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Abstract 

Nonlinear harmonic generation in metasurfaces has shown great promises for applications such 

as novel light sources, nonlinear holography and nonlinear imaging. In particular, dielectric 

metasurfaces have shown multi-fold enhancement of the harmonic efficiency in comparison to 

their plasmonic counterparts due to lower optical loss and much higher damage threshold.  In this 

work, we propose to enhance the efficiency of the third harmonic generation in a complementary 

silicon nonlinear metasurface, consisting of nanoapertures of cross-like shape in the silicon film. 

The efficiency enhancement is based on a multipolar interference between the magnetic dipole 

and electric quadrupole, resulting in significant near-field enhancement and a large mode volume 

of the nonlinear interaction. The measured efficiency of third harmonic generation from the 

silicon metasurface is 100 times higher than that from a planar silicon film of the same thickness. 

Numerical analysis of the near-field resonant modes confirms the multipolar mechanism of 

nonlinear enhancement. Enhanced third harmonic generation by multipolar interference in 

complementary dielectric nanostructure opens a new route for developing high-efficiency 

nonlinear metasurfaces. 
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Silicon photonic circuits, which are compatible with mature CMOS technologies, show great 

potential for on-chip information processing and thus have attracted attention from both 

academic and industry communities.1 To modulate the optical signals in silicon devices, various 

nonlinear optical (NLO) processes have been used, such as the frequency conversion processes 

stemming from the third order susceptibility of silicon, light amplification based on Raman 

scattering and four-wave mixing, as well as in all-optical de-multiplexing etc.2,3 However, one of 

the key obstacles that limits the applications of nonlinear silicon device is its low NLO 

efficiency. To circumvent this constraint, strong light localization in photonic crystal or 

plasmonic device has been proposed as viable path to greatly enhance the NLO efficiency.4-6 For 

example, plasmonic nanostructures with strong light-matter interaction in the sub-wavelength 

volume have been utilized to enhance the efficiency of second harmonic generation (SHG),7-14 

third harmonic generation (THG),15-20 and four-wave mixing.21-23 Unfortunately, both metal and 

metal-silicon hybrid plasmonic devices inherit some intrinsic disadvantages of noble metals, i.e. 

high loss and low damage threshold. In comparison, silicon nanostructures are exempt from 

these problems. Two-dimensional silicon photonic crystals have been designed to exhibit strong 

THG based on slow light and cavity effect.24,25  

More recently, silicon nanoparticles were suggested as a promising platform for 

enhancing the NLO processes due to strong confinement of light at the magnetic dipole 

resonance.26-31 It was shown that silicon nanoparticles of a few hundred nanometers thick can 

result in a very large THG efficiency of the order of ~10-7, which is ultimately limited by the 

two-photon absorption and the damage threshold of silicon. Further ideas for harmonic 

efficiency enhancement have been explored, including Fano resonances,27,29 anapole modes,32,33 

hybrid antennas34 and Germanium antennas as higher nonlinear material, leading to efficiencies 



of up to 10-5. These techniques however suffer from the small mode volume of the nanoantenna. 

Here we propose a new scheme for achieving strong third harmonic nonlinear conversion in a 

metasurface featuring an extended mode volume that greatly facilitates the nonlinear interaction 

of light. 

Results and Discussions 

Here, we adopt a complementary silicon metasurface, which consists of a 2D periodic 

array of nanoapertures, as schematically shown in Fig. 1. Such nanostructure was introduced in 

the concept of all-dielectric metasurfaces in Ref.35 and was shown to exhibit a rich variety of 

modes, including leaky guided mode, dark and bright multipolar modes. When the fundamental 

wave (FW) is normally incident onto the metasurface, the hole-array can couple the incident 

wave into different multipolar modes. The interference between the guided and localized modes 

in the structure results in Fano-type spectral resonant features, where the near field are strongly 

enhanced, allowing to dramatically increase the THG by the metasurface. The proposed silicon 

metasurface represents a facile approach towards highly efficient THG sources. 

