

On the Complexity of Random Satisfiability
Problems with Planted Solutions
Feldman, Vitaly; Perkins, Will; Vempala, Santosh

DOI:
10.1137/16M1078471

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Feldman, V, Perkins, W & Vempala, S 2018, 'On the Complexity of Random Satisfiability Problems with Planted
Solutions', SIAM Journal on Computing, vol. 47, no. 4, pp. 1294–1338. https://doi.org/10.1137/16M1078471

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Version accepted for publication in SIAM Journal on Computing
Checked 7/3/2018

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/185506795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1137/16M1078471
https://research.birmingham.ac.uk/portal/en/publications/on-the-complexity-of-random-satisfiability-problems-with-planted-solutions(7fb53c6e-0e81-4e17-acbd-b02cb47ad3cf).html

On the Complexity of Random Satisfiability Problems

with Planted Solutions∗

Vitaly Feldman† Will Perkins‡ Santosh Vempala§

Abstract

The problem of identifying a planted assignment given a random k-SAT formula consistent
with the assignment exhibits a large algorithmic gap: while the planted solution becomes unique
and can be identified given a formula with O(n log n) clauses, there are distributions over clauses
for which the best known efficient algorithms require nk/2 clauses. We propose and study
a unified model for planted k-SAT, which captures well-known special cases. An instance is
described by a planted assignment σ and a distribution on clauses with k literals. We define
its distribution complexity as the largest r for which the distribution is not r-wise independent
(1 ≤ r ≤ k for any distribution with a planted assignment).

Our main result is an unconditional lower bound, tight up to logarithmic factors, for statis-
tical (query) algorithms [Kea98, FGR+12], matching known upper bounds, which, as we show,
can be implemented using a statistical algorithm. Since known approaches for problems over
distributions have statistical analogues (spectral, MCMC, gradient-based, convex optimization
etc.), this lower bound provides a rigorous explanation of the observed algorithmic gap. The
proof introduces a new general technique for the analysis of statistical query algorithms. It also
points to a geometric paring phenomenon in the space of all planted assignments.

We describe consequences of our lower bounds to Feige’s refutation hypothesis [Fei02] and
to lower bounds on general convex programs that solve planted k-SAT. Our bounds also extend
to other planted k-CSP models, and, in particular, provide concrete evidence for the security
of Goldreich’s one-way function and the associated pseudorandom generator when used with a
sufficiently hard predicate [Gol00].

∗An extended abstract of this paper appeared at STOC, 2015 [FPV15].
†Google Research. Work done while at IBM Research and visiting the Simons Institute, UC Berkeley
‡University of Birmingham. Part of the work done while at Georgia Tech. Supported in part by an NSF postdoc-

toral fellowship.
§Georgia Tech. Supported in part by NSF award CCF-1217793.

Contents

1 Introduction 2
1.1 Summary of results . 3

1.1.1 Evidence for Feige’s hypothesis: . 5
1.1.2 Hard instances of k-SAT: . 6
1.1.3 Lower bounds for convex programs: . 6

1.2 Overview of the technique . 7
1.3 Other related work . 8

2 Definitions 9
2.1 Planted satisfiability . 9
2.2 Statistical algorithms . 11

3 Results 12
3.1 Lower bounds . 12
3.2 Algorithms . 13
3.3 Statistical dimension for decision problems . 14
3.4 Corollaries and applications . 15

3.4.1 Quiet plantings . 15
3.4.2 Feige’s Hypothesis . 16
3.4.3 Hardness of approximation . 18

4 Convex Programs and SQ Algorithms for Solving CSPs 18
4.1 LP/SDP relaxations for k-CSPs . 18
4.2 Statistical Query Algorithms for Stochastic Convex Optimization 19
4.3 Corollaries for Planted k-CSPs . 20

5 Statistical Dimension of Planted Satisfiability 22

6 Planted k-CSPs 27
6.1 Lower Bounds for Planted k-CSPs . 29

7 Lower Bounds using Statistical Dimension 31
7.1 Lower bound for VSTAT . 31
7.2 Lower bounds for MVSTAT and 1-MSTAT . 32

8 Algorithmic Bounds 34
8.1 Set-up . 35
8.2 Algorithm Discrete-Power-Iterate (even k). 36
8.3 Algorithm Discrete-Power-Iterate (odd k) . 38
8.4 Implementing the algorithms with the statistical oracle 41

9 Discussion and open problems 42

1

1 Introduction

Boolean satisfiability and constraint satisfaction problems are central to complexity theory; they
are canonical NP-complete problems and their approximate versions are also hard. Are they easier
on average for natural distributions? An instance of random satisfiability is generated by fixing
a distribution over clauses, then drawing i.i.d. clauses from this distribution. The average-case
complexity of satisfiability problems is also motivated by its applications to models of disorder in
physical systems, and to cryptography, which requires problems that are hard on average.

Here we study planted satisfiability, in which an assignment is fixed in advance, and clauses are
selected from a distribution defined by the planted assignment. Planted satisfiability and, more
generally, random models with planted solutions appear widely in several different forms such as
network clustering with planted partitions (the stochastic block model and its variants), random
k-SAT with a planted assignment, and a proposed one-way function from cryptography [Gol00].

It was noted in [BHL+02] that drawing satisfied k-SAT clauses uniformly at random from
all those satisfied by an assignment σ ∈ {±1}n often does not result in a difficult instance of
satisfiability even if the number of observed clauses is relatively small. However, by changing
the proportions of clauses depending on the number of satisfied literals under σ, one can create
more challenging distributions over instances. Such “quiet plantings” have been further studied in
[JMS05, AJM05, KZ09, KMZ14]. Algorithms for planted 3-SAT with various relative proportions
were given by Flaxman [Fla03] and Coja-Oghlan et al. [COCF10], the first of which works for
Θ(n log n) clauses but excludes distributions close to 3-XOR-SAT, and the second of which works
for all planted 3-SAT distributions but requires Θ(n3/2 ln10 n) clauses (note that a satisfiable k-
XOR-SAT formula can be viewed as a satisfiable k-SAT formula with the same literals since XOR
implies OR). As k increases, the problem exhibits a larger algorithmic gap: the number of clauses
required by known algorithms to efficiently identify a planted assignment is Ω(nk/2) while the
number at which the planted assignment is the unique satisfying assignment is O(n log n).

We give a simple model for producing instances of planted k-SAT that generalizes and unifies
past work on specific distributions for planted satisfiability. In this model, each clause C, a k-tuple
of the 2n literals (variables and their negations), is included in the random formula with probability
proportional to Q(y) where y ∈ {±1}k is the value of the literals in C on the planted assignment
σ. Here Q can be an arbitrary probability distribution over {±1}k. By choosing Q supported only
on k-bit strings with at least one true value, we can ensure that only satisfiable k-SAT formulas
will be produced, but the model is more general and allows “noisy” versions of satisfiability. We
refer to an instance obtained by taking Q to be uniform over k-bit strings with an even number of
1’s as k-XOR-SAT (since each clause also satisfies an XOR constraint).

We identify the parameter of Q that determines (up to lower order terms) the number of clauses
that existing efficient algorithms require. It is the largest r such that the distribution Q is (r− 1)-
wise independent but not r-wise. Equivalently, it is the size of the smallest non-empty subset of k
indices for which the discrete Fourier coefficient of Q is nonzero. This is always an integer between
1 and k for any distribution besides the uniform distribution on all clauses. Known algorithms
use Õ(nr/2) clauses in general to identify the planted solution (with the exception of special cases
which can be solved using Gaussian elimination and other algebraic techniques; see more details
below). In [FPV14] we gave an algorithm based on a subsampled power iteration that uses Õ(nr/2)
clauses to identify the planted assignment for any Q.

