
 
 

Assessment of corrosion resistance of cast cobalt-
and nickel-chromium dental alloys in acidic
environments
Mercieca, Sven; Caligari Conti, Malcolm; Buhagiar, Joseph; Camilleri, JOSETTE

DOI:
10.5301/jabfm.5000383

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Mercieca, S, Caligari Conti, M, Buhagiar, J & Camilleri, J 2018, 'Assessment of corrosion resistance of cast
cobalt- and nickel-chromium dental alloys in acidic environments', Journal of applied biomaterials & functional
materials, vol. 16, no. 1, pp. 47-54. https://doi.org/10.5301/jabfm.5000383

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Final version of record available at: http://dx.doi.org/10.5301/jabfm.5000383 and published as above

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Birmingham Research Portal

https://core.ac.uk/display/185506942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.5301/jabfm.5000383
https://research.birmingham.ac.uk/portal/en/publications/assessment-of-corrosion-resistance-of-cast-cobalt-and-nickelchromium-dental-alloys-in-acidic-environments(66ffd959-1e7e-46e2-a697-60cbe316c786).html


 
 

Assessment of corrosion resistance of cast cobalt-
and nickel-chromium dental alloys in acidic
environments
Mercieca, Sven; Caligari Conti, Malcolm; Buhagiar, Joseph; Camilleri, Josephine

DOI:
10.5301/jabfm.5000383

Document Version
Peer reviewed version

Citation for published version (Harvard):
Mercieca, S, Caligari Conti, M, Buhagiar, J & Camilleri, J 2018, 'Assessment of corrosion resistance of cast
cobalt- and nickel-chromium dental alloys in acidic environments' Journal of applied biomaterials & functional
materials, vol 16, no. 1, pp. 47-54. DOI: 10.5301/jabfm.5000383

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 22. Mar. 2018

http://dx.doi.org/10.5301/jabfm.5000383
https://research.birmingham.ac.uk/portal/en/publications/assessment-of-corrosion-resistance-of-cast-cobalt-and-nickelchromium-dental-alloys-in-acidic-environments(66ffd959-1e7e-46e2-a697-60cbe316c786).html


 

1 

Assessment of corrosion resistance of dental cast cobalt- and nickel-chromium alloys 
in acidic environments 
 
 
1Mercieca Sven, 2Caligari Conti Malcolm, 2Buhagiar Joseph, 1, 3Camilleri Josette 
 
1Department of Restorative Dentistry, Faculty of Dental Surgery, University of Malta, Msida, 
Malta,  
2Department of Metallurgy and Materials Engineering, Faculty of Engineering, University of 
Malta, Msida, Malta  
3School of Dentistry, University of Birmingham, Edgbaston, Birmingham, U.K. 
 
 
 
Key words: characterisation, potentiodynamic testing, metal alloys, corrosion resistance 
 

Running title: corrosion resistance of cast alloys 

 
 
 
 
 
 
 
 
Corresponding Author:  
 
Prof Josette Camilleri 
School of Dentistry 
College of Medical and Dental Sciences  
Institute of Clinical Sciences  
University of Birmingham 
5, Mill Pool WayDepartment of Restorative Dentistry 
Faculty of Dental Surgery 
University of Malta 
Medical School 
Mater Dei Hospital 
Msida, MSD 2090 
Malta 
23401174 
josette.camilleri@um.edu.mt 
 
Edgbaston B5 7EG 

Manuscript Click here to download Manuscript manuscript JABFM.docx 

Click here to view linked References

http://www.editorialmanager.com/jabfm/download.aspx?id=51027&guid=8613e3af-26fc-486b-97c6-35ec9c7ba77e&scheme=1
http://www.editorialmanager.com/jabfm/download.aspx?id=51027&guid=8613e3af-26fc-486b-97c6-35ec9c7ba77e&scheme=1


 

2 

Birmingham 
UK 
0044 121 4665506 
J.Camilleri@bham.ac.uk 
 
 

Abstract 

Objective: The aim of this study was the comparison of degradation resistance of nickel-

chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys used as a base material for partial 

dentures in contact with saliva.  

