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Abstract

In recent years there have been major efforts to develop glycoconjugate vaccines based on

the Vi polysaccharide that will protect against Salmonella enterica Typhi infections, particu-

larly typhoid fever, which remains a major public health concern in low-income countries.

The design of glycoconjugate vaccines influences the immune responses they elicit. Here

we systematically test the response in mice to Vi glycoconjugates that differ in Vi chain

length (full-length and fragmented), carrier protein, conjugation chemistry, saccharide to

protein ratio and size. We show that the length of Vi chains, but not the ultimate size of the

conjugate, has an impact on the anti-Vi IgG immune response induced. Full-length Vi conju-

gates, independent of the carrier protein, induce peak IgG responses rapidly after just one

immunization, and secondary immunization does not enhance the magnitude of these

responses. Fragmented Vi linked to CRM197 and diphtheria toxoid, but not to tetanus toxoid,

gives lower anti-Vi antibody responses after the first immunization than full-length Vi conju-

gates, but antibody titres are similar to those induced by full-length Vi conjugates following a

second dose. The chemistry to conjugate Vi to the carrier protein, the linker used, and the

saccharide to protein ratio do not significantly alter the response. We conclude that Vi length

and carrier protein are the variables that influence the anti-Vi IgG response to immunization

the most, while other parameters are of lesser importance.

Introduction

Typhoid fever remains a major public health concern in low-income countries and affects mil-

lions of people each year [1]. Vaccination is considered the most promising strategy for the

control of the disease [2]. Antibodies directed against the Vi antigen, which forms a polysac-

charide (PS) capsule around Salmonella enterica serovar Typhi (S. Typhi), can offer protection

and Vi PS is currently licensed as a vaccine against typhoid fever [3]. Being a T-independent

antigen, the Vi PS is not immunogenic in infants and is only licensed for children over two

years of age [4, 5]. Recent years have seen major efforts to develop glycoconjugate vaccines
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against S. Typhi [6, 7]. Conjugation of Vi PS to a carrier protein can effectively convert the T-

independent PS antigen into a T-dependent antigen. This can enhance the memory response

and allow protective immunity to develop in children and infants, as well as adults [8].

The synthesis of glycoconjugate vaccines requires the covalent linkage between the saccha-

ride and the carrier protein. Different conjugation methods can be used, all following two

main approaches: random linkage along the PS chain, or selective attachment at the terminal

end of the sugar moiety. Spacer molecules are often introduced between the saccharide and

the protein to reduce steric hindrance and facilitate interaction between both moieties [8]. The

conjugation method and linker used together with saccharide chain length, carrier protein,

saccharide to protein ratio, and saccharide structure, are conjugation variables that can affect

the magnitude, quality and persistence of the antibody response elicited [8, 9].

We developed a Vi-CRM197 conjugate vaccine [10, 11], that has been tested in Phase 1 and

2 trials in Europe [12] and endemic countries [13]. Vi-CRM197 was considerably more immu-

nogenic than unconjugated Vi, and able to induce specific antibody responses in infants [13].

However, a second injection of conjugate given 8 weeks apart had no incremental effect on

antibody levels and the persistence of the anti-Vi response was similar to that induced by

unconjugated Vi [13]. Similarly, an absence of boosted antibody response after vaccination

with Vi-TT was shown in another study [14].

With the aim of improving vaccine design, in this study we investigate the impact of differ-

ent conjugation variables on the immunogenicity of glycoconjugate vaccines against S. Typhi,

by altering just one parameter in each candidate used, whilst keeping the others constant.

Whilst some studies have already investigated the influence of such parameters on the immu-

nogenicity of Vi glycoconjugate vaccines [10, 11, 15–20], they have typically focused on the

effects of one parameter only or have changed multiple parameters within a single conjugate

vaccine.

Our findings show that only a small number of parameters influence the immune response

to the vaccines tested. These results will help guide the design of Vi glycoconjugate vaccines

with an enhanced potential to protect.

Materials and methods

Purification of Vi PS

Vi PS was purified at GVGH from Citrobacter freundii NVGH 328 as previously described

[21]. The lot used for this study contained 0.3% protein (by micro BCA), 0.001% nucleic acid

(by picogreen) (weight to weight respect to the sugar) and endotoxin level of 1.16 EU/ μg of

sugar (by LAL test). O-acetylation level was> 90% as detected by 1H NMR and average molec-

ular weight (avMW) was of 165 kDa, as estimated by HPLC-SEC analysis (TSK gel 3000 PWXL

column) using dextrans as standards.

Proteins used for conjugation

CRM197, DT and TT were obtained from GSK Vaccines S.r.l., Siena. Tetanus toxoid was puri-

fied by gel filtration through Sephacryl S300 (GE Healthcare) equilibrated in 0.15 M NaCl, 10

mM NaH2PO4, pH 7.2. The fractions corresponding to the monomeric MW of TT were

pooled and used for conjugation.

Chemicals

The following chemicals were used in this study: adipic acid dihydrazide (ADH), oxa-

lildihydrazide (ODH), pimelic acid dihydrazide (PDH), succinic dihydrazide (SDH)

Vi glycoconjugates
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N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDAC), N-hydroxisuccini-

mide (NHS), 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-

MM), succinimidil 3-(bromoacetamido) propionate (SBAP), cystamine dihydrochloride,

sodium cyanoborohydride (NaBH3CN), 4-morpholine ethanesulfonic acid (MES), sodium

chloride (NaCl), sodium hydroxide (NaOH), hydrochloride acid 37% (HCl), dimethyl sul-

foxide (DMSO), sodium acetate (AcONa), sodium phosphate monobasic monohydrate

(NaH2PO4
.H2O), 2,4,6-trinitrobenzenesulfonic acid (TNBS) [Sigma], dithiothreitol (DTT)

[Invitrogen], phosphate buffered saline tablets (PBS) [Fluka], ethylenediaminetetraacetic acid

(EDTA) disodium salt [Merk], acetonitrile (CH3CN) [Prolabo], NHS-PEG4-N3 [Thermo &

Fisher], click easy BCN NHS ester I alkyne linker [Berry & Associate].