Our general formulation of the planted k-SAT problem and the notion of distribution com-
plexity reveal a connection between planted k-SAT and the problem of inverting a PRG based on

2

Goldreich’s candidate one-way function [Gol00], for which the link between r-wise independence
and algorithmic tractability was known before [MST06, AM09, BQ09, ABR12]. In this problem for
a fixed predicate P : {±1}k → {−1, 1}, we are given access to samples from a distribution Pσ, for
a planted assignment σ ∈ {±1}n. A random sample from this distribution is a randomly and uni-
formly chosen ordered k-tuple of variables (without repetition) xi1 , . . . , xik together with the value
P (σi1 , . . . , σik). As in the problem above, the goal is to recover σ given m random and independent
samples from Pσ or at least to be able to distinguish any planted distribution from one in which
the value is a uniform random coin flip (in place of P (σi1 , . . . , σik)). The number of evaluations
of P for which the problem remains hard determines the stretch of the pseudo-random generator
(PRG). We note that despite the similarities between these two types of planted problems, we are
not aware of any reductions between them (in Section 6 we show some relationships between these
models and an even more general planted CSP model of Abbe and Montanari [AM15]).

Bogdanov and Qiao [BQ09] show that an SDP-based algorithm of Charikar and Wirth [CW04]
can be used to find the input (which is the planted assignment) for any predicate that is not pairwise-
independent using m = O(n) such evaluations. The same approach can be used to recover the input
for any (r − 1)-wise (but not r-wise) independent predicate using O(nr/2) evaluations [App16].

Another important family of algorithms for recovering the planted assignment in Goldreich’s
PRG is algebraic, based on Gaussian elimination and its generalizations [MST06, AL16]. These
attack algorithms are not captured by the framework of statistical algorithms we work with in
this paper. While algebraic approaches also apply to planted satisfiability problems, almost all
planting functions Q (in a measure-theoretic sense) are resilient against such algorithms, and any
planted satisfiability problem can be made resistant by adding an ε-fraction of uniformly random
constraints.

The assumption that recovering the planted assignment in this problem is hard for some pred-
icate has been used extensively in complexity theory and cryptography [Ale11, Gol00, IKOS08,
ABW10, App13], and the hardness of a decision version of this planted k-CSP is stated as the
DCSP hypothesis in [BKS13]. Applebaum [App13] reduced the search problem (finding the planted
assignment) to the decision problem (distinguishing the output from uniformly random). Our lower
bounds below will be for this second, a priori easier, task.

Nearly optimal integrality gaps for LP and SDP hierarchies were recently given for this problem
[OW14] (and references therein) for Ω(nr/2−ε) evaluations of a predicate that is (r−1)-wise but not
r-wise independent. Goldreich’s PRG is shown to be an ε-biased generator in [MST06, ABR12], and
lower bounds against DPLL-style algorithms are given in [CEMT09]. Applebaum and Lovett [AL16]
give lower bounds against algebraic attacks in a framework based on polynomial calculus.

For a survey of these developments, see [App16].

1.1 Summary of results

For the planted k-SAT problems and the planted k-CSPs arising from Goldreich’s construction we
address the following question: How many random constraints are needed to efficiently recover the
planted assignment?

For these problems we prove unconditional lower bounds for a broad class of algorithms. Statis-
tical (query) algorithms, defined by Kearns in the context of PAC learning [Kea98] and by Feldman
et al. [FGR+12] for general problems on distributions, are algorithms that can be implemented
without explicit access to random clauses, only being able to estimate expectations of functions
of a random constraint to a desired accuracy. Many of the algorithmic approaches used in ma-

3

chine learning theory and practice have been shown to be implementable using statistical queries
(e.g. [BFKV98, DV08, BDMN05, CKL+06, BF15]; see [Fel17] for a brief overview) including most
standard approaches to convex optimization [FGV15]. Other common techniques such as Expec-
tation Maximization (EM) [DLR77], MCMC optimization [TW87, GS90], (generalized) method of
moments [Han12], and simulated annealing [KJV83, Č85] are also known to fit into this framework.
The only known problem for which a superpolynomial separation between the complexity of statis-
tical algorithms and the usual computational complexity is known is solving linear equations over
a finite field (which can be done via Gaussian elimination).

The simplest form of algorithms that we refer to as statistical are algorithm that can be imple-
mented using evaluations of Boolean functions on a random sample. Formally, for a distribution
D over some domain (in our case all k-clauses) 1-STAT oracle is the oracle that given any function
h : X → {0, 1} takes a random sample x from D and returns h(x). While lower bounds for this
oracle are easiest to state and interpret, the strongest form of our lower bounds is for algorithms
that use VSTAT oracle defined in [FGR+12]. VSTAT(t) oracle captures the information about the
expectation of a given function that is obtained by estimating it on t independent samples.

Definition 1.1. Let D be the input distribution over the domain X. For an integer parameter
t > 0, for any query function h : X → [0, 1], VSTAT(t) returns a value v ∈ [p− τ, p+ τ] where

p = ED[h(x)] and τ = max

{
1
t ,

√
p(1−p)

t

}
.

This oracle is based on the well-known statistical query oracle defined by Kearns [Kea98] that
uses the same tolerance τ for all query functions. The VSTAT(t) oracle corresponds more tightly
to access to t samples and allows us to prove upper and lower bounds that closely correspond to
known algorithmic bounds.

We show that the distribution complexity parameter r characterizes the number of constraints
(up to lower order terms) that an efficient statistical algorithm needs to solve instances of either
problem. For brevity we state the bound for the planted k-SAT problem but identical bounds
apply to Goldreich’s k-CSP. Our lower bound shows that any polynomial time statistical algorithm
needs Ω̃(nr) constraints to even distinguish clauses generated from a distribution with a planted
assignment from uniformly random constraints (the decision problem). In addition, exponential
time is required if Ω̃(nr−ε) clauses are used for any ε > 0.

More formally, for a clause distribution Q and an assignment σ let Qσ denote the distribution
over clauses proportional to Q for the planted assignment σ (see Section 2 for a formal definition).
Let Uk denote the uniform distribution over k-clauses.

Theorem 1.2. Let Q be a distribution over k-clauses of complexity r. Then any (randomized)
statistical algorithm that, given access to a distribution D that equals Uk with probability 1/2 and
equals Qσ with probability 1/2 for a randomly and uniformly chosen σ ∈ {±1}n, decides correctly
whether D = Qσ or D = Uk with probability at least 2/3 needs either:

1. Ω(q) calls to VSTAT(nr

(log q)r) for any q ≥ 1, or,

2. Ω((n
logn)r) calls to 1-STAT.

It is easy to see that this lower bound is essentially tight for statistical algorithms using the
VSTAT oracle (since noisy r-XOR-SAT can be solved using a polynomial (in nr) number of queries
to VSTAT(O(nr)) that can determine the probability of each clause). Surprisingly, this lower bound

4

is quadratically larger than the upper bound of Õ(nr/2) that can be achieved using samples them-
selves [FPV14]. While unusual, this is consistent with a common situation where an implementation
using a statistical oracle requires polynomially more samples (for example in the case of algorithms
for learning halfspaces). Still this discrepancy is an interesting one to investigate in order to better
understand the power of statistical algorithms and lower bounds against them. We show that there
exist natural strengthenings of the VSTAT and 1-STAT oracles that bridge this gap. Specifically,
we extend the oracles to functions with values in a larger discrete range {0, 1, . . . , L− 1} for L ≥ 2:
1-MSTAT(L) oracle is the oracle that given any function h : X → {0, 1, . . . , L− 1} takes a random
sample x from D and returns h(x) and VSTAT is extended similarly to MVSTAT (we postpone
the formal details and statements for this oracle to Section 2.2). This strengthening interpolates
between the full access to samples which corresponds to L = |Xk| and the standard statistical query
oracles (corresponding to L = 2) and hence is a natural one to investigate.

We prove nearly matching upper and lower bounds for the stronger oracle: (a) there is an
efficient statistical algorithm that uses Õ(nr/2) calls to 1-MSTAT(O(ndr/2e)) and identifies the
planted assignment; (b) there is no algorithm that can solve the problem described in Theorem 1.2
using less than Õ(nr/2) calls to 1-MSTAT(nr/2). We state the upper bound more formally:

Theorem 1.3. Let Q be a clause distribution of distribution complexity r. Then there exists an
algorithm that uses O(nr/2 log2 n) calls to 1-MSTAT(ndr/2e) and time linear in the number of oracle
calls to identify the planted assignment with probability 1− o(1).

