 ± 0.16 

300 3.95 ± 0.47 3.74 ± 0.38 

400 2.89 ± 0.23 3.10 ± 0.44 

500 1.70 ±  0.24 1.52 ± 0.14 
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Table 4. Glass transition temperature of PMMA from experimental measurements and MD 

simulations 

Method Glass transition temperature 

(K) 

Experiment s-PMMA[48] 328-397 

Experiment i-PMMA[48] 295-323 

MD simulations i-PMMA (modulus vs temperature) 450-500 

MD simulations i-PMMA (volume vs temperature) 350 
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Figure 1. Structure of small (a) i-PMMA and (b) s-PMMA models. Red: oxygen, grey: 

carbon, white: hydrogen. 

Figure 2. Effects of temperature on the Young’s modulus for i-PMMA simulated using the 

AMBER, DREIDING and OPLS force fields. There is a sharp decrease in the Young’s 

modulus between 450 and 500 K. Experimental values at ambient temperature are shown for 

comparison. 

Figure 3. Change in the dihedral energy as a function of temperature for i-PMMA calculated 

using the AMBER, DREIDING and OPLS force fields. There is a small change in the 

gradient of the change in dihedral energy at about 350 K. 

Figure 4. Volume as a function of temperature for i-PMMA calculated using the AMBER, 

DREIDING and OPLS force fields. There is a small change in gradient of the volume at 

about 350 K. 
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Figure 1a. 
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Figure 1b. 
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Figure 2 
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Figure 3 
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Figure 4 