Method for making fragmented Vi (fVi) and its characterization

Vi, freeze dried as the sodium salt, was solubilized in water and H2O2 was added to give a final

concentration of 2.5 mg/mL Vi and 5% (wt/v) H2O2 in water. The mixture was heated at 80

±0.5˚C for 2h. The mixture was then injected into a Hiscreen Capto Q [GE Healthcare] col-

umn (4.7 mL of resin loading up to 100 mg of fragmented Vi mixture) equilibrated with buffer

A and populations of different average size were separated using a gradient step method.

NaH2PO4 20 mM pH 7.2 and NaH2PO4 20 mM NaCl 1M pH 7.2 were used as buffer A and B

respectively. Pools at average size Vi of 8.6 and 43 kDa were eluted at 25 and 37% of buffer B

respectively. Each pool was desalted on a Sephadex G-25 column [GE Healthcare] equilibrated

with water. The average size of the fragmented Vi pools was determined by HPLC-SEC

equipped with a TSK gel 3000 PWXL column and a TSK gel PWXL guard column (Tosoh Bio-

science). Dextrans (5, 25, 50, 80, 150 kDa) were used as standards (Sigma Aldrich). The mobile

phase was 0.1 M NaCl, 0.1 M NaH2PO4, 5% CH3CN, pH 7.2, at the flow rate of 0.5 mL/min

(isocratic method for 30 min). HPAEC-PAD was used to measure Vi content [10, 21]. 1H

NMR was used to verify Vi identity and confirm O-acetylation levels were >60% [10, 21].

Synthesis of full-length and fVi conjugates

Use of different carrier proteins: Vi activation with EDAC/NHS followed by conjuga-

tion to the protein derivatised with ADH linker. With fVi avMW 43 kDa, the following

procedure was used to prepare conjugates. Polysaccharide was solubilized in 100 mM MES pH

6 at a concentration of 50 mg/mL. NHS and then EDAC were added to have 0.33 M NHS and

EDAC/Vi repeating units molar ratio of 5. After the reaction was mixed at room temperature

for 1h, the protein previously derivatized with ADH [10, 21], was added to give a Vi concentra-

tion of 7.8 mg/mL in 20 mM MES, pH 6 and mixed at room temperature for 2h. For full length

Vi, the PS concentration in the EDAC/NHS activation step was reduced to 4.2 mg/mL and to

1.7–3.5 mg/mL in the conjugation step in order to avoid gel formation. Different ratios of Vi

to protein were used: 1:1, 2:1 or 1:2 in weight.

Full-length Vi-CRM197 conjugates were purified by tangential flow filtration by using a

300k membrane (Sartocon Slice Cassette 200 cm2 PES). Twenty cycles of diafiltration against

1M NaCl 20 mM NaH2PO4 pH 7.2 and subsequently twenty cycles of diafiltration against 20

mM NaH2PO4 pH 7.2 (Pin 2.0 bar; Pout 0.2 bar; permeate flow rate = 30–33 mL/min) were

performed. For full-length Vi-DT conjugate purification was performed with a 100k mem-

brane (Hydrosart 200 cm2 in stabilized cellulose). Full-length Vi-TT conjugate and fVi conju-

gates were purified by size exclusion chromatography on a 1.6 cm x 60 cm Sephacryl S300

column or 1.6 cm x 60 cm Sephacryl S100 HR column respectively [GE Healthcare] eluted at

0.5 mL/min in PBS. Fractions at higher MW that did not overlap free PS and free protein run

on the same column in the same conditions were collected.

Vi glycoconjugates
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Activated Vi (with EDAC/NHS) was not isolated before protein addition, but a fraction of

the mixture was sampled in process and characterized for quantifying the % of activated Vi

repeating units (molar ratio % of NHS/Vi repeating units). The sample was desalted by PD10

column (SephadexTM G-25M, GE Healthcare) against HCl 55 ppm and analyzed by ion pair

HPLC-RP for NHS quantification and by HPAEC-PAD for Vi PS quantification. For quantifi-

cation of NHS ester groups introduced on Vi PS, samples were eluted on a C18 column (Phe-

nomenex, Gemini-NX 5 μ) with 80% 10 mM TBABr, 0.17% NH4OH, 20% ACN in isocratic

condition with a flow rate of 1 mL/min. Eluent pH allowed ester-NHS groups hydrolysis and

formation of N-hydroxysuccinimidate anion that was detected at 260 nm eluted as ion pair

with TBA. Calibration curve was built using NHS as standard in the range 3–50 nmol/mL.

fVi-CRM197 conjugates differing for conjugation chemistry. fVi-CRMODH, fVi-

CRMSDH, fVi-CRMPDH: fVi activation with EDAC/NHS followed by conjugation to the

protein derivatised with linkers of different length. CRM197 was derivatized with ODH, SDH

or PDH, as previously described for ADH [10, 21]. Conjugation step with fVi avMW 43 kDa

was performed as described for CRMADH, with a fVi to protein ratio 1:1 in weight, but

increasing Vi concentration to 15 mg/mL to have all the protein conjugated after 2h mixing at

room temperature. The conjugates were purified by size exclusion chromatography on a 1.6

cm x 60 cm Sephacryl S100HR column eluting at 0.5 mL/min in PBS.

fVi(ADH)-CRM197: fVi randomly derivatised with ADH linked to CRM197 after activation

of protein COOH groups with EDAC/NHS. Fragmented Vi avMW 43 kDa was solubilized

in100 mM MES pH 6 at a concentration of 15 mg/mL. NHS and then EDAC were added to

have 0.1 M NHS and EDAC/Vi repeating units molar ratio of 5. After the reaction was mixed

at room temperature for 1h, ADH was added (molar ratio ADH to Vi repeating units of 1.5).