We prove this bound by showing that the algorithm from [FPV14] based on a subsampled
power iteration can be implemented using statistical query oracles. The same upper bound holds
for Goldreich’s planted k-CSP.

In addition to providing a matching lower bound, the algorithm gives an example of statistical
query algorithm for performing power iteration to compute eigenvectors or singular vectors. Spec-
tral algorithms are among the most commonly used for problems with planted solutions (including
Flaxman’s algorithm [Fla03] for planted satisfiability) and our lower bounds can be used to derive
lower bounds against such algorithms. The alternative approach for solving planted constraint
satisfaction problems with O(nr/2) samples is to use an SDP solver as shown in [BQ09] (with the
“birthday paradox” as shown in [OW14]; see also [App16]). This approach can also be implemented
using statistical queries, although a direct implementation using a generic SDP solver such as the
one we describe in Section 4 will require quadratically more samples and will not give a non-trivial
statistical algorithm for the problem (since solving using O(nr) clauses is trivial).

We now briefly mention some of the corollaries and applications of our results.

1.1.1 Evidence for Feige’s hypothesis:

A closely related problem is refuting the satisfiability of a random k-SAT formula (with no planting),
a problem conjectured to be hard by Feige [Fei02]. A refutation algorithm takes a k-SAT formula
Φ as an input and returns either SAT or UNSAT. If Φ is satisfiable, the algorithm always returns
SAT and for Φ drawn uniformly at random from all k-SAT formulas of n variables and m clauses
the algorithm must return UNSAT with probability at least 2/3. For this refutation problem,
an instance becomes unsatisfiable w.h.p. after O(n) clauses, but algorithmic bounds are as high
as those for finding a planted assignment under the noisy XOR distribution: O(nk/2) clauses
suffice[FGK05, COGLS04, HPS09, GL03, FO04, AOW15].

To relate this problem to our lower bounds we define an equivalent distributional version of
the problem. In this version the input formula is obtained by sampling m i.i.d. clauses from some

5

unknown distribution D over clauses. The goal is to say UNSAT (with probability at least 2/3)
when clauses are sampled from the uniform distribution and to say SAT for every distribution
supported on simultaneously satisfiable clauses.

In the distributional setting, an immediate consequence of Theorem 1.2 is that Feige’s hypothesis
holds for the class of statistical query algorithms. The proof (see Theorem 3.8) follows from the
fact that our decision problem (distinguishing between a planted k-SAT instance and the uniform
k-SAT instance) is a special case of the distributional refutation problem.

1.1.2 Hard instances of k-SAT:

Finding distributions of planted k-SAT instances that are algorithmically intractable has been a
pursuit of researchers in both computer science and physics. The distribution complexity parameter
defined here generalizes the notion of “quiet plantings” studied in physics [BHL+02, JMS05, KZ09,
KMZ14] to an entire hierarchy of “quietness”. In particular, there are easy to generate distributions
of satisfiable k-SAT instances with distribution complexity as high as k− 1 (r = k can be achieved
using XOR constraints but these instances are solvable by Gaussian elimination). These instances
can also serve as strong tests of industrial SAT solvers as well as the underlying hard instances
in cryptographic applications. In recent work, Blocki et al. extended our lower bounds from the
Boolean setting to Zd and applied them to show the security of a class of humanly computable
password protocols [BBDV14].

1.1.3 Lower bounds for convex programs:

Our lower bounds imply limitations of using convex programs to recover planted solutions. For
example, any convex program whose objective is the sum of objectives for individual constraints (as
is the case for canonical LPs/SDPs for CSPs) and distinguishes between a planted CSP instance and
a uniformly generated one must have dimension at least Ω̃(nr/2). In particular, this lower bound
applies to lift-and-project hierarchies where the number of solution space constraints increases (and
so does the cost of finding a violated constraint), but the dimension remains the same. Moreover,
since our bounds are for detecting planted solutions, they imply large integrality gaps for convex
relaxations of this dimension. These bounds follow from statistical implementations of algorithms
for convex optimization given in [FGV15]. We emphasize that the lower bounds apply to convex
relaxations themselves and make no assumptions on how the convex relaxations are solved (in
particular, the solver does not need to be a statistical algorithm). An example of such lower bound
is given below. Roughly speaking, the corollary says that any convex program whose objective
value is significantly higher for the uniform distribution over clauses, Uk, compared to a planted
distribution Qσ must have a large dimension, independent of the number of constraints.

Corollary 1.4. Let Q be a distribution over k-clauses of complexity r. Assume that there exists a
mapping that maps each k-clause C ∈ Xk to a convex function fC : K → [−1, 1] over some bounded,
convex and compact N -dimensional set K. Further assume that for some ε > 0 and α ∈ R:

Pr
σ∈{±1}n

[
min
x∈K

{
E

C∼Qσ
[fC(x)]

}
≤ α

]
≥ 1/2.

and

min
x∈K

{
E

C∼Uk
[fC(x)]

}
> α+ ε.

6

Then N = Ω̃
(
nr/2 · ε

)
.

We note that conditions on the value of the convex program that we make are weaker than
the standard conditions that a convex relaxation must satisfy. Specifically, it is usually assumed
that a convex relaxation does not increase the value of the objective (for example, the value for a
satisfiable instance must be 0) and also that the minimum of the objective function for all “bad”
instances will be noticeably larger than that of the “good” instances. In Section 4 we also prove
lower bounds against convex programs in exponentially high dimension as long as the appropriate
norms of points in the domain and gradients are not too large. We are not aware of this form
of lower bounds against convex programs for planted satisfiability stated before. We also remark
that our lower bounds are incomparable to lower bounds for programs given in [OW14] since they
analyze a specific SDP for which the mapping M maps to functions over an O(nk)-dimensional
set K is defined using a high level of the Sherali-Adams or Lovász-Schrijver hierarchies. Further
details are given in Section 4.

1.2 Overview of the technique

Our proof of the lower bound builds on the notion of statistical dimension given in [FGR+12] which
itself is based on ideas developed in a line of work on statistical query learning [Kea98, BFJ+94,
Fel12].

Our primary technical contribution is a new, stronger notion of statistical dimension and its
analysis for planted k-CSP problems. The statistical dimension in [FGR+12] is based on upper-
bounding average or maximum pairwise correlations between appropriately defined density func-
tions. While these dimensions can be used for our problem (and, indeed, were a starting point for
this work) they do not lead to the tight bounds we seek. Specifically, at best they give lower bounds
for VSTAT(nr/2), whereas we will prove lower bounds for VSTAT(nr) to match the current best
upper bounds.

Our stronger notion directly examines a natural operator, which, for a given function, evaluates
how well the expectation of the function discriminates between different distributions. We show that
a norm of this operator for large sets of input distributions gives a lower bound on the complexity
of any statistical query algorithm for the problem. Its analysis for our problem is fairly involved
and a key element of the proof is the use of concentration of polynomials on {±1}n (derived from
the hypercontractivity results of Bonami and Beckner [Bon70, Bec75]).

We remark that the k-XOR-SAT problem is equivalent to PAC learning of (general) parity
functions from random k-sparse examples. The latter is the classic problem addressed by Kearns’
original lower bound [Kea98]. While superficially the planted setting is similar to learning of k-
sparse parities from random uniform examples for which optimal statistical query lower bounds are
well-known and easy to derive, the problems, techniques and the resulting bounds are qualitatively
different. One significant difference is that the correlation between parity functions on the uniform
distribution is 0, whereas in our setting the distributions are not uniform and pairwise correlations
between them can be relatively large. Moreover, as mentioned earlier, the techniques based on
pairwise correlations do not suffice for the strong lower bounds we give.

Our stronger technique gives further insight into the complexity of statistical algorithms and
has a natural interpretation in terms of the geometry of the space of all planted assignments with a
metric defined (between pairs of assignments) to capture properties of statistical algorithms. The
fraction of solutions that are at distance greater than some threshold from a fixed assignment goes
up sharply from exponentially small to a polynomial fraction as the distance threshold increases.