Here we fabricate the silicon metasurface on a fused silica substrate, which suffers much 

less of TPA effect than a silicon substrate. Fig. 1(b) shows the scanning electron microscopy 

image of the silicon metasurface consisting of a periodic array of silicon nanoapertures. The 

silicon metasurface is fabricated using electron beam lithography. A 205 nm thick amorphous 

silicon film is deposited on a 200 µm thick fused silica substrate via a plasma enhanced chemical 

vapor deposition (PECVD) process. Next, an electron beam resist with a thickness of 200 nm is 

spin-coated onto the silicon film, followed by electron beam patterning of periodic 

nanoapertures. Finally, the silicon film is etched under the protection of resist mask and silicon 

nanoapertures with periodicities of 600 nm in both x- and y-axis directions are obtained.  



Numerical calculations are performed using Lumerical finite difference time-domain 

(FDTD) software. Our simulations allow us to obtain both the multipolar decomposition and 

near-field distributions. The calculated transmittance spectrum is shown in Fig. 1(c) with red line 

and closed squires. The simulations match the resonance behaviour reasonably well, where the 

resonant mode appears at a wavelength around 1296 nm. We then characterize the linear optical 

properties of the silicon planar thin film and metasurface by using Fourier transformation 

infrared spectrometry. As shown in Fig. 2(b), in the measured transmittance spectrum (open red 

circles) we observe a clear transmission dip at a wavelength of 1281 nm, which is a result of 

excitation of resonant modes in the complementary silicon structure. The measured resonant dip 

is broader than the simulated one, which can be attributed to the imperfection of nanofabrication 

and the large numerical aperture (N.A. = 0.36) objective lens used for the transmission 

measurement.  

Fig. 2(a) shows the calculated multipolar decomposition for our structure. We calculate 

the Cartesian multipoles up to the third order based on the electric field E inside the unit cell. 

Based on the multipolar expansion of the polarization current density, the multipole terms 

(electric dipole p, magnetic dipole m and electric quadrupole Qe) are calculated according to the 

following equations: 

 ( ) 3
0 1 ,ε ε d r= − ∫p E    

 ( ) 3
0 1 ,
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  where ω is the angular frequency, ε0 is the vacuum permittivity and ε are the relative 

permittivity of the silicon. The total scattered power Ptotal is calculated as the sum of each 

multipole contributions: 
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with k0 being the wave number, and Z0 being the wave impedance in the vacuum. 36  

It is found that the electric quadrupole and magnetic dipole are the two dominant modes 

contributing to the resonant behaviour. The dominant magnetic dipole mode is in the plane of the 

metasurface and can couple to both in-plane (inside the silicon slab) and to free-space (radiating) 

modes. The quadrupolar mode does not couple to free-space radiation directly but only through 

coupling with the magnetic dipole mode. The spectral position of maximal scattering between 

the magnetic dipole and quadrupole modes is slightly displaced due to the interaction of both 

modes with the weaker in-plane electric dipole mode (black curve in Fig. 2(a)). Interestingly, 

both the magnetic dipole and the electric quadrupole components exhibit an asymmetric line-

shape, which is a result of the interference between the radiative and guided modes in the silicon 

slab. To illustrate the mode structure, in Figs. 2(b) and (c) we show the components of electric 

field Ex and magnetic field Hy in a unit cell of the silicon metasurface at the FW of 1287 nm in 

the X-Y plane (z=0), which corresponds to the peak efficiency THG in Fig. 4. From the field 

distribution in Fig. 2(c), the electric quadrupole and magnetic dipole patterns at fundamental 

wave of 1287 nm are clearly observed from the four petals and two petals in the distributions of 

electric field and magnetic field, respectively. As expected, the fundamental wave is strongly 

localized inside silicon when the guided mode is excited.  