The mixture was mixed at room temperature for 2h and then desalted by PD10. No crosslink-

ing was confirmed by HPLC-SEC and 22% repeating units resulted activated by TNBS colori-

metric method. For the step of conjugation, CRM197 was diluted with 600 mM MES pH 6 at a

concentration of 15.5 mg/mL. NHS and then EDAC were added to have 0.1 M NHS and

EDAC/COOH groups molar ratio of 5. After the reaction was mixed at room temperature for

1h, fViADH was added to have a fVi concentration of 10 mg/mL and with a Vi to protein ratio

1:2 in weight in MES 100 mM pH 6. The reaction was mixed at room temperature for 2h. The

conjugate was purified by size exclusion chromatography on a 1.6 cm x 60 cm Sephacryl

S100HR column eluting at 0.5 mL/min in PBS. It was verified by HPLC-SEC that no protein

aggregation happened in the reaction conditions used.

fVi(DMT-MM)-CRMADH: fVi randomly activated with DMT-MM linked to CRM197

after its derivatization with ADH. Fragmented Vi with an avMW 43 kDa was solubilized in

NaH2PO4 100 mM pH 7 to have a fVi concentration of 10 mg/mL and DMT-MM was added

with a molar ratio of 5 respect to Vi repeating units. The reaction proceeded at room temp-

erature for 10 minutes and CRMADH was then directly added to the solution to have a fVi to

protein ratio 1:1 in weight with a fVi concentration of 3.8 mg/mL. After mixing at room tem-

perature for 2h, the conjugate was purified by size exclusion chromatography on a 1.6 cm x 60

cm Sephacryl S100 HR column eluting at 0.5 mL/min in PBS.

fViADHN3CRMalkyne: fVi linked to CRM-alkyne after random derivatization with azido

groups. Fragmented Vi avMW 43 kDa was randomly activated with ADH as previously

described. Derivatised fVi (25% fVi repeating units activated according to TNBS) was then

mixed with the linker NHS-PEG4-N3 (25 mg/mL in DMSO) in NaH2PO4 100 mM pH 7.2 at a

concentration of 3.6 mg/mL fVi and with a moral ratio azido linker to NH2 groups on fVi 2:1.

The reaction was mixed at room temperature for 4h and the product purified by PD10 eluting

with NaH2PO4 10 mM pH 7.2. Ninety % NH2 groups introduced on fVi through ADH

resulted derivatised, as verified by TNBS method.

Vi glycoconjugates
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CMR197 was diluted in PBS and click easy BCN NHS ester I alkyne linker (10 mg/mL in

DMSO) was added (molar ratio linker to lysines on CRM197 of 0.76) resulting in a protein con-

centration of 8.6 mg/mL. After mixing at room temperature for 5h, the mixture was purified

by PD10 eluting with PBS. An average of 12 linkers resulted introduced per CRM197 molecule

by MALDI MS [10].

Conjugation was performed in PBS with a final concentration of protein at 12 mg/mL and

a molar ratio of azido to alkyne groups 6:1. The solution was mixed at room temperature over-

night and the resulting conjugate purified by hydrophobic interaction chromatography on a

Phenyl HP column [GE Healthcare], loading 300 μg of protein for mL of resin in 50 mM

NaH2PO4 3M NaCl pH 7.2. The purified conjugate was eluted in water and the collected frac-

tions were dialysed against PBS.

fVis(ADH)CRM197: fVi activated with ADH at the reducing end and linked to CRM197 after

activation of COOH groups on the protein with EDAC/NHS. Fragmented Vi avMW 8.6 kDa

was dissolved in AcONa 20 mM pH 4.5 at a concentration of 30 mg/mL. Reductive amination

was performed by adding ADH and NaBH3CN (respectively 6 and 17 fold molar excess respect

to fVi chains). The reaction proceeded for 3 days at 30˚C. The solution was then diluted in

NaCl 3 M and desalted twice by PD10. 95% of fVi chains resulted activated by TNBS.

Fragmented Vi derivatised with ADH was added to CRM197 activated with EDAC/NHS as

previously described, in order to obtain a fVi and CRM197 concentration respectively of 30

and 10 mg/mL and a molar ratio of fVi chains to CRM197 of 20:1. The reaction proceeded for 2

hours at room temperature.

Conjugate was purified by size exclusion chromatography on a 1.6 cm x 60 cm Sephacryl

S100 HR column eluting at 0.5 mL/min in PBS.

fVisSHCRMSBAP: fVi activated with cysteine at the reducing end and conjugated with

CRM197 previously derivatised with SBAP. CRM197 was solubilized in NaH2PO4 100 mM

EDTA 1 mM pH 8.0 (5.1 mg/mL); SBAP was added (0.3 mg/mL, molar ratio SBAP/lysine

groups on CRM197 = 0.3) after being solubilized in DMSO (final DMSO concentration of 4%

v/v). The mixture was stirred for 3h at room temperature, and then purified by PD10 column

eluting with NaH2PO4 100 mM EDTA 1 mM pH 7.0. An average of 9 linkers was introduced

per CRM197, as determined by MALDI-MS [10].