Methods: Wiron®99 and Wironit extra-hard® were selected as representative casting al-

loys for Ni-Cr and Co-Cr alloys respectively.  The alloys were tested in contact with de-ion-

ised water, artificial saliva and acidified artificial saliva.  Material characterisation was per-

formed by X-ray diffractometry (XRD), micro-hardness and nano-hardness testing. The cor-

rosion properties of the materials were then analysed using open circuit potential analysis 

and potentiodynamic analysis.  Alloy leaching in solution was assessed by inductively cou-

pled plasma mass spectrometry techniques.   

Results: Co-Cr alloy was more stable than the Ni-Cr alloy in all solutions tested.  Leaching 

of nickel and corrosion attack was higher in Ni-Cr alloy in artificial saliva compared to the 

acidified saliva.  The corrosion resistance of the Co-Cr alloy was seen to be superior to that 

of the Ni-Cr alloy with the former alloy exhibiting a lower corrosion current in all test solu-

tions. Microstructural topographical changes were observed for Ni-Cr alloy in contact with 

artificial saliva.  The Ni-Cr alloy exhibited microstructural changes and lower corrosion re-

sistance in artificial saliva. The acidic changes did not enhance the alloy degradation.  
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Conclusions: Ni-Cr alloys are unstable in solution and leach nickel. Co-Cr alloys should be 

preferred for clinical use.  

 
1. Introduction 

 Alloys, such as cobalt- and nickel- based alloys, are gaining in popularity for the con-

struction of in their application to both removable and fixed dental prosthesis.  This could 

be a result of the increase in prices of This possibly in light of the fact that prosthesis made 

from noble metals have risen to prohibitive prices over the past 30 years, due to the swell-

ing price of commodity raw materials [1]. In many countries nickel chromium (NiCr) alloys 

have been substituted by cobalt chromium (CoCr) alloys owing to growing concerns over 

the cytotoxic effects of leached nickel ions present when exposing the former alloy to the 

oral cavity [2].  Nickel is found in very low concentrations in the human body, however, in-

creased concentrations may cause it to become hazardous [3, 4]. Nickel is lately being con-

sidered a toxic element and with the Nickel Directive introduced by the European Union in 

1994 the position against nickel in materials was further enhanced.  Around 1 in every 10 

people was found to be allergic to nickel [5] and it is possible that more people suffer from 

this allergy but due to the non-specific symptoms, the official rate is much lower. A number 

of systemic disorders have been liked with nickel exposure [6, 7]. 

Co-Cr alloys exhibit high strength [8] and are non-magnetic. They are also resistant 

to creep, corrosion and wear [9]. Apart from this, these alloys have been found to be cyto-

compatible [10-12].  Thus they perform their desired function without inducing an un-

wanted local or systematic effect in the patient [13]. These properties make them ideal al-
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loys to be used in the oral cavity. Co-Cr alloys were also found to be more resistant to cor-

rosion than Ni-Cr alloys [10, 11] as indicated by in vitro potentio-dynamic scans testing 

both alloys immersed in several lactic acid and sodium chloride aqueous solutions.  The 

corrosion of Ni-Cr alloys occurs by preferential dissolution of nickel rich grains, which is 

very different from the mode of corrosion displayed by Co-Cr alloys, in which no preferen-

tial dissolution of Cr rich grains is observed [7, 14]. The casting procedure was reported to 

have very minimal effect on the corrosion properties of both Ni-Cr and Co-Cr alloys [14].  

Temperature and pH both affect the corrosion resistance of Ni-Cr and Co-Cr alloys [15] 

with Ni-Cr alloy being more susceptible to acid attack. 

