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METHOD ARTICLE

A novel method for automated assessment of megakaryocyte
differentiation and proplatelet formation

M. Salzmann 1, B. Hoesel1, M. Haase1, M. Mussbacher1, WC. Schrottmaier1, JB. Kral-Pointner1, M. Finsterbusch 1,
A. Mazharian 2, A. Assinger1, & JA. Schmid 1

1Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria and 2Institute of Cardiovascular Sciences,
College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

Abstract

Transfusion of platelet concentrates represents an important treatment for various bleeding
complications. However, the short half-life and frequent contaminations with bacteria restrict
the availability of platelet concentrates and raise a clear demand for platelets generated ex
vivo. Therefore, in vitro platelet generation from megakaryocytes represents an important
research topic. A vital step for this process represents accurate analysis of thrombopoiesis
and proplatelet formation, which is usually conducted manually. We aimed to develop a novel
method for automated classification and analysis of proplatelet-forming megakaryocytes in
vitro. After fluorescent labelling of surface and nucleus, MKs were automatically categorized
and analysed with a novel pipeline of the open source software CellProfiler. Our new workflow
is able to detect and quantify four subtypes of megakaryocytes undergoing thrombopoiesis:
proplatelet-forming, spreading, pseudopodia-forming and terminally differentiated, anucleated
megakaryocytes. Furthermore, we were able to characterize the inhibitory effect of dasatinib
on thrombopoiesis in more detail. Our new workflow enabled rapid, unbiased, quantitative and
qualitative in-depth analysis of proplatelet formation based on morphological characteristics.
Clinicians and basic researchers alike will benefit from this novel technique that allows reliable
and unbiased quantification of proplatelet formation. It thereby provides a valuable tool for the
development of methods to generate platelets ex vivo and to detect effects of drugs on
megakaryocyte differentiation.
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Introduction

Nearly 7000 units of platelet concentrates are needed daily only in
the United States (1). However, platelet concentrates have a
limited shelf life of only 5 days and bacterial contaminations
pose a serious risk of sepsis to recipients (2). Attempts to generate
platelets in vitro, in order to circumvent these issues, have
encountered major problems and only resulted in a limited num-
ber of functional platelets (3). Thus, successful generation of
platelets ex vivo remains an unsolved, yet important aim (4–6).
Essential steps to achieve this goal include uncovering of the
molecular mechanisms controlling proplatelet formation and
development of a method that allows a robust assessment of
platelet formation from megakaryocytes (MKs) in vitro.

One of the most commonly assessed parameters of MK
maturation is the percentage of proplatelet-forming MKs, which
can vary from 10 to over 60% (7–21), depending on the specific
quantification technique and the person that scores the MK phe-
notype. A first attempt to simplify and standardize the quantifica-
tion of proplatelet formation used an ImageJ macro that
distinguishes round from proplatelet-producing cells (22). This
was a major step forward in improving analysis of proplatelet
formation, but did not provide all the information needed to
understand the processes of platelet generation in more detail.

Here, we developed a novel method, using the open source
software CellProfiler, allowing an automated identification, quan-
tification and in-depth characterization of four MK subsets during
thrombopoiesis. Our computerized image analysis routine allows
identification of undifferentiated, round MKs as well as proplate-
let-forming MKs with long, thin extensions, spread MKs with a
huge cellular area, pseudopodia-forming MKs with short, thick
extensions and terminally differentiated MKs that lack a nucleus.
Furthermore, additional information can be extracted, including
intensities of biological markers and geometric parameters such
as cell area, as a marker for MK spreading and consequently
functionality (12,17–19,23). Based on available sources of stem
cells and ethics allowances, we applied our novel image analysis
to murine MKs cultured on fibrinogen as this extracellular matrix
component of the vascular niche of the bone marrow has been
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reported to foster proplatelet formation in mice (21). We are
aware that human MKs differ from their murine counterparts
given that antibodies blocking the fibrinogen receptor αIIbβ3 did
not impede proplatelet development in human cells (12) and MKs
from patients with a mutated, constitutive active fibrinogen recep-
tor showed impaired proplatelet formation (24). Nevertheless, the
image analysis technique that we developed for murine MKs has
the potential to be applied to MKs from different species and on
various matrices, as clearly distinct classes of morphological
features are scored and quantified. While the biological relevance
of the different categories that we observed is still not clear, we
are confident that our method provides an improvement over the
coarse differentiation of MKs into immature and proplatelet-form-
ing cells.