Fragmented Vi avMW 8.6 kDa was solubilized in NaH2PO4 100 mM pH 7.0 (20 mg/mL)

and then cystamine (112.5 mg/mL, cystamine/fVi (w/w) = 5.6) and NaBH3CN (50 mg/mL,

NaBH3CN/fVi (w/w) = 2.5) were added. The mixture was stirred for 5 days at 30˚C and then

desalted after diluting the sample with NaCl 6 M by PD10 column. Cystamine disulfide bond

was reduced by mixing derivatised fVi at a concentration of 20 mg/mL with DTT 100 mM in

NaH2PO4 100 mM EDTA 5 mM for 1h at room temperature. The derivatized fVi was purified

by desalting on PD10 against 10 mM NaH2PO4 5 mM EDTA pH 7.5. Seventy % fVi chains

resulted activated with cystamine, according to TNBS, and reduction with DTT was complete,

as verified by Ellman colorimetric method.

Conjugation was performed in NaH2PO4 100 mM EDTA 1 mM pH 7.2 with protein con-

centration of 12 mg/mL and using a molar ratio of fVi chains to CRM197 of 20 to 1. After mix-

ing 3h at room temperature the conjugate was purified by hydrophobic interaction

chromatography on a Phenyl HP column, as previously described.

Characterization of the conjugates generated. Purified conjugates were characterized by

HPAEC-PAD for total Vi content [10], micro BCA for total protein content, HPLC-SEC for

determining avMW distribution of the conjugate and to assess the amounts of free protein

(fluorescence emission) and free saccharide (refractive index) for fVi avMW 8.6 kDa. For con-

jugates prepared with fVi avMW 43 kDa as for full-length Vi conjugates, free saccharide was

estimated by Capto Adhere/HPAEC-PAD method [22].

Vi glycoconjugates
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Immunization of mice and assessment of antibody responses

Female 10 weeks or 5 weeks old outbred CD-1 mice were purchased from Charles River Labo-

ratory. All animal protocols were approved by the local animal ethical committee (GSK Ani-

mal Welfare Body) and by the Italian Minister of Health in accordance with Italian law.

In all the immunogenicity studies performed eight mice per group were injected subcutane-

ously into the back two times, at 4–5 week intervals, with 200 μL/dose of conjugated Vi. Anti-

gens were diluted in 0.9% w/v saline solution without adjuvant. Mice were bled and sera

collected before first immunization (day 0), two weeks after the first immunization, the day of

the second immunization and two weeks after the second immunization. Anaesthesia, tiela-

mine/zolazepam (10–40 mg/kg p.v.) and xilazina (0.4–4 mg/kg p.v.), were administered via the

intraperitoneal route (max 0.5 ml/mouse) before final bleeding and euthanasia. Carbon diox-

ide or cervical dislocation in pre-anesthetized mice were used as methods of euthanasia. The

condition of animals was monitored twice per day. No signs of suffering or inflammation at

the site of injection were reported after subcutaneous immunizations. Humane endpoints

were defined and approved by the Animal Welfare Body and personnel was trained to respond

promptly after the detection of adverse events. Animals with severe signs of illness would have

been sacrificed under the approval and responsability of the designated veterinary, research

project and animal facility. For moderate clinical signs, the use of analgesics was avoided

because of their potential immunomodulatory and anti-inflammatory effects.

Serum IgG levels against Vi and carrier proteins were measured by ELISA using the method

previously described [11].

Statistical and graphical analysis was performed using GraphPad Prism 6 software. The non-

parametric Mann-Whitney test and Kruskal-Wallis analysis with Dunn’s test for post hoc analy-

sis were used to compare respectively two or multiple groups. Wilcoxon matched-pairs signed

rank two-tailed test was used to compare results from the same group at different time points.

Results

Vi chain length and the carrier protein used affect anti-Vi IgG responses

induced by Vi-conjugates

Three different proteins (DT, TT and CRM197) were used as carriers for full-length (165 kDa)

and fVi with an average MW of 43 kDa. Carboxylic groups along the PS chain were randomly

activated with carbodiimide and NHS and linked to the carrier protein, previously derivatised

with ADH as a spacer. CRM197 was compared to DT and TT, two other proteins commonly

used in the production of glycoconjugate vaccines [8], including Vi conjugate vaccines [6, 7].

The conjugation protocol was optimized using CRM197, both for full-length and shorter Vi

chains. The same procedures were then applied to DT and TT. On average, 12 and 24 ADH

linkers were introduced on DT [15] and TT respectively, compared to 6 linkers on CRM197, as

quantified by MALDI-TOF analysis (Table 1). Corresponding conjugates were synthesised

with a PS to protein weight to weight (w/w) ratio of 1:1. HPLC-SEC profiles (Fig 1) of the

resulting conjugates showed that Vi-DT and Vi-TT were characterized by two main conjugate

populations of differing average MW, while the Vi-CRM197 conjugate only had the population

of higher MW. Table 1 lists main characteristics of the conjugates obtained, without separating

any populations characterized by different MW.

Both for full-length and fragmented Vi, the DT conjugates were characterized by higher Vi

to protein w/w ratio than CRM197 and TT ones (Table 1).

Mice were immunized to each receive 1 μg Vi/dose on days 0 and 35. All full-length Vi con-

jugates induced peak anti-Vi antibody responses 14 days after primary injection, with no

Vi glycoconjugates
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significant augmentation of titres observed 14 days after secondary immunization (Fig 2A).

Anti-Vi IgG responses were similar in mice receiving full-length Vi conjugates, independent

of the carrier protein. The anti-Vi IgG titres induced by fVi-TT conjugate were significantly

higher at day 14 after primary immunization than those observed after immunization with the

fVi-DT conjugate (p = 0.012), but not with fVi-CRM197 (p = 0.41). Nevertheless, no significant

differences in the anti-Vi IgG response were observed between fVi conjugates 14 days after

secondary immunization (Fig 2A). Secondary immunization did not increase the titres of mice

immunized with fVi-TT further, whereas the titres did increase after secondary immunization

Table 1. Characterization of full-length and fragmented Vi conjugates by using different carrier proteins.