7

We call this a ‘paring’ transition as a large number of distributions become amenable to being
separated from the planted solution and discarded.

We conjecture that our lower bounds hold for all algorithms with the exception of those based
on Gaussian elimination. Formalizing “based on Gaussian elimination” requires substantial care.
Indeed, in an earlier version of this work we excluded Gaussian elimination by only excluding density
functions of low algebraic degree. (Here algebraic degree refers to the degree of the polynomial over
Zk2 required to represent the function. For example, the parity function equals to x1 +x2 + · · ·+xk
and therefore has algebraic degree 1). This resulted in a conjecture that was subsequently disproved
by Applebaum and Lovett [AL16] using an algorithm that combines Gaussian elimination with
fixing some of the variables. An alternative approach to excluding Gaussian elimination-based
methods is to exploit their fragility to even low rates of random noise. Here random noise would
correspond to mixing in of random and uniform constraints to the distribution. In other words for
α ∈ [0, 1], Q becomes Qα = (1 − α)Q + αUk. Observe that for all constant α < 1, the complexity
of Qα is the same as the complexity of Q.

Conjecture 1.5. Let Q be any distribution over k-clauses of complexity r and α ∈ (0, 1). Then any
polynomial-time (randomized) algorithm that, given access to a distribution D that equals either Uk
or Qασ for some σ ∈ {±1}n, decides correctly whether D = Qασ or D = Uk with probability at least
2/3 needs at least Ω̃(nr/2) clauses.

We conjecture that an analogous statement also holds for Goldreich’s k-CSP. Note that in
this case mixing in an α-fraction of random and uniform constraints can be equivalently seen as
flipping the given value of the predicate with probability α/2 randomly and independently for each
constraint.

1.3 Other related work

Hypergraph Partitioning. Another closely related model to planted satisfiability is random
hypergraph partitioning, in which a partition of the vertex set is fixed, then k-uniform hyperedges
added with probabilities that depend on their overlap with the partition. To obtain a planted
satisfiability model from a planted hypergraph, let the vertex set be the set of 2n literals, with the
partition given by the planted assignment σ. A k-clause is then a k-uniform hyperedge. The two
models are not exactly equivalent, as in planted satisfiability we have the extra information that
pairs of literals corresponding to the same variable must receive different assignments; however,
to the best of our knowledge all the known algorithmic approaches to planted satisfiability work
for planted hypergraph partitioning as well. The Goldreich CSP model is closely related to a
hypergraph version of the censored block model [AM15, ABBS14] in which random hyperedges are
labeled with values that depend on how the edges overlap with a planted partition.

The case k = 2 of k-uniform hypergraph partitioning is called the stochastic block model. The
input is a random graph with different edge probabilities within and across an unknown partition
of the vertices, and the algorithmic task is to recover partial or complete information about the
partition given the resulting graph. Work on this model includes Bopanna [Bop87], McSherry’s
general-purpose spectral algorithm [McS01], and Coja-Oghlan’s algorithm that works for graphs of
constant average degree [CO06].

Recently an intriguing threshold phenomenon was conjectured by Decelle, Krzakala, Moore, and
Zdeborová [DKMZ11]: there is a sharp threshold separating efficient partial recovery of the partition
from information-theoretic impossibility of recovery. This conjecture was proved in a series of works

8

[MNS15, Mas14, MNS13]. In the same work Decelle et al. conjecture that for a planted q-coloring,
there is a gap of algorithmic intractability between the impossibility threshold and the efficient
recovery threshold. Neither lower bounds nor an efficient algorithm at their conjectured threshold
are currently known. In our work we consider planted bipartitions of k-uniform hypergraphs, and
show that the behavior is dramatically different for k ≥ 3. Here, while the information theoretic
threshold is still at a linear number of hyperedges, we give evidence that the efficient recovery
threshold can be much larger, as high as Θ̃(nk/2). In fact, our lower bounds hold for the problem
of distinguishing a random hypergraph with a planted partition from a uniformly random one and
thus give computational lower bounds for checking hypergraph quasirandomness (see [Tre08] for
more on this problem). Throughout the paper we will use the terminology of planted satisfiability
(assignments, constraints, clauses) but all results apply also to random hypergraph partitioning.

Shattering and paring. Random satisfiability problems (without a planted solution) such as
k-SAT and k-coloring random graphs exhibit a shattering phenomenon in the solution space for
large enough k [KMRT+07, ACO08]: as the density of constraints increases, the set of all solutions
evolves from a large connected cluster to a exponentially large set of well-separated clusters. The
shattering threshold empirically coincides with the threshold for algorithmic tractability (while this
is the case for large k, for k = 3, 4 there is some evidence that the survey propagation algorithm
may succeed beyond the shattering threshold [MPRT16]). Shattering has also been used to prove
that certain algorithms fail at high enough densities [GS14].

Both the shattering and paring phenomena give an explanation for the failure of known algo-
rithms on random instances. Both capture properties of local algorithms, in the sense that in both
cases, the performance of Gaussian elimination, an inherently global algorithm, is unaffected by
the geometry of the solution space: both random k-XOR-SAT and random planted k-XOR-SAT
are solvable at all densities despite exhibiting shattering and paring respectively.

The paring phenomenon differs from shattering in several significant ways. As the paring
transition is a geometric property of a carefully chosen metric, there is a direct and provable link
between paring and algorithmic tractability, as opposed to the empirical coincidence of shattering
and algorithmic failure. In addition, while shattering is known to hold only for large enough k, the
paring phenomenon holds for all k, and already gives strong lower bounds for 3-uniform constraints.

One direction for future work would be to show that the paring phenomenon exhibits a sharp
threshold; in other words, improve the analysis of the statistical dimension of planted satisfiability
in Section 5 to remove the logarithmic gap between the upper and lower bounds. An application
of such an improvement would be to apply the lower bound framework to the planted coloring
conjecture from [DKMZ11]; as the gap between impossibility and efficient recovery is only a constant
factor there, the paring transition would need to be located more precisely.

2 Definitions

2.1 Planted satisfiability

We now define a general model for planted satisfiability problems that unifies various previous ways
to produce a random k-SAT formula where the relative probability that a clause is included in the
formula depends on the number of satisfied literals in the clause [Fla03, JMS05, AJM05, KV06b,
KZ09, COCF10, KMZ14].

Fix an assignment σ ∈ {±1}n. We represent a k-clause by an ordered k-tuple of literals from
x1, . . . xn, x1, . . . xn with no repetition of variables and let Xk be the set of all such k-clauses. For a

9

k-clause C = (l1, . . . , lk) let σ(C) ∈ {±1}k be the k-bit string of values assigned by σ to literals in C,
that is σ(l1), . . . , σ(lk), where σ(li) is the value of literal li in assignment σ with −1 corresponding
to TRUE and 1 to FALSE. In a planted model, we draw clauses with probabilities that depend on
the value of σ(C).

A planted distribution Qσ is defined by a distribution Q over {±1}k, that is a function Q :
{±1}k → R+ such that ∑

y∈{±1}k
Q(y) = 1.

To generate a random formula, F (Q, σ,m) we draw m i.i.d. k-clauses according to the probability
distribution Qσ, where

Qσ(C) =
Q(σ(C))∑

C′∈Xk Q(σ(C ′))
.

By concentrating the support of Q only on satisfying assignments of an appropriate predicate we
can generate satisfiable distributions for any predicate, including k-SAT, k-XOR-SAT, and k-NAE-
SAT. In most previously considered distributions Q is a symmetric function, that is Qσ depends
only on the number of satisfied literals in C. For brevity in such cases we define Q as a function
from {0, . . . k} to R+. For example, the planted uniform k-SAT distribution fixes one assignment
σ ∈ {±1}n and draws m clauses uniformly at random conditioned on the clauses being satisfied by
σ. In our model, this corresponds to setting Q(0) = 0 and Q(i) = 1/(2k − 1) for i ≥ 1. Planted
k-XOR-SAT, on the other hand, corresponds to setting Q(i) = 0 for i even, and Q(i) = 1/2k−1 for
i odd.