The high corrosion susceptibility and leaching of nickel from Ni-Cr alloys results in 

decreased cell viability, increased oxidative and cellular toxicity levels and also an increase 

in cytokine inflammatory expression [16]. Some authors [17] reported that the effect is en-

hanced by low pH conditions which results in an increase of nickel ions leached into the 

simulated oral environment, while another study focused on gastroesophageal reflux dis-

ease (GERD), which is generally associated with a lower oral cavity pH found no correlation 

between people suffering from GERD and the non-sufferers [7]. 

The objectives of this study was the investigation of the corrosion resistance, sur-

face topographical changes and physical and chemical changes of two base metal alloys in 

the presence of artificial saliva and acidified artificial saliva. The null hypothesis was that 

the mechanical properties and electrochemical response of both Co-Cr and Ni-Cr alloys are 

not affected by saliva and acidified saliva. 
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2. Material and Methods  

2.1 Specimen preparation  

 Two base metal alloys were investigated. Co-Cr alloy (Co 63.0; Cr 30.0; Mo 5.0;  Si 

1.1;  Mn 0.5;  C 0.4 - Wiron 99, Bego, Lincoln RI) and Ni-Cr alloy (Ni 65; Cr 22.5; Mo 9.5; Nb 

1; Si 1; Fe 0.5; Ce 0.5, C max. 0.02 - Wironit extra-hard, Bego).  

Cylindrical specimens: 8 mm diameter and 1 mm height; and 8 mm diameter and 15 

mm height were cast for each material. Wax patterns for each sample were prepared using 

modelling wax (Bego), sprued and invested with phosphate-bonded investment material 

(Shera Cast and Shera Liquid, Shera, Lemförde, Germany). The resulting ring was heated in 

a multidirectional furnace (Dentalfarm Tris, Dentalfarm, Turin, Italy) until reaching 850°C 

while the alloy was open-flame melted in a muffle with an oxy-propane torch. These were 

then placed in an electric centrifugal casting machine (Dentalfarm Rotojet, Dentalfarm) and 

injected into the investment ring when the muffle reached 1500°C. The ring was then left to 

cool to 20°C and then removed from investment. The cast samples were cut and sand-

blasted with 250 µm aluminium oxide powder (Shera Strahlkorund, Shera) at a pressure of 

6 bar. The samples were electrolytically polished (Schuler S-U-Unipol, Schuler Dental, Ulm, 

Germany) using the electrolyte liquid (Wirolyt, Bego) at 4 A for 3 cycles of 4 minutes each. 
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The cylinders 8 mm in diameter and 1 mm high were used for leachate analysis, 

phase analysis, microscopy and assessment of micro- and nano-hardness; while cylinders 8 

mm diameter and 15 mm high were used for potentio-dynamic testing.  

 

2.2 Artificial Saliva Solution preparation  

 Two solutions were prepared: Fusayama Meyer artificial saliva [18] and acidified 

artificial saliva. The Fusayama-Meyer artificial saliva includes the right components to 

mimic the natural oral environment and has also been used for various potentiodynamic 

scans.  The artificial saliva was acidified by adding 8 mLl of lactic acid to 1000 mLl of artifi-

cial saliva solution.  This mimics the oral environment after food intake and release of 

acidic media [19]. The pH of the artificial saliva solution was assessed using a pH meter 

(Hanna HI 3221, Hanna Instruments, Sigma Aldrich, St. Louis, MO, USA) with a single-junc-

tion (Ag/AgCl) ceramic pH electrode (Hanna HI 1131). Temperature compensation was ac-

complished by simultaneously immersing a temperature probe (HI 7662) in the measure-

ment solution. The pH meter was calibrated using three standard calibrating solutions (pH 

4.01, 7.01 and 10.00). The pH of the artificial saliva was 6.7. Addition of lactic acid resulted 

in a drop in pH with a final pH value of 2.6 for the acidified Fusayama-Meyer solution. 