Conjugate Average number ADH linkers per protein % PS RU activated with NHS Total PS to protein w/w ratio % free PS % free protein

Vi-CRM197 6 20.5 1.4 6.7 nd

Vi-DT 12 23.2 3.1 6 nd

Vi-TT 24 18.9 1.3 34.2 nd

fVi-CRM197 5 21.3 0.5 <15 nd

fVi-DT 12 21.3 0.86 <20 nd

fVi-TT 24 21.3 0.40 <6.8 nd

nd: not detectable; RU: repeating units.

https://doi.org/10.1371/journal.pone.0189100.t001

Fig 1. A) HPLC-SEC profiles (fluorescence emission detection) of Vi-CRM197 (red), Vi-DT (orange) and Vi-TT (green). TSK gel 6000–5000 PW

columns, NaCl 0.1 M NaH2PO4 0.1 M ACN 5%, pH 7.2; flow 0.5 mL/min; Vtot 49.004 min; V0 24.382 min. B). HPLC-SEC profiles of fVi-CRM197

(red), fVi-DT (orange), fVi-TT (green). TSK gel 3000 PWxl column; NaCl 0.1 M NaH2PO4 0.1 M ACN 5%, pH 7.2; flow rate 0.5 mL/min; Vtot

23.326 min, V0 10.663 min.

https://doi.org/10.1371/journal.pone.0189100.g001
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with fVi-DT (p = 0.078) and fVi-CRM197 (p = 0.0078) conjugates (Fig 2A). After two immuni-

zations mice that had either the full-length or fVi conjugates all had similar anti-Vi IgG

responses (Fig 2A).

All full-length conjugates induced an anti-carrier response higher than the corresponding

fragmented Vi conjugates (Fig 2B), except for CRM197 for which the response was very low

also with full-length Vi. This was the case despite mice immunized with fVi conjugates

received more protein in the immunization (Fig 2B).

Saccharide to protein ratio and conjugate cross-linking/size do not

influence the anti-Vi IgG response

The impact of saccharide to protein ratio and conjugate crosslinking/size on the immunoge-

nicity of full-length (165 kDa) and fVi (avMW 43 kDa) conjugated to CRM197 was evaluated.

Fig 2. Influence of carrier protein on the immunogenicity of Vi conjugates in mice. Ten weeks old CD1

mice were immunized at days 0 and 35 with 1 μg Vi/dose. A) anti-Vi IgG ELISA titres and B) anti-carrier IgG

ELISA titres. Bars represent the geometric mean ELISA units of the group in log scale, individual animals are

represented by the scatter plots.

https://doi.org/10.1371/journal.pone.0189100.g002
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The IgG response to full length Vi-CRM197 conjugates with a w/w Vi to protein ratio of 1.4 or

0.8 respectively (Table 2), but with a similar size by HPLC-SEC, was assessed by immunization

in mice receiving 1 μg Vi/dose. These experiments showed that altering the ratio of Vi to pro-

tein did not influence the anti-Vi response (Fig 3A) nor the anti-protein IgG response, which

were similar in both groups.

Next we assessed whether separating out full-length Vi-CRM197 into higher molecular

weight (HMW) and lower molecular weight (LMW) fractions altered the immune response.

HMW and LMW fractions were collected after separation on a Sephacryl S1000 16 90 column

in PBS. The HMW and LMW pools had the same Vi to CRM197 w/w ratio of 0.8 as the unfrac-

tionated conjugate, but with different sizes, likely related to differences in the level of crosslink-

ing. HMW, LMW and unfractionated corresponding full-length Vi-CRM197 conjugate were

characterized on a Superose 6 10/300 GL column (GE) eluting at 0.3mL/min with PBS, using

DNA and NaN3 to calibrate the column. Kd values, defined as [(retention time of NaN3 –

retention time of conjugate)/(retention time of NaN3 –retention time of DNA)], were calcu-

lated and determined to be 0.016 for the unfractionated conjugate and 0.021 for the LMW

fraction. HMW conjugate eluted before DNA, used to define the void volume of the column.

Anti-Vi IgG titres induced, after both primary or secondary immunization, with either the

HMW or LMW Vi-CRM197 fractions were comparable with those titres seen after immuniza-

tion with the non-fractionated conjugate (Fig 3B).

In order to assess if immunization with fVi-CRM197 conjugates varying in the polysaccha-

ride to protein ratio or conjugate size influences the anti-Vi IgG response (Table 2, Fig 3C),

mice were immunized to receive 1 or 8 μg of fVi/dose. For all conjugates, we observed variabil-

ity in anti-Vi antibody response among individual mice, with some non-responders. At both

doses tested, there was no significant difference among the IgG response induced in groups

immunized with the conjugates characterized by different saccharide to protein ratio and simi-

lar size (fVi-CRM197 conjugates 1, 2 and 3 in Table 2) (Fig 3C).

With the 8 μg fVi dose conjugates, the anti-CRM197 IgG response (Fig 3D), was minimal

after one only injection, and then increases to a similar level for all the constructs post second

dose, independent of the dose of carrier injected. With the 1 μg fVi dose conjugates, the anti-

CRM197 IgG response induced by the conjugate with 0.85 w/w Vi to protein ratio was signifi-

cantly lower (p = 0.047) than the response induced by the conjugate with 0.26 w/w ratio. Oth-

erwise responses were similar.

fVi-CRM197 conjugates that have the same fVi to protein ratio (0.66 w/w) but different size

(fVi-CRM197 conjugates 2, having retention time of 11.3 min, and 4, with retention time of

Table 2. Full-length and fragmented Vi-CRM197 conjugates differing for saccharide to CRM197 ratio or size.