Material and methods

MK purification and culture

Mature bone marrow-derived MKs were generated as previously
described (20). Briefly, femora of mice were flushed and cells
expressing Ly6G, CD11b, CD16/32 and B220 were depleted
using magnetic beads (sheep anti-rat IgG Dynabeads,
Invitrogen) and the following antibodies: anti-mouse Ly6G
(eBioscience), anti-mouse CD11b (eBioscience), anti-mouse
CD16/CD32 (BD Bioscience) and anti-mouse B220 (BD
Bioscience), respectively. The remaining cells were incubated in
Stempro-34 SFM (Invitrogen) with 2.6% nutrient supplement, 1%
glutamine and 1% penicillin-streptomycin-fungizone (PSF) for
2 days in the presence of 20 ng/mL murine stem cell factor
(SCF, Peprotech) followed by additional 5 days with 20 ng/mL
SCF and 50 ng/mL murine thrombopoietin (TPO, Peprotech). At
day 7, mature MKs were enriched using a 3%/1.5%/0% BSA
(PAA Laboratories) gradient under gravity for 45 minutes at
room temperature.

MK spreading and proplatelet formation assay

Spreading was performed as previously described (20). Slides
were coated overnight with 100 μg/ml fibrinogen at room
temperature and blocked for 1 hour with 1% BSA at 37°C.
Untreated mature MKs or MKs treated with 10 μM dasatinib
or DMSO were allowed to adhere and form proplatelets for
5 hours at 37°C, a time period that has been suggested by
several reports (7,12,15,17–20). Fixed cells were permeabi-
lized with 0.5% Triton X-100 and labelled with anti-mouse
CD41-Alexa Fluor 488 (BioLegend), anti-alpha tubulin-
eFluor615 (eBioscience), phalloidin-Alexa Fluor 555
(Molecular Probes) and 5 μg/mL Hoechst 33342 (Molecular
Probes). Images were taken with a Nikon A1 plus confocal
laser-scanning microscope, using a Plan Apo λ 10x objective
(Nikon) NA: 0.45, a Plan Apo λ 20x objective (Nikon) NA:
0.75 and an Apo 40x WI λS DIC N2 objective (Nikon) NA:
1.25. Imaging Software: Nikon NIS-Elements Confocal
4.20.01.

Analysis of proplatelet formation

Images were analysed with the open source software CellProfiler
3.0.0 (25) (http://cellprofiler.org/). The pipeline and detailed set-
tings to reproduce the image analysis procedure are available at:

http://cellprofiler.org/examples/published_pipelines. MKs
were categorized into the following subtypes: proplatelet-forming
MKs (Form Factor ≤ 0.19), spreading MKs (Form Factor > 0.19,
Area > 6000 μm2), pseudopodia-forming MKs (Form Factor >
0.19, Area ≤ 6000 μm2, Compactness > 1.25), undifferentiated
MKs (Form Factor > 0.19, Area ≤ 6000 μm2, Compactness ≤

1.25). “Form Factor” is described as 4�Area
Perimeter2 (26), meaning a

perfect circle has a value of 1. “Compactness” is the variance of
the distance of the cells’ pixels from the centroid divided by the
area (26). A perfect circle, having no variances in pixel-centroid
distances, has therefore a Compactness value of 0. Manual count-
ing was conducted by searching for MKs with long, thin
extensions.

Statistical analysis

Calculations were performed using GraphPad Prism 6.01 soft-
ware. Data were analysed using Student’s t-test or two-way
ANOVA and Sidak’s multiple comparison test. Statistical signifi-
cances are depicted as: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001,
**** p ≤ 0.0001. Bars are mean; error bars represent standard
deviation (SD).