2.3 Material characterisation  

 The 8 × 1 mm cast cylinders were attached to aluminium sample holders and were 

ground with progressively finer grits of silicon carbide grinding discs (Struers, Ballerup, 

Denmark) with a manual grinding machine followed by polishing with 3 µm polycrystalline 

diamond paste and finished with 1 µm diamond paste. These polished discs were then aged 
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by immersing them in 5 mLl of deionized water (control), Fusayama Meyer artificial saliva 

and acidified artificial saliva for 30 days. The aged discs were then characterised by X-ray 

diffraction (XRD), micro- and nano-hardness testing. 

2.4 X-Ray diffraction  

 The diffractometer (Bruker D8 Advance, Bruker, Billerica, MA, USA) used Cu Kα ra-

diation at 40 mA and 45 kV and the detector was rotated between 2θ of 35-55° with a step 

of 0.02° and a step time of 0.6 s. The samples were spun at 15 revolutions per minute 

around the z-axis. Phase identification was accomplished using a search-match software 

utilizing ICDD database (International Centre for Diffraction Data). 

2.5 Hardness testing 

 Micro-hardness testing was carried out using the Mitutoyo MVK-H2 (Mitutoyo, To-

kyo, Japan) micro-hardness tester with a equipped with a Vickers indentor. Indentations 

were made on each sample’s surface using a load of 0.5 kg. Five hardness readings were 

taken for each sample and the average hardness was calculated from these readings.  

Nano-hardness of the alloys was assessed by indenting with a Berkovich indenter 

using a NanoTest nanoindentation system (Micro Materials Ltd., Wrexham, UK). 30 indents 

per sample were made, in the shape of a grid with indents spaced 30 µm apart in both the 

x- and y-directions. The parameters were as follows: Initial load 0.03 mN, loading and un-

loading rate 0.8 mN/s with a 1s dwell time at maximum load of 40 mN.  
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2.6 Immersion Corrosion testing  

 Co-Cr and Ni-Cr cast discs 8 mm in diameter and 1 mm height were  immersion aged 

at room temperature in air (control), Fusayama Meyer artificial saliva and acidified artifi-

cial saliva for 30 days. The solutions had a volume of 5 mL and were placed together with 

the coupons in a sealed container.  The surfaces of these specimens post-immersion were 

characterised using a scanning electron microscope (SEM) coupled with an energy disper-

sive spectroscope (EDS). For scanning electron microscopy, the specimens were removed 

from the soaking solutions and dried in a vacuum desiccator. The specimens were then 

mounted on aluminium stubs and viewed under a scanning electron microscope (Zeiss 

MERLIN Field Emission SEM, Carl Zeiss NTS, Oberkochen, Germany). Scanning electron mi-

crographs of the different material microstructural components at different magnifications 

in secondary electron mode were captured. 

2.7 Assessment of leaching 

 Co-Cr and Ni-Cr cast discs 8 mm in diameter and 1 mm height were immersed in 5 

mLl of deionized water (control), Fusayama Meyer artificial saliva and acidified artificial 

saliva for 30 days. At the end of the soaking period the solutions were tested for traces of 

nickel, chromium, cobalt and molybdenum using inductively coupled plasma (ICP) spec-

troscopy.  

2.8 Potentiodynamic testing 

 The 8 x 15 mm cast cylinders had a blind hole measuring 2 mm in diameter and 5 

mm deep prepared on one end.  These cylinders in multiples of four were then immersion 

aged at room temperature in air (control), Fusayama Meyer artificial saliva and acidified 



 

9 

artificial saliva for 30 days. Following ageing a brass cylinder 2 mm in diameter and 4.5 mm 

deep with a threaded blind hole was press fitted in the cast Co-Cr and Ni-Cr cylinders. This 

was done to have an electrical circuit connection for the working electrode.  The brass cyl-

inder was totally isolated from contact with the solution thanks to the O-rings shown in 

Figure 1. 