To better understand the waveguide mode enhanced THG from the silicon metasurface 

and planar thin film, nonlinear optical calculation is performed based on the linear response of 

the metasurface at both the fundamental and third harmonic wavelengths.20 In the calculation, the 

third-order susceptibility (3)χ of amorphous silicon is assumed to be dispersionless for the FW 

between 1.2 µm and 1.34 µm and the third order susceptibility of air is neglect. The far-field 



THG intensity is calculated by the following steps: first, the electric field distribution in a unit 

cell of the silicon metasurface is simulated at both fundamental and THG wavelengths by using 

TM (H-)- polarized plane waves. Next, since the silicon is homogenous at each local point r , the 

(3)χ  tensor becomes a simple constant and thus the nonlinear polarization is written as 

(3)( ) ( ) ( ) ( )THGP r E r E r E rχ= ⋅ ⋅ ⋅
ur ur ur

.  Finally, the induced nonlinear polarization emits radiation to 

the far-field, which can be described by using the Green’s function ( ', )G r r
t

 at the THG 

wavelength and the total intensity is given by:   

                                 
22 3( ') ( ', ) ( )total THGI E r G r r P r d r= = ⋅∫

tr r
                     Eq.1 

As shown in Fig. 3(a)-(c), the amplitude and phase distributions of FW and THG wave, 

and the term ( ', ) ( )THGG r r P r⋅
t r

 at each local point are averaged for different Z position and 

plotted in the X-Y plane for FW at wavelengths of 1287 nm, which corresponds to the peak THG 

efficiency in the calculated nonlinear response (Fig. 4d). It is clearly observed that the amplitude 

of the nonlinear polarizations that contribute to the far field is strongly localized inside the 

silicon metasurface. 

The THG from the silicon planar film and metasurface is measured using a spectrally 

tunable femtosecond laser source (repetition frequency: 82 MHz, pulse duration: ~ 200 fs). The 

fundamental wave with a spot size of ~ 20 µm in diameter was normally incident onto the silicon 

metasurface after passing through an objective lens (N.A. = 0.1). The THG signals in 

transmission direction are collected by an infinity-corrected objective lens (N.A.=0.5) onto an 

Andor spectrometer (SP500i) with a photomultiplier tube detector. For a linearly (TM: H) 

polarized FW at a wavelength of 1280 nm (Fig. 4(a)), the intensity of THG signal with the TM 

polarization (H) is much stronger than that with TE polarization (V). For the H-H measurement 



(Fig. 4(b)), the intensity of THG at the wavelength of 432 nm shows a cubic dependence upon 

the pumping power of the FW, suggesting that the signal indeed results from a third-order 

nonlinear optical process. Fig. 4(c) shows the far field radiation pattern of waveguide mode 

enhanced THG, which was captured by a colour CCD camera in the k-space. 

Subsequently, we study the spectral dependence of THG efficiency, defined by η  = 

ITHG/IFW, from both the silicon planar film and metasurface by tuning the wavelength of FW 

from 1.2 µm to 1.34 µm. At the fundamental wavelength of 1280 nm, the measured THG 

efficiency from the silicon metasurface (solid squares) has an enhancement factor up to 220 with 

respect to that from the planar silicon film (solid triangles). This observed enhancement of the 

THG signal arises from the strong field enhancement inside the silicon metasurface. This is 

confirmed by the observation that the peak THG efficiency occurs at waveguide resonant 

wavelength of 1280 nm. For the H-polarized FW with an averaged pumping power of 26.7 mW, 

the maximum efficiency of the THG with a value of 1.76 x10-7 is also obtained. This nonlinear 

optical conversion efficiency is comparable to the value measured from silicon nanoresonators at 

comparable pumping density.26,27 As shown in Fig. 4(d), the calculated efficiency of spectrally 

resolved THG (open squares and triangles) agree reasonably well with the measurement results. 