Problems. The algorithmic problems studied in this paper can be stated as follows: Given the
function Q and a sample of m independent clauses drawn according to Qσ, recover σ, or some τ
correlated with σ. Note that since unsatisfiable clauses are allowed to have non-zero weight, for some
distributions the problem is effectively satisfiability with random noise. Our lower bounds are for the
potentially easier problem of distinguishing a randomly and uniformly chosen planted distribution
from the uniform distribution over k-clauses. Namely, let DQ denote the set of all distributions
Qσ, where σ ∈ {±1}k and Uk be the uniform distribution over k-clauses. Let B(DQ, Uk) denote the
decision problem in which given samples from an unknown input distribution D ∈ DQ ∪ {Uk} the
goal is to output 1 if D ∈ DQ and 0 if D = Uk.

In Goldreich’s planted k-CSP problem for a predicate P : {±1}k → {−1, 1}, we are given access
to samples from a distribution Pσ, where σ is a planted assignment in {±1}n. A random sample
from this distribution is a randomly and uniformly chosen ordered k-tuple of variables (without
repetition) xi1 , . . . , xik together with the value P (σi1 , . . . , σik). To allow for predicates with random
noise and further generalize the model we also allow any real-valued P : {±1}k → [−1, 1]. For such
P , instead of the value P (σi1 , . . . , σik), a randomly and independently chosen value b ∈ {−1, 1}
such that E[b] = P (σi1 , . . . , σik) is output.

As in the problem above, the goal is to recover σ given m random and independent samples
from Pσ or at least to be able to distinguish any planted distribution from one in which the value is
a uniform random coin flip (or, equivalently, the distribution obtained when the function P ≡ 0).
Our goal is to understand the smallest number m of k-clauses that suffice to find the planted
assignment or at least to distinguish a planted distribution from a uniform one.

For a clause distribution Q, we define its distribution complexity r(Q) as the smallest integer

10

r ≥ 1 for which there exists a set S ⊆ [k] of size r and

Q̂(S)
.
=

1

2k
·
∑

y∈{±1}k

[
Q(y)

∏
i∈S

yi

]
6= 0. (1)

Q̂(S) is the Fourier coefficient of the function Q on the set S (see Section 5 for a formal definition).
For a symmetric function the value of Q̂(S) depends only on |S| and therefore we refer to the value
of the coefficient for sets of size ` by Q̂(`).

To see the difference between a hard and easy distribution Q, first consider planted uniform
k-SAT: Q(0) = 0, Q(i) = 1/(2k − 1) for i ≥ 1. The distribution complexity of Q is r = 1.

Next, consider the noisy parity distribution (or noisy planted k-XOR-SAT) with Q(l) = δ/2k−1

for l even, and Q(l) = (2 − δ)/2k−1 for l odd, for some δ 6= 1. In this case, we have Q̂(l) = 0 for
1 ≤ l ≤ k − 1, and so the distribution complexity of Q is r = k. We will see that such parity-type
distributions are in fact the hardest for statistical algorithms to detect.

2.2 Statistical algorithms

We can define planted satisfiability as the problem of identifying an unknown distribution D on a
domain X given m independent samples from D. For us, X is the set of all possible k-clauses or
k-hyperedges, and each partition or assignment σ defines a unique distribution Dσ over X.

Extending the work of Kearns [Kea98] in learning theory, Feldman et al. [FGR+12] defined
statistical query algorithms for problems over distributions. Roughly speaking, these are algorithms
that do not see samples from the distribution but instead have access to estimates of the expectation
of any bounded function of a sample from the distribution. More formally, a statistical algorithm
can access the input distribution via one of the following oracles.

Definition 2.1 (1-MSTAT(L) oracle). Let D be the input distribution over the domain X. Given
any function h : X → {0, 1, . . . , L−1}, 1-MSTAT(L) takes a random sample x from D and returns
h(x).

This oracle is a generalization of the 1-STAT oracle from [FGR+12] and was first defined by Ben-
David and Dichterman in the context of PAC learning [BD98]. It was also more recently studied
in [SD15, SVW15]. For the planted SAT problem this oracle allows an algorithm to evaluate a
multi-valued function on a random clause. By repeating the query, the algorithm can estimate the
expectation of the function as its average on independent samples. Being able to output one of
multiple possible values gives the algorithm considerable flexibility, e.g., each value could correspond
to whether a clause has a certain pattern on a subset of literals. With L = nk, the algorithm can
identify the random clause. We will therefore be interested in the trade-off between L and the
number of queries needed to solve the problem.

The next oracle is from [FGR+12].

Definition 2.2 (VSTAT oracle). Let D be the input distribution over the domain X. For an integer
parameter t > 0, for any query function h : X → [0, 1], VSTAT(t) returns a value v ∈ [p− τ, p+ τ]

where p = ED[h(x)] and τ = max

{
1
t ,

√
p(1−p)

t

}
.

The definition of τ means that VSTAT(t) can return any value v for which the distribution
B(t, v) (outcomes of t independent Bernoulli variables with bias v) is close to B(t, E[h]) in total

11

variation distance [FGR+12]. In most cases p > 1/t and then τ also corresponds to returning the
expectation of a function to within the standard deviation error of averaging the function over t
samples. However, it is important to note that within this constraint on the error, the oracle can
return any value, possibly in an adversarial way.

In this paper, we also define the following generalization1 of the VSTAT oracle to multi-valued
functions.

Definition 2.3 (MVSTAT oracle). Let D be the input distribution over the domain X, t, L > 0
be integers. For any multi-valued function h : X → {0, 1, . . . , L − 1} and any set S of subsets of
{0, . . . , L− 1}, MVSTAT(L, t) returns a vector v ∈ RL satisfying for every Z ∈ S∣∣∣∣∣∑

`∈Z
vl − pZ

∣∣∣∣∣ ≤ max

{
1

t
,

√
pZ(1− pZ)

t

}
,

where pZ = PrD[h(x) ∈ Z]. The query cost of such a query is |S|.

We note that VSTAT(t) is equivalent to MVSTAT(2, t) (the latter only allows Boolean queries
but that is not an essential difference) and any query to MVSTAT(L, t) can be easily answered using
L queries to VSTAT(4 · Lt) (see Theorem 7.2 for a proof). The additional strength of this oracle
comes from allowing the sets in S to depend on the unknown distribution D and, in particular,
be fixed but unknown to the algorithm. This is useful for ensuring that potential functions of our
discrete power iteration algorithm for planted SAT behave in the same way as if the algorithm
were executed on true samples (see Section 8.4). Another useful way to think of L-valued oracles
in the context of vector-based algorithms is as a vector of L Boolean functions which are non-
zero on disjoint parts of the domain. This view also allows to extend MVSTAT to bounded-range
(non-Boolean) functions.

An important property of every one of these oracles is that it can be easily simulated using t
samples (in the case of VSTAT/MVSTAT the success probability is a positive constant but it can
be amplified to 1 − δ using O(t log(1/δ)) samples). The goal of our generalization of oracles to
L > 2 was to show that even nearly optimal sample complexity can be achieved by a statistical
algorithm using an oracle for which a nearly matching lower bound applies.

3 Results

We state our upper and lower bounds for the planted satisfiability problem. Identical upper and
lower bounds apply to Goldreich’s planted k-CSPs with r being the degree of lowest-degree non-
zero Fourier coefficient of P . For brevity, we omit the repetitive definitions and statements in this
section. In Section 6 we give the extension of our lower bounds to this problem and also make the
connections between the two problems explicit.

3.1 Lower bounds

We begin with lower bounds for any statistical algorithm. For a clause distribution Q let B(DQ, Uk)
denote the decision problem of distinguishing whether the input distribution is one of the planted
distributions or is uniform.

1For simplicity, this definition generalizes VSTAT only for Boolean query functions.