The air aged cast cylinders were potentiodynamic tested in a 9 g/L sodium chloride 

testing solution (control). The cast cylinders aged in the Fusayama Meyer artificial saliva 

and acidified artificial saliva were potentiodynamic tested in a testing solution with an 

identical composition of that used for ageing.       

The experiments were conducted following ISO 16428:2005 [20] and BS EN ISO 

17475:2008 [21].  Potentiodynamic testing was performed using a potentiostat (Gamry In-

terface 1000, Gamry, Warminster, PA, USA). The setup as of the working electrode is shown 

in Figure 1 shows .  Aa EuroCell™ electrochemical cell kit was used for these tests. The cell 

waswhich was filled with 150 mL testing solution and was kept at 37°C ± 1°C via a heating 

jacket. The solution was deaerated by bubbling with nitrogen gas for an hour at a flow rate 

of 1 L/hr. Following the termination of bubbling the specimen (Working Electrode; WE) as-

sembly was inserted in the solution via the central 24/40 port through the two ace thread 

ports.  The cell also contained a glass frit isolated platinum wire (Counter Electrode; CE) 

and a potassium chloride (3 g/L) fitted Luggin capillary, saturated calomel electrode (SCE) 

assembly (Reference Electrode; RE).  
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The time to set-up the cell was kept constant and testing commenced by measuring 

the open circuit potential (OCP) for an hour. At termination of the OCP test a potentiody-

namic test was performed between a voltage of -100 mV vs OCP and 1000 mV vs Reference 

at a scan rate of 0.17 mV/s.  

Each solution was tested with 4 individual samples of each alloy. Graphs of current 

density (A/cm2) against linear voltage (V) were plotted. Current density was calculated by 

dividing the current recorded from the potentiostat by the surface area of the area speci-

men in contact with the solution.  

In order to calculate the corrosion current density (icorr) for each of the samples, a 

number of steps were undertaken: (1) The graph of log(i) against potential was plotted for 

each of the representative potentiodynamic plots.  (2) The gradient of the tafel slopes was 

then calculated by differentiating each of them at a region around the OCP voltage.  The po-

larization resistance of each sample along with the gradient of the tafel slopes was then be 

used to determine the actual corrosion current (icorr) according to Equation 1 [22]. 

[d(∆E)di ]
∆E=0

= Rp = babc
2.303(ba + bc)icorr

 Equation 1  

 
 
 
 

Where ba and bc are the gradients of the anodic and cathodic regions respectively. 

Statistical analyses 
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 The data was evaluated using SPSS (Statistical Package for the Social Sciences) soft-

ware (PASW Statistics 18; SPSS Inc.). Parametric tests were performed as Kolmogorov-

Smirnov tests on the results indicated that the data were normally distributed. Analysis of 

variance (ANOVA) with P = 0.05 and Tukey Tukey post-hoc test were used to perform mul-

tiple comparison tests. 

 

 

 

 

 

3. Results 

3.1 Phase Analysis  

 The X-ray diffraction plots for both alloys in contact with the different soaking solutions 

are shown in Figure 2. The Co-Cr alloy shown in Figure 2a is a dual phase alloy, which contains 

face centred cubic (FCC) α phase (largest quantity) and an H hexagonal closed packed (HCP) 

phase. The Ni-Cr alloy (Figure 2b) has a face centred cubic (FCC) structure. Both alloys did not 

exhibit any phase changes in contact with the soaking solutions.  

3.2 Hardness testing 

 The mean micro- and nano-hardness of each alloy after a 30-day immersion in dif-

ferent solutions are shown in Figures 3a and 3b respectively. It can be clearly seen that the 
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Co-Cr alloy has a higher value of hardness than Ni-Cr alloy. Furthermore there was no dif-

ference in hardness when comparing the same alloy in different media (P > 0.05) for both 

micro-hardness and nano-indentation. This means the media had no effect on the surface 

hardness of the alloys.  