Results and discussion

Mature bone marrow-derived MKs were allowed to spread on
fibrinogen – a method used to foster proplatelet formation, fixed
and stained for CD41 and DNA followed by confocal imaging.
While we were able to detect cells that showed typical proplatelet-
forming shapes as known from literature (Figure 1A), other cells
could not be categorized clearly (Figure 1B-D). This may explain
the variation in the percentage of proplatelet-forming MKs found
in different studies (7–21) (Supplemental Table 1). There have
been previous attempts to classify maturing MKs into different
stages, and proplatelet-forming MKs have been dissected into two
developmental stages (7,27–29). Our morphological evaluation
revealed five major subtypes, which can be described as follows:

(1) Proplatelet-forming MKs: cells with tubulin-positive exten-
sions ≤ 10 μm thin and a length exceeding the cell body axis
twofold or MKs with high protrusion complexity (Figure 1A).

(2) Spread MKs: large MKs that contain actin nodules
(Figure 1B) as previously reported (18,30). Due to their
large, flat cell bodies, they clearly differ from normal, round
undifferentiated MKs, but cannot be considered classical
proplatelet-forming MKs either.

(3) Pseudopodia-forming MKs: cells with tubulin positive cellu-
lar extensions that are too thick and/or short to be classified
proplatelet-forming MKs (Figure 1C).

(4) Terminally differentiated MKs: anucleated MKs (Figure 1D)
that could reflect the in vivo situation of nucleus extrusion
and degradation at the final phase of thrombopoiesis (31).

(5) UndifferentiatedMKs: Small round, nucleated cells (Figure 1E).

In order to objectively classify these distinct subsets, we mea-
sured morphological parameters of MKs that were representative
for the different subclasses using the free image analyses software
package CellProfiler. Thereby, we tried to describe the five cate-
gories mathematically in a most accurate, yet simple way. The
resulting differentiation parameters such as form factor, area or
compactness were used to establish an automated analysis routine
(available at: http://cellprofiler.org/examples/published_pipe-
lines). First, nucleated and anucleated MKs were identified from
fluorescence images based on their CD41 and Hoechst 33342
staining (Figure 2Ai) and smoothed to prevent perimeter to area
ratio artefacts (Figure 2Aii). Cells were then classified into five
different subtypes and additional quantitative information like
marker intensities, cell area or the number of adjacent cells can
be extracted (Figure 2Aiii).

Terminally differentiated MKs that lack a nucleus (Figure 1D)
were identified in the first step of CellProfiler analysis and did not
need further classification (Figure 2). The second step classified
nucleated MKs following a series of morphological and
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geometrical criteria, depicted in Figure 2B. Threshold values
were selected empirically based on CellProfiler analysis of manu-
ally classified cells (meeting the above-mentioned criteria), using
representative images.

The second subtype to be identified are morphologically com-
plex proplatelet-forming MKs (Figure 1A), described by a Form
Factor ≤ 0.19. Cells with a simpler morphology were further
classified depending on their size. Cells with an area >
6000 μm2 were considered spread MKs (Figure 1B). Applying
the selection criteria for spread MKs as a second step ensures that
MKs with long, complex proplatelets that may exceed 6000 μm2

cell area are correctly classified as proplatelet-forming MKs.
Finally, pseudopodia-forming MKs (Figure 1C) were distin-
guished from round, undifferentiated MKs (Figure 1E) using a
Compactness threshold of 1.25. This pseudopodia-forming cells
might represent early stages of proplatelet formation; a hypoth-
esis, which may be tested in future studies involving time-lapse
microscopy of MK maturation.