It is found that the calculated THG efficiency reaches the maximum for fundamental wavelength 

at 1287 nm. The THG intensity from the silicon metasurface has an enhancement factor up to ~ 

953 with respect to that from the planar silicon film. The discrepancy between the measurement 

and simulation is mainly due to the imperfections in the nanofabrication of the metasurface. For 

the fundamental wave with wavelength around 1200 nm-1230 nm, the measured THG efficiency 

is higher than the calculated value. This may be attributed to the presence of unintended modes 

introduced by the imperfection in the nano-fabrication of the silicon metasurface.  



 

Conclusions 

 We have shown that the guided mode in silicon metasurface can be utilized to greatly 

enhance the THG efficiency. The THG experiment was performed on a silicon photonic device 

with an area size of 900 µm2 and thickness of ~ 200 nm. Thus, the proposed silicon metasurface 

provides a compact platform for manipulating the nonlinear optical processes. We also 

implemented the nonlinear optical calculation procedures which exactly predict the measured 

THG efficiency from both a silicon planar thin film and the metasurface. We note that the 

measured THG efficiency is obtained using resonant modes of moderate quality factors and 

might not be the highest possible for our complementary structure. We believe that the efficiency 

could be further improved by designing sharper Fano resonances in the silicon metasurface. 

More importantly, the concept of THG enhancement in this work can be used to design various 

nonlinear functional silicon photonic circuits.  
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Figure 1. Geometry and transmission properties of the silicon metasurface. (a) Schematic 

view of a single silicon nanoaperture and (b) scanning electron microscopy image of the silicon 

metasurface (scale bar: 600 nm). The nanoaperture is milled into 205 nm thick silicon thin film 

using electron beam lithography and dry etching methods. The geometry parameters of the 

nanoaperture are w = 120 nm, h = 300 nm. (c) Calculated (‘Cal’) and (d) measured (‘Exp’) linear 

transmission spectra of the planar silicon film and metasurface for linearly (H-) polarized light, 

respectively. The calculated waveguide mode at wavelength around 1296 nm is also 

experimentally observed at wavelength around 1281 nm.  

 

 

 

 



 

 

 
Figure 2. Linear optical response of the silicon metasurface. (a) Cartesian Multipolar analysis 

of optical modes ED: electric dipole; MD: Magnetic dipole; EQ: electric quadrupole. (b) and (c) 

Calculated field distribution of fundamental wave in a unit cell of the silicon metasurface. For 

linear (H-) polarized fundamental wave at wavelength of 1287 nm, the absolute values of electric 

field |Ex| and magnetic field |Hy| are plotted in X-Z (y=0) and X-Y (z=0) planes of a unit cell. In 

all the colour maps in (b) and (c), arbitrary unit was used.   

  



 

 
Figure 3. Contribution of the nonlinear polarization to the far field. The amplitude and phase 

distribution of (a) FW, (b) THG wave and (c) the local contribution to the far-field of THG 

intensity: ( ', ) ( )THGG r r P r⋅
t r

 are plotted in X-Y plane. The fundamental and THG wavelengths are 

1287 nm, 429 nm, respectively. Both the incident fundamental wave and the THG wave are TM-

polarized. 

 
 
 



 

 
 

Figure 4. Characterization of third harmonic generation from silicon metasurface. (a) For 
linearly polarized (TM:H) fundamental waves at wavelength of 1280 nm which is normally 
incident onto the silicon metasurface, the spectra of THG with both same (H-H) and 
perpendicular polarization state (H-V) compared to that of the FW are measured. The THG 
signal for H-H measurement is much stronger (~ eight times) than that for the H-V 
configuration; (b) Power dependence of the THG intensity (open squares) for the H-H 
measurement. The result shows a cubic dependence (solid line) with slope value: ~ 3, which 
verifies the third order nonlinear optical process; (c) Typical THG radiation captured by colour 
CCD camera; (d) Measured (‘Exp’) THG spectra agree well with and calculated (‘Cal’) ones for 
both silicon planar film and metasurface. The measured giant THG enhancement occurs at 
wavelength of 1280 nm, which agrees with calculated peak THG value for FW at wavelength of 
1287 nm. 
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