3.3 Immersion Corrosion testing  

 The scanning electron micrographs of Co-Cr and Ni-Cr alloys exposed to different 

solutions are shown in Figure 4.  The corrosion attack on the Co-Cr in all solutions and on 

the Ni-Cr in the acidified saliva was very minimal. On the other hand the Ni-Cr alloy ex-

posed to artificial saliva had a greater tendency for dissolution with more evident surface 

depressions when compared to the other sample electrolyte combinations. 

 

3.4 Assessment of leaching 

 The leaching of trace metal ions in the various solutions is shown in Figure 5. The 

release of nickel was particularly high in the Ni-Cr alloy immersed in artificial saliva fol-

lowed by acidified saliva whilst the least amount of leaching was obtained from the control 

sample.  Some leaching of chromium and cobalt were demonstrated in the cobalt-chro-

mium alloy.  

3.5 Potentiodynamic testing 

 The results of potentiodynamic assessments for both CoCr and NiCr alloys in differ-

ent electrolyte solutions are shown in Figures 6a and 6b respectively. A comparison be-

tween the materials can be found in Figure 7.  The scan can be split in four regions namely 

cathodic, OCP, passive and transpassive. The OCP is the point at which the current density 
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dips to virtually zero. The cathodic region lies at potentials lower than that of the OCP 

whilst the passive part (anodic) lies at potentials higher than the OCP.  The passive region 

is a region of a stable low current while the transpassive region occurs after an approxi-

mate voltage of 700 mV. 

As shown in Figure 8a, both alloys subjected to artificial saliva reached OCP at a 

lower voltage than the control (specimens tested in 9 g/L NaCl) and the alloy tested in acid-

ified artificial saliva. When exposed to the control solution, both alloys were observed to 

have higher passive current densities compared to the same alloys in both test media.  As 

shown in Figure 8b, the highest corrosion current density was produced when the NiCr al-

loy was exposed to artificial saliva.  A lower value was then obtained when the same alloy 

was exposed to acidified artificial saliva and the control solution.  The Co-Cr alloy generally 

showed a very low corrosion current density in all solutions tested. 

4. Discussion  

 Potentiodynamic scans (Fig. 6 and 7) provided information on the corrosion rate, 

pitting susceptibility and passivity. Both alloys exhibited transpassive dissolution in all me-

dia as indicated by a sudden increase in corrosion current at similar potentials in the re-

gion of 700 mV/SCE.  Oxidation of chromium from Cr3+ to Cr6+ has already been reported at 

these potentials in other works [23]. However, no evidence of pitting could be found from 

the same potentio-dynamic scans. 

The corrosion resistance of the Co-Cr alloy was seen to be superior to that of the Ni-

Cr alloy in all solutions tested as shown by the lower OCP corrosion current densities plot-

ted in Figure 8b.  The most pronounced difference could be observed in artificial saliva, in 
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which the Ni-Cr alloy had a corrosion current, which was approximately 350% greater than 

that of Co-Cr in the same solution.  This was reflected in the quantity of ions released into 

solution as shown in Figure 5, where the Ni-Cr alloy can be seen to release far greater flux 

of ions compared to the Co-Cr alloy in each solution respectively.  This is mainly due to the 

amount of Ni released into solution. 

When comparing results from the acidified artificial saliva with those of the non-

acidified artificial saliva, Figure 8b shows that the difference in corrosion current is negligi-

ble when considering Co-Cr alloys.  This matches wellis in accordance withto previous find-

ings  by previous researchers[7] 7 who showing that no differences arises when consider-

ingin Co and Cr concentrations in saliva from patients with metal dentures suffering from 

GERD compared to those who do not suffer from GERD.  Contrarily however, a major differ-

ence could be found when comparing the corrosion current and OCP potential of the Ni-Cr 

alloy when exposed to acidified and non-acidified artificial saliva.  This is partially in con-

tradiction to the work presented by Borg et al. [7] who also state that no difference could 

be found in the amount of nickel ions released from Ni-Cr alloy dentures into saliva when 

comparing patients suffering from GERD versus the control.  This may be due to the differ-

ence in exposure time to the lower pH environment, which as stated by the same authors, 

requires monitoring within a clinical trial. 