To validate our pipeline, we compared manually and auto-
matically analysed images (Figure 3A). The results show a
significant inter-observer variability. This was apparently due
to interpretation disparity between proplatelet-forming MKs and

what we now define as pseudopodia-forming MKs having
thicker extensions. The comparison between manual and com-
puter-based evaluation of proplatelet-forming cells indicated
that some individuals tend to score MKs with pseudopodia as
proplatelet-forming. These inter-observer differences might also
explain at least in part the huge variation of the reported
percentages of proplatelet-forming MKs in literature, which
might also depend on matrix type, cell source and MK incuba-
tion time (Supplemental Table 1). The computer-based method
was clearly more stringent and could furthermore analyse sub-
stantially more cells without additional effort, leading to a more
accurate result (Figure 3A). To test whether the complex mor-
phology of MKs impedes CellProfiler’s automated cell identi-
fication, we also compared the automated cell recognition and
separation with a manual segregation of cells by drawing a
background-coloured line between overlapping or touching
cells (Figure 3B). In total, 3788 automatically separated and
3805 manually separated cells were identified and analysed,
without observing significant differences in percentages
(Figure 3C, 3D) or cell areas (Figure 3E) of all differentiated
MKs combined. Noteworthy, the mean percentages of differen-
tiated, i.e. usually defined as proplatelet-forming MKs as

Figure 1. Five distinct morphological subtypes of MKs were observed, when performing a proplatelet formation assay. Mature MKs derived from
murine femoral bone marrow were incubated for 5 hours on 100 μg/ml fibrinogen at 37°C, fixed and labelled with a MK specific anti-mouse CD41-
Alexa Fluor 488 antibody (green), anti-alpha tubulin-eFluor615 antibody (red) or phalloidin-Alexa Fluor 555 (yellow) and counterstained with 5 μg/mL
Hoechst 33342 to stain DNA (blue). (A) Proplatelet-forming MKs with long, thin, tubulin-positive extensions. (B) Spread MKs with actin nodules,
indicated by white arrows, have a large cell area. (C) Pseudopodia-forming MKs with tubulin-positive extensions, which are thicker and/or shorter than
proplatelet-forming cells. (D) Terminally differentiated MKs in the final phase of differentiation lack a nucleus. (E) Undifferentiated MKs as defined
by their small and round shape. Arrangement of 5 individual images. Scale bar: 20 μm.
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described in literature (7–21) is in line with the sum of all
differentiated MK-categories of our analysis (22.87 ± 16.03%
vs 32.86 ± 2.73%, respectively; Figure 3C). However, a more
detailed discrimination, using our computer-based analysis tool,
revealed that only part of differentiated MKs scored as propla-
telet-forming, with a much higher percentage of cells exhibiting
pseudopodia (Figure 3D).

This showed that our algorithm accurately identifies the com-
plex morphology of MKs and is able to segregate overlapping or
touching cells with its automated separation routine.

Using this automated and unbiased analysis, we observed
3.9% proplatelet-forming, 6.1% spreading, 17.8% pseudopodia-
forming and 5.6% terminally differentiated MKs under our cul-
ture conditions (Figure 3D). Pseudopodia-forming MKs with an
average of 3054 μm2 had twofold less cell area than MKs
forming actual proplatelets (Figure 3F), demonstrating that
although they resemble proplatelet-forming MKs at first glance,
they significantly differ in their cell area due to their lack of
proper proplatelets. These may represent cells that are just
initiating proplatelet formation. Seeding cells at varying densi-
ties did not result in significant differences in the total numbers
of differentiated cells. However, a slight reduction of pseudopo-
dia-forming MKs was observed at lower cell densities.
(Supplemental Figure 1).