Conjugate PS concentration in conjugation

mixture

PS to CRM197 ratio w/w in conjugation

mixture

PS to CRM197 ratio w/w in purified

conjugate

Vi-CRM197 2.5 1 1.37

2.7 0.5 0.80

fVi-CRM197

1

7.8 2 0.85

fVi-CRM197

2

7.8 1 0.66

fVi-CRM197

3

7.8 0.5 0.26

fVi-CRM197

4

20 1 0.66

All purified conjugates showed less 20% free Vi and no detectable amounts of free protein.

https://doi.org/10.1371/journal.pone.0189100.t002
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11.45 min in Table 2 (Fig 4) induced similar anti-Vi IgG responses (Fig 3C). Also here, differ-

ences in geometric means among the groups are reflection of non/low-responders mice. At

1 μg Vi dose, the larger conjugate did not induce an anti-protein IgG response (Fig 3D). There

was no statistically significant difference in the anti-CRM197 IgG response when the conjugates

were tested at 8 μg Vi dose.

The method of conjugation chemistry used does not influence the

immunogenicity of the vaccine

Different conjugation chemistries were tested to link fVi avMW 43 kDa to CRM197 as carrier

protein. Linkers of differing length were introduced onto CRM197 (NH2NHCO

(CH2)xCONHNH2, x = 0, 2, 4, 5). Then fVi was conjugated to these carrier proteins using the

scheme shown in Fig 5A. By using same reaction conditions for CRM197 derivatization with

ADH [10], an average of 9 linkers were introduced per molecule of protein with PDH (x = 5)

and an average of 6–7 linkers with all the other linkers (Table 3). There was no correlation

between the number of linkers per CRM197 molecule and linker length, or the saccharide to

protein ratio of the corresponding conjugates (Table 3).

Fig 3. Influence of saccharide to protein ratio and conjugate size on: anti-Vi IgG response induced in mice by Vi-CRM197 (A and B respectively) and fVi-

CRM197 conjugates (C); anti-CRM197 IgG response induced in mice by fVi-CRM197 conjugates (D). Ten weeks old CD1 mice were immunized at days 0 and

28 or 35 at 1 μg (A, B) and 1 or 8 μg (C) Vi/dose. Bars represent the geometric mean ELISA units of the group in log scale, individual animals are represented

by the scatter plots. HMW and LMW indicate high molecular weight and low molecular weight conjugates.

https://doi.org/10.1371/journal.pone.0189100.g003
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An additional conjugate was synthesized using DMT-MM to activate COOH groups on

fVi, instead of EDAC/NHS, before linkage to CRMADH (Fig 5B). This reagent has been tested

as an alternative coupling reagent to carbodiimide, and has a shorter activation step than using

EDAC/NHS [23, 24]. The resulting conjugate had same structure and similar Vi to protein

ratio than fVi-CRMADH (Table 3).

Another conjugate was synthesized by derivatizing fVi with ADH instead of CRM197 before

performing conjugation (Fig 5C). Derivatization of the PS is preferable to the derivatization of

the protein, as it avoids performing multiple reaction steps on CRM197, an expensive compo-

nent of the vaccine. The conjugate obtained (fVi(ADH)-CRM197) was characterized by a

3-fold higher Vi to protein ratio than fVi-CRMADH (Table 3).

Although after immunization with these different conjugates there was no significant differ-

ence among the anti-Vi IgG responses induced, those obtained using the longer linker between

the saccharide and protein moiety (ADH or PDH) gave a more consistent immune response

(Fig 6A). fVi(ADH)-CRM197 conjugate was characterized by a higher Vi to protein ratio than

all the other conjugates. The lack of difference in anti-Vi IgG antibody response induced com-

pared to the other conjugates supports our finding that the saccharide Vi to protein ratio is not

a critical parameter for the immunogenicity of fVi-CRM197 conjugate vaccine (Fig 3C). No dif-

ference among the groups was also found in terms of anti-CRM197 IgG response.

We then compared fVi-CRMADH with a conjugate obtained by random activation of

fVi, but targeting lysine amino acids on CRM197 instead of carboxylic groups (fViADHN3-

CRMalkyne, Fig 5D; Table 3). In this experiment we also included two further conjugates pre-

pared by selective terminal linkage of fVi chains to CRM197, one targeting carboxylic groups

(fVis(ADH)-CRM197) and the other one lysine residues on CRM197 (fVisSH-CRMSBAP) (Fig

5E and 5F; Table 3). The selective conjugates were prepared with fVi with a lower average MW

of 8.6 kDa, as selective chemistries did not work with the longer Vi chains with an avMW 43

kDa. These conjugates were then tested in mice (Fig 6B), and the results show different conju-

gation chemistries had no impact on the anti-Vi IgG responses detected (Fig 6B). However,

two weeks after the second injection, the anti-CRM197 response induced by fVis(ADH)-

CRM197 (mean value of 330.7) was significantly higher than the response induced by the ran-

dom conjugates fVi-CRMADH (mean value of 20.7) and fViADHN3-CRMalkyne (mean value

of 32.1), with p values of 0.0002 and 0.01 respectively.

Fig 4. HPLC-SEC profiles (fluorescence emission detection) on TSK gel 3000 PWxl column (NaH2PO4 100 mM, NaCl 100 mM,

5% CH3CN pH 7.2; 0.5mL/min) of fVi-CRM197 conjugates 1 (pink), 2 (black), 3 (red) and 4 (blue) (Table 2).

https://doi.org/10.1371/journal.pone.0189100.g004
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Discussion

It is well known that several parameters can affect the immunogenicity of glycoconjugate vac-

cines [8]. Here we used a systematic approach to look at the impact of multiple variables on

the immunogenicity of a glycoconjugate vaccine against S. Typhi.