12

Theorem 3.1. For an assignment σ ∈ {±1}n, let Qσ be a distribution over k-clauses of complexity
r and DQ be this family of distributions. Assume that the input distribution D is Uk with probability
1/2 and with the remaining probability 1/2 it is Qσ for a uniform random σ ∈ {±1}n. Then any
(randomized) statistical algorithm that decides correctly whether D ∈ DQ or D = Uk with probability
at least 2/3 (over the choice of D and randomness of the algorithm) needs either

1. m calls to the 1-MSTAT(L) oracle with m · L ≥ c1

(
n

logn

)r
for a constant c1 = Ωk(1), OR

2. q queries to MVSTAT
(
L, c2L ·

nr

(log q)r

)
for a constant c2 = Ωk(1) and any q ≥ L.

The first part of the theorem exhibits the trade-off between the number of queries m and the
number of values the query can take L. It might be helpful to think of the latter as evaluating
L disjoint functions on a random sample, a task that would have complexity growing with L.
The second part of the theorem is a superpolynomial lower bound (in n, for any fixed r) if the
parameter t (recall the oracle is allowed only an error equal to the standard deviation of averaging
over t random samples) is less than nr/(log n)2r.

3.2 Algorithms

We next turn to our algorithmic results, motivated by two considerations. First, the O(nr/2)-clause
algorithm implicit in [BQ09] does not appear to lead to a non-trivial statistical algorithm. Second,
much of the literature on upper bounds for planted problems uses spectral methods, and so we aim
to implement such spectral algorithms statistically.

The algorithm we present is statistical and nearly matches the lower bound. It can be viewed
as a discrete rounding of the power iteration algorithm for a suitable matrix constructed from the
clauses of the input.

Theorem 3.2. Let ZQ be a planted satisfiability problem with clause distribution Q having dis-
tribution complexity r. Then there exists an algorithm to solve ZQ using O(nr/2 log n) random
clauses and time linear in this number. This algorithm can be implemented statistically in any of
the following ways.

1. Using O(nr/2 log2 n) calls to 1-MSTAT(ndr/2e);

2. For even r: using O(log n) calls to MVSTAT(nr/2, nr/2 log logn);

3. For odd r: using O(log n) calls to MVSTAT(O(ndr/2e), O(nr/2 log n));

Thus for any r, the upper bound matches the lower bound up to logarithmic factors for sample
size parameter t = nr/2, with L = ndr/2e being only slightly higher in the odd case than the L = nr/2

that the lower bound implies for such t. The algorithm is a discretized variant of the algorithm
based on power iteration with subsampling from [FPV14]. The upper bound holds for the problem
of finding the planted assignment exactly, except in the case r = 1. Here Ω(n log n) clauses are
required for complete identification since that many clauses are needed for each variable to appear
at least once in the formula. In this case O(n1/2 log n) samples suffice to find an assignment with
non-trivial correlation with the planted assignment, i.e. one that agrees with the planted assignment
on n/2 + t

√
n variables for an arbitrary constant t.

13

3.3 Statistical dimension for decision problems

For a domain X, let D be a set of distributions over X and let D be a distribution over X which
is not in D. For t > 0, the distributional decision problem B(D, D) using t samples is to decide,
given access to t random samples from an arbitrary unknown distribution D′ ∈ D ∪ {D}, whether
D′ ∈ D or D′ = D. Lower bounds on the complexity of statistical algorithms use the notion of
statistical dimension introduced in [FGR+12], based on ideas from [BFJ+94, Fel12].

To prove our bounds we introduce a new, stronger notion of statistical dimension which directly
examines a certain norm of the operator that discriminates between expectations taken relative to
different distributions. Formally, for a distribution D′ ∈ D and a reference distribution D we
examine the (linear) operator that maps a function h : X → R to ED′ [h] − ED[h]. Our goal is to
obtain bounds on a certain norm of this operator extended to a set of distributions. Specifically, the
discrimination norm of a set of distributions D′ relative to a distribution D is denoted by κ2(D′, D)
and defined as follows:

κ2(D′, D)
.
= max

h,‖h‖D=1

{
E

D′∼D′

[∣∣∣∣E
D′

[h]− E
D

[h]

∣∣∣∣]} ,
where the norm of h over D is ‖h‖D =

√
ED[h2(x)] and D′ ∼ D′ refers to choosing D′ randomly

and uniformly from the set D′. A statistical algorithm can get an estimate of the expectation of a
query h and use the value to determine whether the input distribution is the reference distribution
or one of the distributions in D′. Intuitively, the norm measures how well this can be done on
average over distributions in D′. In particular, we will show that if κ2(D′, D) = κ then a single
query to VSTAT(1/(3κ2)) cannot be used to distinguish all distributions in D′ from D.

Our concept of statistical dimension is essentially the same as in [FGR+12] but uses κ2(D′, D)
instead of average correlations.

Definition 3.3. For κ > 0, domain X and a decision problem B(D, D), let d be the largest integer
such that there exists a finite set of distributions DD ⊆ D with the following property: for any subset
D′ ⊆ DD, where |D′| ≥ |DD|/d, κ2(D′, D) ≤ κ. The statistical dimension with discrimination
norm κ of B(D, D) is d and denoted by SDN(B(D, D), κ).

The dimension is equal to (at least) d if there exists a reference distribution D and a “hard”
subset of distributions DD, such that no large subset of DD has discrimination norm larger than
κ (and, consequently, cannot be distinguished from D using a single query to VSTAT(1/(3κ2))).
Here large subset means at least 1/d fraction of distributions in DD. We remark that this statistical
dimension can be easily extended to general search problems as in [FGR+12] (the extension can
be found in an earlier version of this work [FPV13, v5]). A detailed treatment and additional ap-
proaches to proving statistical query lower bounds for search problems can be found in a subsequent
work of Feldman [Fel16].

The statistical dimension with discrimination norm κ of a problem over distributions gives a
lower bound on the complexity of any statistical algorithm.

Theorem 3.4. Let X be a domain and B(D, D) be a decision problem over a class of distributions
D on X and reference distribution D. For κ > 0, let d = SDN(B(D, D), κ) and let L ≥ 2 be an
integer.

• Any randomized statistical algorithm that solves B(D, D) with probability ≥ 2/3 over the
randomness in the algorithm requires Ω(d/L) calls to MVSTAT(L, 1/(12 · κ2 · L)).

14

• Any randomized statistical algorithm that solves B(D, D) with probability ≥ 2/3 over the ran-
domness in the algorithm requires at least m calls to 1-MSTAT(L) for m = Ω

(
min

{
d, 1/κ2

}
/L
)
.

Further, the lower bound also holds when the input distribution D′ is chosen randomly as follows:
D′ = D with probability 1/2 and D′ equals a random and uniform element of DD with probability
1/2, where DD is the set of distributions for which the value of d is attained.

We prove this theorem in a slightly more general form in Section 7. Our proof relies on techniques
from [FGR+12] and simulations of MVSTAT and 1-MSTAT using VSTAT and 1-STAT, respectively.

In our setting the domain Xk is the set of all clauses of k ordered literals (without variable
repetition); the class of distributions DQ is the set of all distributions Qσ where σ ranges over all
2n assignments; the distribution D is the uniform distribution over Xk referred to as Uk.

In the Section 5 we prove the following bound on the statistical dimension with discrimination
norm of planted satisfiability.

Theorem 3.5. For any distribution Q over k-clauses of distributional complexity r, there exists a
constant c > 0 (that depends on Q) such that for any q ≥ 1,

SDN

(
B(DQ, Uk),

c(log q)r/2

nr/2

)
≥ q.

For an appropriate choice of q = nθ(logn) we get, SDN(B(DQ, Uk), (logn)r

nr/2
) = nΩk(logn). Similarly,

for any constant ε > 0, we get SDN(B(DQ, Uk), nr/2−ε) = 2n
Ωk(1)

. By using this bound in Theorem
3.4 we obtain our main lower bounds in Theorem 3.1.

In Section 6.1 we prove the same lower bound for the generalized planted k-CSP problem. Our
proof is based on a reduction showing that any statistical query for an instance of the k-CSP problem
of complexity r can be converted to a query for a planted k-SAT instance of distribution complexity
r. The reduction ensures that the resulting query is essentially as informative in distinguishing the
planted distribution from the reference one as the original query. As a result it reduces a bound on
κ2 of a planted k-CSP problem to an almost equivalent bound on κ2 of the corresponding planted
k-SAT problem.