To further evaluate the applicability of our automated MK
classification for pharmacological studies we treated cells with
dasatinib, a drug that is known to influence MK maturation and
to cause mild thrombocytopenia in patients. It is a potent, ATP-
competitive inhibitor of several tyrosine kinases, which
diminishes proplatelet formation and spreading in vitro (17).
Applying our automated workflow, we observed almost exactly
the same significant overall decrease in MKs undergoing

thrombopoiesis as previously reported: The percentage of differ-
entiating MKs decreased in presence of dasatinib from 32.3 to
13.9% (Figure 4A), whereas spread MKs and pseudopodia-form-
ing MKs were affected the most (8.4 to 0.6% and 17.0 to 8.7%,
respectively). Proplatelet-forming MKs also decreased from 1.7
to 0.2% (Figure 4B) and could only be detected in one sample.
Furthermore, dasatinib also decreased the mean cell area from
2620 μm2 to 1148 μm2 (Figure 4C), with proplatelet-forming
MKs being reduced by 71% from 8170 μm2 to 2375 μm2

(Figure 4D). Representative images of MKs treated with dasati-
nib are shown in Figure 4E. Hence the reduction of MKs under-
going thrombopoiesis was mainly due to diminished proplatelet-
forming and spreading MKs and a reduction of pseudopodia-
forming MKs. Furthermore, cell area of proplatelet-forming
MKs was decreased upon dasatinib treatment, also confirming
a reduction of proplatelets. These observations on the inhibitory
effect of dasatinib on thrombopoiesis provide a deeper insight
into the cause of mild thrombocytopenia that is noticed in
patients treated with dasatinib for imatinib-resistant chronic
myelogenous leukaemia (17). In order to test our image analysis
routine and the effect of dasatinib treatment on a different matrix
than fibrinogen, we furthermore performed experiments with
MKs seeded on fibronectin. There we found a similar reduction
in proplatelet and pseudopodia formation, however, with
higher variability and a higher fraction of anucleated MKs
(Supplemental Figure 2).

Conclusion

We provide a novel, automated, reproducible and sensitive
method to evaluate differentiation and proplatelet formation of
MKs based on their morphology. Besides introducing new MK

Figure 2. Workflow of automated MK analysis. (A) Fluorescence images with CD41 as MK marker and Hoechst 33342 as nuclear stain were processed
with CellProfiler to identify nucleated and anucleated cells (i). To prevent perimeter to area ratio artefacts, images of cell borders were smoothed (ii).
Smoothed cells were analysed with CellProfiler and classified into five distinct subsets, according to their morphology (iii). (B) The workflow to
classify the subsets works as follows: Nucleated and anucleated (terminally differentiated) MKs were first identified based on the presence of a nucleus.
With our self-designed CellProfiler pipeline, nucleated MKs are then classified based on their Form Factor (complexity of shape), cell area and
Compactness (roundness). The MK subsets are proplatelet-forming (blue), spreading (green), pseudopodia forming (orange), terminally differentiated
(red) and undifferentiated (yellow) MKs. Scale bar: 100 μm.
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subtypes during thrombopoiesis, our method provides solid com-
parability with previous reports, as the results of our automated
MK cell classification are in line with published values of manu-
ally counted cells, while being more time-effective and unbiased.
Variations between studies may partially derive from non-

standardized definition of proplatelet-forming MKs and from
individual differences in morphology assessments. Our novel
workflow is sensitive enough to monitor and quantify not only
reported changes in proplatelet formation but also spreading
of MKs.

Figure 3. Mature MKs were incubated for 5 hours on fibrinogen at 37°C to allow proplatelet formation. Cells were then fixed and stained with CD41 as
MK marker and Hoechst 33342. (A) Seven individuals identified proplatelet-forming MKs based on long, thin extensions on seven different images
(about 70 cells/image). Additionally, one image was analysed by all people and one person counted proplatelet-forming MKs on all images. Results
were compared with our automated Cellprofiler pipeline. (B) Prior to analysis with our pipeline, images were duplicated and cells on one duplicate
manually separated to ease automated cell recognition. A line in background colour was drawn between adjacent cells to separate them clearly. The
white arrow indicates the line that was drawn. (C) Percentages of proplatelet-forming MKs found in literature (see Suppl. Tab. 1) and of differentiated
MKs with automatic and manual separation of cells. (D) Percentages of proplatelet-forming MKs, spreading MKs, pseudopodia forming MKs,
terminally differentiated and undifferentiated MKs. (E) Cell area of differentiated MKs of automatically separated and manually separated cells. (F)
Cell area of proplatelet-forming MKs, spreading MKs, pseudopodia forming MKs, terminally differentiated and undifferentiated MKs. Mean ± SD
of 3 biological replicates, with an average cell number of 3902–3765 automatically and manually separated MKs, respectively. Scale bar: 50 μm.
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The five categories of MK morphology that we distinguish
with our approach might not directly reflect biological stages of
the differentiation and maturation process. Furthermore, the tran-
sition from one category to another might be gradual. Future
studies will be necessary to assign the expression of relevant
marker or driver genes of MK maturation to the various cate-
gories that we propose here. Moreover, machine-learning methods
of image analysis in combination with staining of relevant bio-
markers might be applied for a more fine-tuned classification.
This may result in even more categories and link the morpholo-
gical categorization to a defined biological staging of MK
maturation and proplatelet formation.