Fig 5. Conjugation scheme for the synthesis of A) fVi-CRM197 conjugates differing for the length of the spacer molecule introduced on CRM197 before

conjugation to fVi; B) fVi(DMT-MM)CRMADH; C) fVi(ADH)-CRM197; D) fViADHN3-CRMalkyne; E) fVis(ADH)-CRM197; F) fVisSH-CRMSBAP (Table 3).

https://doi.org/10.1371/journal.pone.0189100.g005
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Table 3. Characteristics of the conjugates obtained using different conjugation strategies.

Conjugation

scheme

Conjugate (n˚ CH2 in

the linker)

fVi

avMW

Component derivatised

(activation degree)

Aminoacids activated

on CRM 197

fVi to CRM197

w/w ratio

fVi to CRM197

molar ratio

% free

fVi*

Random 1A fVi-CRMODH(x = 0) 43 CRM197(7 linkers) Asp/Glu 0.61 na 5.67

fVi-CRMSDH(x = 2) CRM197(6 linkers) Asp/Glu 0.78 na 25.2

fVi-CRMADH(x = 4) CRM197(6 linkers) Asp/Glu 0.59 na <20

fVi-CRMPDH(x = 5) CRM197(9 linkers) Asp/Glu 0.46 na 0.3

1B fVi(DMT-MM)CRMADH CRM197(6 linkers) Asp/Glu 0.51 na 13.5

1C fVi(ADH)-CRM197 fVi(22% RU) Asp/Glu 1.63 na <20

1D fViADHN3-CRMalkyne CRM197(12 linkers)

fVi(22.5% RU)

Lys 0.34 na <20

Selective

terminal

1F fVis(ADH)-CRM197 8.6 fVi(1linker/chain) Asp/Glu 0.23 1.53 <20

1E fVisSH-CRMSBAP CRM197(9 linkers)

fVi(1 linker/chain)

Lys 0.28 1.91 <20

RU = repeating units, na = not applicable, *no free CRM197 detected in all the conjugates.

https://doi.org/10.1371/journal.pone.0189100.t003

Fig 6. Influence of conjugation chemistry (Table 3) on the immunogenicity of fVi-CRM197 conjugates in mice:

anti-Vi IgG ELISA titres. Five weeks old CD1 mice were immunized at days 0 and 28 at 1 μg Vi/dose in two separate

studies (A and B). Bars represent the geometric mean ELISA units of the group in log scale, individual animals are

represented by the scatter plots.

https://doi.org/10.1371/journal.pone.0189100.g006
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The length of the Vi chain linked to the carrier influenced the kinetics of antibody induc-

tion to the PS. Reflecting what is observed in humans [12, 13], full-length Vi-CRM197 induced

high anti-Vi IgG responses in mice after one immunization, with no anamnestic response fol-

lowing a second immunization. In contrast to the full-length Vi conjugate vaccine, a fVi-

CRM197 conjugate could boost specific anti-Vi IgG antibody levels following a second immu-

nization, although the final magnitude of the response was not greater than that observed with

the full-length Vi conjugate. This could be related to the ability of full-length Vi to act in a T-

independent manner, which may not be completely lost after conjugation to the carrier pro-

tein. Also, high titres of circulating anti-Vi antibodies could inhibit the ability of the conjugate

to boost the response.

Conjugate size did not impact the anti-PS specific IgG response induced in mice. In con-

trast, An et al. found that, for Vi-DT conjugates, the larger and more cross-linked the conju-

gate, the higher the anti-Vi response induced after one injection [15]. Wessels et al. also

showed that larger and more cross-linked GBS type III-TT conjugates induce higher IgG anti-

saccharide responses [25]. Findings are difficult to generalize for all glycoconjugate vaccines.

Different antigens and differences in other conjugation variables, such as carrier protein, can

give different results.

Theoretically, any protein containing peptides that can be presented through MHCII and

recognized by CD4+ T cells can be used as a carrier protein. Nevertheless, few proteins have

been used as carriers in licensed glycoconjugate vaccines to date, with DT, TT and CRM197

used for Hib, pneumococcal and meningococcal conjugate vaccines [8, 26]. TT and DT have

traditionally been used because of safety data collected with tetanus and diphtheria vaccina-

tion. CRM197 does not require chemical detoxification, facilitating its production and resulting

in more standardized preparations [27]. There has been particular interest in the influence of

the carrier protein on the immunogenicity of conjugate vaccines, often to the exclusion of

other parameters. In the context of Vi conjugate vaccines, several proteins, including rEPA,

DT, TT, CT, the B subunit of the heat-labile toxin of E. coli, recombinant OMP of Klebsiella
pneumoniae (rP40) and iron-regulated OMP of S. Typhi have been tested as carriers [6, 10, 16,

18, 20, 28–31]. Two studies have investigated the impact of carrier protein on the immunoge-

nicity of Vi conjugates in mice. Both studies found no effect of the carrier protein (CRM197,

TT, DT or rEPA) on the immunogenicity of full-length Vi conjugate vaccines obtained by

EDAC random chemistry with ADH linker [10, 16].

In our study, we have confirmed that full-length Vi conjugates induce similar anti-Vi IgG

responses independent of the carrier protein used in the conjugation. The same was observed

for fragmented Vi conjugates when administered in two doses 28 days apart. fVi-CRM197 and

fVi-DT gave a peak response after one immunization, similar to the response seen for full-

length Vi conjugated to TT, but did not give a booster response after the second injection. This

differs from the response seen after immunization with fVi-TT. The different behavior of TT

compared to CRM197 and DT could be related to the larger size of TT. Higher primary PS-spe-

cific antibody responses elicited by TT conjugates, compared to DT or CRM197 as carrier pro-

teins, has been shown also in other studies [32, 33].