The surface irregularities observed in Figure 4d on the Ni-Cr alloy samples after a 

30 day immersion in artificial saliva are indicative of preferential corrosion from Ni-rich 

zones due to preferential segregation of nickel-rich phase during solidification of the alloy 

[24]. These nickel-rich regions appear to suffer localised selective dissolution as also re-
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flected in clinical trials conducted by Borg et al. [7] on Ni-Cr alloy dentures and in vitro ex-

periments [14] on a similar alloy.  This is once again confirmed in results from ion leaching 

experiments (Fig. 5), which show that in all media leaching of nickel was high in compari-

son to other metal ions. On the other hand, when considering the Co-Cr alloy, no evidence 

of preferential corrosion could be observed.  All this leads the authors to the rejection of 

the null hypothesis. 

On the other hand, cobalt and chromium ions were still released into solution during 

the in vitro testing as can be observed in Figure 5.  This is also demonstrated in the in vivo 

environment, as suggested by a recent clinical study in which patients wearing metal pros-

thesis had higher levels of cobalt and chromium than non-denture wearers [7]. The similar 

results obtained also show the robustness of the in vitro methods used in the current study.  

 

 

Conclusions 

Both alloys exhibited adequate corrosion resistance with Co-Cr having a higher corrosion 

resistance when compared Ni-Cr alloy across all solutions tested.  The largest difference in 

corrosion resistance was found to be produced in artificial saliva where the Ni-Cr alloy 

gave a corrosion current 350% greater that that given by the Co-Cr alloy. The electrolytic 

solutions were found not to modify the alloy’s mechanical properties. Furthermore, the Ni-

Cr alloy suffered from a higher corrosion attack in artificial saliva as when compared to an 

acidified artificial saliva. Surface topographical changes were observed in Ni-Cr alloy in 
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contact with artificial saliva due to larger Ni dissolution.  The null hypothesis thus was thus 

rejected.  
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Figure legends 

Figure 1: Working electrode assembly 
 
Figure 2: X-ray diffraction patterns for the (a) CoCr and (b) NiCr alloys after exposure to 
de-ionised water, artificial saliva and acidified saliva showing the main crystalline phases 
present in the alloys and no phase changes on exposure to the different solutions  
      
Figure 3: (a) Micro indentation data and (b) Nano hardness indentation data for CoCr and 
NiCr alloys after exposure to de-ionised water, artificial saliva and acidified saliva.  Error 
bars representative of n = 5 indents for (a) and n = 30 indents for (b) p > 0.05 standard 
deviation. 
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Figure 4: Surface scanning electron microscopy image after exposure of the CoCr and NiCr 
alloy to air, artificial saliva and acidified saliva. 
 
Figure 5: Concentration of Cr, Co and Mo ions leached from the (a) CoCr and (b) NiCr alloy 
after exposure to de-ionised water, artificial saliva and acidified saliva. 
 
Figure 6: Representative potentiodynamic plots for the (a) CoCr and (b) NiCr alloy exposed 
to 9 g/L NaCl, artificial saliva and acidified saliva.  Nn = 4 repeats 
 
Figure 7: Representative, comparative potentiodynamic plots for the CoCr alloy and NiCr 
alloy exposed to (a) 9 g/L NaCl; (b) artificial saliva; (c)  acidified saliva Nn = 4 repeats 
 
Figure 8a: Average OCP potential of the CoCr and NiCr alloys in 9 g/L NaCl, artificial saliva 
and acidified saliva.  Error bars representative of the range of n = 4 repeats.   
Figure 8b: Median corrosion current density, of the CoCr and NiCr alloys in 9 g/L NaCl, arti-
ficial saliva and acidified saliva.  Error bars representative of inter quartile range. 
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