Although we used murine MKs derived from bone marrow
stem cells, this pipeline is likely to be also applicable for MKs
derived from other sources. In our standardized routine, we used

fibrinogen, which is localized to vascular sinusoids (21) and
represents a sound inducer of murine proplatelet formation in
vitro (12,32). However, other methods to induce proplatelets
would be equally possible and compatible with our
CellProfiler’s analysis, as long as fluorescent images of cell
bodies and nuclei are analysed. The exact biological function of
pseudopodia-forming MKs and spread MKs remains to be eluci-
dated. However, we were able to observe a moderate reduction of
pseudopodia-forming cells and a strong reduction of spread MKs
after dasatinib treatment, indicating reduced MK function, leading
to thrombocytopenia (17).

Taken together, we present a novel method for automated
MK classification and quantification of proplatelet formation
using a new pipeline for the free CellProfiler software. The
advantage of our approach over current analysis tools is that it

Figure 4. Mature MKs were treated with DMSO or 10 μM dasatinib for 15 min and incubated for 5 hours on fibrinogen at 37°C to allow proplatelet-
formation. (A) Percentages of differentiated MKs after dasatinib or DMSO-control treatment. (B) Percentages of proplatelet-forming MKs, spreading
MKs, pseudopodia-forming MKs, terminally differentiated and undifferentiated MKs. (C) Cell area of differentiated MKs of dasatinib-treated and
DMSO-control cells. (D) Cell area of proplatelet-forming MKs, spreading MKs, pseudopodia forming MKs, terminally differentiated and undiffer-
entiated MKs. (E) Representative, CD41-labelled image of DMSO treated and dasatinib-treated MKs. Blue arrow: proplatelet-forming MK; green
arrow: spread MK; yellow arrows: pseudopodia-forming MKs. Mean ± SD of 3 biological replicates, with an average cell number of 570–855 DMSO
and dasatinib treated MKs, respectively. Scale Bar: 150 μm.
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reduces inter-institutional differences via introduction of an
unbiased, investigator-independent and time-saving analysis
tool, which can score a high number of cells in a robust and
objective manner, thereby also improving statistical analyses.
This opens the possibility for high-throughput screening of
substances or treatments that influence MK maturation and
development of proplatelets.

Yet, our method has the limitation that it relies on fluores-
cence staining of MKs and is thus not applicable to transmis-
sion light microscopy images of MKs. Furthermore, the
analysis parameters that we worked out for our system (as
defined in Figure 2) might have to be adjusted for the analysis
of MKs from other sources or grown on other extracellular
matrices. It is evident that computer-based image analysis
cannot rule out miss-classification or erroneous cell segmenta-
tion completely; however, its automated, unbiased nature and
the potential for classifying high numbers of cells outperforms
manual, individual evaluation.

Overall, we are convinced that an improved quantification
of platelet formation will provide a valuable basis for new
insights in MK and platelet research, thereby fostering the
development of ex vivo generation of platelets. Ultimately,
this could reduce the demand of blood donors for platelet
concentrates and would further offer the possibility for auto-
logous platelet transfusion. As a consequence, recipient
patients would benefit from diminished risks of infections or
autoimmune diseases.
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