The full-length conjugates induced anti-carrier responses higher than the corresponding

fragmented conjugates, except for CRM197 conjugates for which the response was low with

both full-length and fragmented Vi. This was unexpected because of the higher amount of pro-

tein administered with fragmented conjugates and because longer Vi chains might be expected

to potentially mask more of the protein moiety [18]. However, in a study comparing pneumo-

coccal polysaccharide and oligosaccharide TT conjugates, an inverse correlation was found

between protein-specific IgG responses and the protein dosage administered for polysaccha-

rides but not for oligosaccharides [34]. Furthermore, in a study comparing long and short
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polyribosylribitol phosphate polysaccharide conjugated to TT carrier protein, the anti-TT anti-

body response was higher for the longer PS conjugate, consistent with our results. It has been

suggested that during conjugation smaller saccharides could have a major impact on protein

epitopes compared to longer polysaccharides [35]. In a recent analysis of structure-antibody

recognition relationships in nine licensed polysaccharide-TT conjugate vaccines, it was found

that recognition of the carrier epitopes was not necessarily hampered by the size of the conju-

gate or the saccharide loading [36]. An alternative possible explanation is that longer Vi chains

may better stabilize the protein resulting in the higher anti-carrier antibody levels seen.

The use of shorter Vi chains can offer advantages for vaccine manufacture: the conjugation

reaction can be performed with a higher degree of control and better consistency due to the

higher solubility of shorter PS. Yields of conjugate (expressed in terms of the Vi in the conjuga-

tion mixture) are higher and the product is easier to sterilize by filtration. It is also easier to

purify (particularly from unreacted PS) and to characterize. With this in mind, we investigated

the impact of conjugation chemistry on shorter Vi chains and with CRM197 carrier protein.

We tested linking Vi by random and selective conjugation chemistries, targeting different

amino acids on CRM197 [37] and using linkers of different length, and found there was no

major impact on the anti-Vi IgG response in mice after immunization. In contrast to our find-

ings, the only other study investigating the impact of conjugation chemistry on the immunoge-

nicity of full-length Vi conjugate vaccines found that Vi-rEPA conjugates induce higher anti-

Vi antibody levels, both in animals and in humans, when EDAC/ADH chemistry was used

instead of cystamine/SPDP [17].

Selective chemistries produce better-defined structures, avoiding chemical modification of

the saccharide chain, compared to random approaches, which result instead in high MW,

cross-linked and rather undefined and heterogeneous structures. However, we found difficulty

applying terminal selective chemistries to Vi chains.

During our study we tried to investigate single parameters in parallel, by introducing only

one change per conjugate. However, the saccharide to protein ratio in the resulting conjugates

was influenced by the saccharide chain length, protein and conjugation chemistry used and so

was difficult to control. Nevertheless, both for full length and shorter Vi chains of 43 kDa we

showed there was no major impact of the saccharide to protein ratio on the immunogenicity

of the conjugate in mice.

Few studies have looked at the impact of Vi to protein ratio on the immunogenicity of Vi

conjugate vaccines [11, 15]. Rondini et al. showed that for Vi-CRM197, a different Vi to protein

ratio did not impact greatly on the immune response [11]. In fact, a Vi to CRM197 ratio of 10.1

was suboptimal compared to conjugates with a Vi to CRM197 ratio of 0.9 and 2.1, only at the

lower dose of 0.125 μg Vi in the range 0.125–8 μg tested, while no differences were observed at

the higher doses tested. An et al. [15] showed instead that the amount of DT conjugated to Vi

influences the magnitude of the response to the PS. The more DT bound (range of Vi/DT w/w

tested of 0.7–7.1), the greater the anti-Vi IgG response following two injections. In their study,

the conjugates tested had differing Vi to protein ratios and levels of cross-linking. Thus it is

difficult to identify which parameter in their study was impacting most on the immune

response.

In conclusion, from this study, the saccharide chain length and the carrier protein can mod-

ulate the immunogenicity of Vi conjugate vaccines more than the other parameters assessed.

The influence of these two variables on the immunogenicity is interconnected, as shown by

the different behavior of fragmented Vi when linked to CRM197 or TT. Therefore, when gener-

ating novel Vi glycoconjugates it may be optimal to focus on these two elements rather than

the chemistries used to link the molecules together. It is interesting to note that Vi-CRM197

and Vi-rEPA behaved differently when tested in infants [13, 38]. The two conjugates not only
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differed in the carrier used, but also in the source and size of Vi polysaccharide component

and the combination of both these factors could have contributed to the findings.

Although conjugate vaccine design is clearly an important factor in promoting efficient

immunity, other factors will contribute to the overall success of vaccination. Included in these

are the intrinsic capacity of a population to respond optimally to a vaccine. For instance, in

regions that have a high incidence of infections that are endemic, multiple reports have indi-

cated that they induce lower responses to vaccination than populations in developed countries

[13].

Our conclusions are based on results in adult mice and it would be important to assess how

these vaccines would work in younger mice and how this may translate into humans. Also

non-conjugated Vi induces IgG in adult mice after immunization. Nevertheless, the magni-

tude of this IgG response tends to be lower than the response induced by the conjugates and

the IgG isotype induced in the response differs, with IgG3 being the major IgG isotype

observed[39].

The approach used here can be extended to other conjugate vaccines in order to identify

critical conjugation parameters and select their optimal combination to result in improved gly-

coconjugate vaccines in terms of production and potential efficacy.
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