3.4 Corollaries and applications

3.4.1 Quiet plantings

Finding distributions of planted k-SAT instances that are algorithmically intractable has been a
pursuit of researchers in both computer science and physics. It was recognized in [BHL+02, JMS05]
that uniform planted k-SAT is easy algorithmically due to the bias towards true literals, and so
they proposed distributions in which true and false literals under the planted assignment appear in
equal proportion. Such distributions have complexity r ≥ 2 in our terminology. These distributions
have been termed ‘quiet plantings’ since evidence of the planting is suppressed.

Further refinement of the analysis of quiet plantings was given in [KMZ14], in which the authors
analyze belief propagation equations and give predicted densities at which quiet plantings transition
from intractable to tractable. Their criteria for a quiet planting is exactly the equation that
characterizes distribution complexity r ≥ 2, and the conditions under which the tractability density
diverges to infinity corresponds to distribution complexity r ≥ 3.

15

The distribution complexity parameter defined here generalizes quiet plantings to an entire
hierarchy of quietness. In particular, there are distributions of satisfiable k-SAT instances with
distribution complexity as high as k − 1 (r = k can be achieved using XOR constraints but these
instances are solvable by Gaussian elimination). Our main results show that for distributions with
complexity r ≥ 3, the number of clauses required to recover the planted assignment is super-linear
(for statistical algorithms with L ≤ nr/2).

For examples of such distributions, consider weighting functions Q(y) that depend only on the
number of true literals in a clause under the planted assignment σ. We will write Q(j) for the
value of Q on any clause with exactly j true literals. Then setting Q(0) = 0, Q(1) = 3/32, Q(2) =
1/16, Q(3) = 1/32, Q(4) = 1/8 gives a distribution over satisfiable 4-SAT instances with distribution
complexity r = 3, and an algorithmic threshold at Θ̃(n3/2) clauses. Similar constructions for higher
k yield distributions of increasing complexity with algorithmic thresholds as high as Θ̃(n(k−1)/2).
These instances are the most ‘quiet’ proposed and can serve as strong tests of industrial SAT
solvers as well as the underlying hard instances in cryptographic applications. Note that in these
applications it is important that a hard SAT instance can be obtained from an easy to sample
planted assignment σ. Our lower bounds apply to the uniformly chosen σ and therefore satisfy this
condition.

3.4.2 Feige’s Hypothesis

As a second application of our main result, we show that Feige’s 3-SAT hypothesis [Fei02] holds
for the class of statistical algorithms. A refutation algorithm takes a k-SAT formula Φ as an input
and returns either SAT or UNSAT. The algorithm must satisfy the following:

1. If Φ is satisfiable, the algorithm always returns SAT.

2. If Φ is drawn uniformly at random from all k-SAT formulas of n variables and m clauses,
where m/n is above the satisfiability threshold (the clause density at which the formula
become unsatisfiable with high probability), then the algorithm must return UNSAT with
probability at least 2/3 (or some other arbitrary constant).

As with planted satisfiability, the larger m is the easier refutation becomes, and so the challenge
becomes finding efficient refutation algorithms that succeed on the sparsest possible instances. Effi-
cient 3-SAT refutation algorithms are known for m = Ω(n3/2) [COGL04, FO04]. Feige hypothesized
1) that no polynomial-time algorithm can refute formulas with m ≤ ∆n clauses for any constant
∆ and 2) for every ε > 0 and large enough constant ∆, there is no polynomial-time algorithm
that answers UNSAT on most 3-SAT formulas but answers SAT on all formulas that have assign-
ments satisfying (1− ε)-fraction of constraints. Hypothesis 2 is strictly weaker than hypothesis 1.
Based on these hypotheses he derived hardness-of-approximation results for several fundamental
combinatorial optimization problems.

To apply our bounds we need to first define a distributional version of the problem.

Definition 3.6. In the distributional k-SAT refutation problem the input formula is obtained by
sampling m i.i.d. clauses from some unknown distribution D over clauses. An algorithm success-
fully solves the distributional problem if:

1. The algorithm returns SAT for every distribution supported on simultaneously satisfiable
clauses.

16

2. The algorithm returns UNSAT with probability at least 2/3 when clauses are sampled from
the uniform distribution and m/n is above the satisfiability threshold.

Proposition 3.7. The original refutation problem and distributional refutation problem are equiv-
alent: a refutation algorithm for the original problem solves the distributional version and vice
versa.

Proof. The first direction is immediate: assume that we have a refutation algorithm A for a fixed
formula. We run the refutation algorithm on the m clauses sampled from the input distribution
and output the algorithm’s answer. By definition, if the input distribution is uniform then the
sampled clauses will give a random formula from this distribution. So A will return UNSAT with
probability at least 2/3. If the clauses in the support of the input distribution can be satisfied then
the formula sampled from it will be necessarily satisfiable and A must return SAT.

In the other direction, we again run the distributional refutation algorithm A on the m clauses
of Φ and output its answer (each clause is used as a new sample consecutively). If Φ was sampled
from the uniform distribution above the satisfiability threshold, then the samples we produced
are distributed according to the uniform distribution. Therefore, with probability at least 2/3 A
returns UNSAT. If Φ is satisfiable then consider the distribution DΦ which is uniform over the m
clauses of Φ. Φ has non-zero probability to be the outcome of m i.i.d. clauses sampled from DΦ.
Therefore A must output SAT on it since otherwise it would violate its guarantees. Therefore the
output of our algorithm will be SAT for Φ.

In the distributional setting, an immediate consequence of Theorem 3.1 is that Feige’s hypothesis
holds for the class of statistical algorithms.

Theorem 3.8. Any (randomized) statistical algorithm that solves the distributional k-SAT refuta-
tion problem requires:

1. m calls to the 1-MSTAT(L) oracle with m · L ≥ c1

(
n

logn

)k
for a constant c1 = Ωk(1).

2. q queries to MVSTAT
(
L, c2L ·

nk

(log q)k

)
for a constant c2 = Ωk(1) and any q ≥ L.

Proof. The decision problem in Theorem 3.1 is a special case of the distributional refutation prob-
lem. Specifically, say there is such a refutation algorithm. Let Q be a fully satisfiable clause
distribution with distribution complexity k. Then consider a distribution D so that either D = Uk
or D = Qσ ∈ DQ for a uniformly chosen σ ∈ {±1}n. Then run the refutation algorithm on D. If
D ∈ DQ, then the algorithm must output SAT, and so we conclude D ∈ DQ. If D = Uk, then with
probability 2/3 the algorithm must output UNSAT in which case we conclude that D = Uk. This
gives an algorithm for distinguishing Uk from DQ with probability at least 2/3, a contradiction to
Theorem 3.1.

If r ≥ 3 and L ≤ nr/2, the lower bound on the number of clauses m is Ω̃(nr/2) and is much
stronger than ∆n conjectured by Feige. Such a stronger bound is useful for some hardness of
learning results based on Feige’s conjecture [DLSS13]. For k = 3, the Ω̃(n3/2) lower bound on m
essentially matches the known upper bounds [COGL04, FO04].

We note that the only distributions with r = k are noisy k-XOR-SAT distributions. Such
distributions generate satisfiable formulas only when the noise rate is 0 and then formulas are
refutable via Gaussian elimination. Therefore if one excludes the easy (noiseless) k-XOR-SAT
distribution then we obtain only the stronger form of Feige’s conjecture (ε > 0) with r = k = 3.

17

3.4.3 Hardness of approximation

We note finally that optimal inapproximability results can be derived from Theorem 3.1 as well,
including the fact that pairwise independent predicates (as studied in [AM09]) are approximation-
resistant for the class of statistical algorithms.

Our work provides a means to generate candidate distributions of hard instances for approxi-
mation algorithms for CSP’s: find a distribution Q on {±1}k supported only on vectors that satisfy
the CSP predicate with high distribution complexity (as in the example of 4-SAT above). Then
statistical algorithms cannot efficiently distinguish the planted distribution (all constraints satis-
fied) from the uniformly random distribution (eg. (1− 2−k)-fraction of constraints satisfied in the
case of k-SAT).

4 Convex Programs and SQ Algorithms for Solving CSPs

In this section we show how our lower bounds for planted k-SAT together with general statistical
query algorithms for solving stochastic convex programs from [FGV15] imply lower bounds on
convex programs that can be used to solve planted k-SAT (analogous results also hold for Goldreich’s
k-CSP but we omit them for brevity). At a high level we observe that a convex relaxation can
be viewed as a reduction from our planted constraint satisfaction problem to a stochastic convex
optimization problem. Existence of such a reduction together with a statistical query algorithm
for the corresponding stochastic convex program would violate the lower bounds that we prove.
Hence, as a contrapositive, we rule out existence of several types of convex relaxations for the
planted CSPs.

4.1 LP/SDP relaxations for k-CSPs

We first describe several standard ways in which Boolean constraint satisfaction problems2 are
relaxed to an LP or an SDP.

The classic SDP for a constraint satisfaction problem is the MAX-CUT SDP of Goemans and
Williamson [GW95]. In this program the goal is to maximize

∑
i,j∈[n][eij(1− xi,j)], where eij ∈ R

is the indicator of an edge presence in the graph and x, viewed as an n× n matrix, is constrained
to be in the PSD cone with some normalization.

More generally, the canonical LP relaxation of a k-CSP with m constraints results in a program
of the following type (see [O’D11] for a textbook version or [Rag08, BKS13, OW14] for some
applications):

maximize
∑
i∈[m]

 ∑
y∈{±1}k,y satisfies Ci

xVi,y

 ,

subject to x̄ ∈ K. Here, Ci denotes the k-ary Boolean predicate of the i-th constraint, Vi denotes
the k-tuple of variables of i-th constraint and xVi,y is the variable that tells whether variables in
Vi are assigned values y (its constrained to be in [0, 1] and interpreted as probability). The set K
is an Ok(n

k)-dimensional convex set that makes sure that xVi,y’s are consistent in a natural sense
(with additional PSD cone constraints in the case of SDPs).

2As usual in this literature, constraint satisfaction also refers to the problem of maximizing the number of satisfied
constraints.

18

Such relaxations are a special case of even more general relaxations that are based on a lin-
earization of the Boolean constraints (for example [KMR17]). Specifically, a linearization maps
each assignment x ∈ {±1}n to a vector vx ∈ RN and each relevant k-ary Boolean constraint C
to a vector wC ∈ RN . For a convex body K in RN that includes {vx | x ∈ {±1}n}, given a set
C1, . . . , Cm of Boolean predicates on x one considers the program maxv∈K

∑
i∈[m]〈v, wCi〉. Note

that condition {vx | x ∈ {±1}n} ⊂ K ensures that the optimum of this program is always at least
as large as the optimum of the original problem. In order to be useful, such a relaxation also needs
to be able to distinguish between instances with high and low values of the optimum in the original
program (for some appropriate values of “high” and “low”).

Here we consider an even more general class of convex relaxations. First, we allow mapping
Boolean constraints to general convex objective functions. That is, a Boolean function C over
{±1}n is mapped to a convex function fC over a convex body K ∈ RN . We will not need an
explicit mapping between the Boolean input and vectors in K but will only require that the value
of the optimum of the resulting objectives allows us to distinguish between instances with high and
low values of the optimum in the original program. Also note that going beyond linear objectives
implies that we will be minimizing (and not maximizing) the resulting objective.

Our lower bounds apply to distributional CSPs in which constraints are sampled i.i.d. from
some distribution D and they show that even estimating the value of the expected objective:
maxσ∈{±1}n EC∼D[σ(C)] is hard. We remark that, given m = Ω(n/ε2) samples, for every x ∈ {±1}n,
the value of the objective based on m i.i.d. samples is within ε of the value of the expected objective
(with high probability). Applying a convex relaxation to such a CSP leads to the following convex
program: minx∈K EC∼D[fC(x)], where K is a fixed convex N -dimensional set (that is not dependent
the distribution D) and for every C, fC(x) is a bounded convex function over K. Such programs are
referred to as stochastic convex programs and are well-studied in machine learning and optimization
(e.g. [NJLS09, SSSS09]).

4.2 Statistical Query Algorithms for Stochastic Convex Optimization

We now describe several results from [FGV15] giving upper bounds on solving various stochastic
convex programs by statistical query algorithms. Bounds for a number of additional types of convex
programs are given in [FGV15] and can be applied in this context in a similar way. We start by
defining the problem of distribution-independent stochastic convex optimization formally.

Definition 4.1. For a convex set K, a set F of convex functions over K and ε > 0 we denote
by Opt(K,F , ε) the problem of finding, for every distribution D over F , x∗ such that fD(x∗) ≤
minx∈K fD(x) + ε, where fD(x)

.
= Ef∼D[f(x)].

Center-of-gravity: For general convex functions with range scaled to [−1, 1], Feldman et al.
[FGV15] describe two statistical query algorithms that both use VSTAT(O(N2/ε2)) to find an ε-
approximate solution to the stochastic convex program. The first algorithm is based on the random
walk approach from [KV06a, LV06]. The second algorithm is based on the classic center-of-gravity
method [Lev65] and requires fewer queries.

Theorem 4.2. [[FGV15]] Let K ⊆ RN be a convex body and let F be the set of all convex functions
over K such that for all x ∈ K, |f(x)| ≤ 1. Then there is an algorithm that solves Opt(K,F , ε)
using O(N2 log(1/ε)) queries to VSTAT(O(N2/ε2)).

19

The theorem above ignores computational considerations since those do not play any role in our
information-theoretic lower bounds. An efficient version of this algorithm is also given in [FGV15].

Mirror descent: In most practical cases the expected convex objective is optimized using simpler
methods such as gradient-descent based algorithms. It is easy to see that such methods fit naturally
into the statistical query framework. For example, gradient descent relies solely on knowing∇fD(xt)
approximately, where fD is the optimized function and xt is the solution at step t. By linearity
of expectation, we know that ∇ED[f(xt)] = ED[∇f(xt)]. This means that we can approximate
∇ED[f(xt)] using queries to VSTAT with sufficiently large parameter. In particular, as shown in
[FGV15], the classic mirror-descent method [NY83] can be implemented using a polynomial number
of queries to VSTAT(O((L ·R · log(N)/ε)2)) to ε-approximately solve any convex program whenever
K is contained in the `p (for any p ∈ [1, 2]) ball of radius R and the `q (for q = 1/(1−1/p)) norm of
∇f is bounded by L. Note that in this case the dependence of the accuracy parameter of VSTAT
on the dimension is just logarithmic. We denote BNp (R)

.
= {x | ‖x‖p ≤ R}.

Theorem 4.3. Let p ∈ [1, 2], L,R > 0, and K ⊆ BNp (R) be a convex body. Let F be the set of all
functions f that satisfy, for all x ∈ K, ‖∇f(x)‖q ≤ L for q = 1− (1/p). Then there is an algorithm
that solves Opt(K,F , ε) using O

(
N logN · (LR/ε)2

)
queries to VSTAT(O((logN · LR/ε)2)).

4.3 Corollaries for Planted k-CSPs

Now observe that a convex relaxation (of the type that we defined) is just a mapping from Boolean
constraints to convex functions in some class of functions F over a convex body K. Such mapping
allows to implement a statistical query oracle for the distribution over convex functions given a
statistical query oracle for the input distribution over Boolean constraints. In particular, it allows
us to run a statistical query algorithm for Opt(K,F , ε) on the stochastic convex program that
corresponds to the input distribution over k-clauses. Now assume that the value of the solution
for the stochastic convex program corresponding to a planted k-CSP is smaller than the value of
the solution for the the stochastic convex program corresponding to the uniform distribution over
constraints by at least ε. Then a statistical query algorithm for Opt(K,F , ε) solves the decision
version of our planted k-CSP. Hence, if Opt(K,F , ε) can be solved using some number of queries
to a statistical oracle that violates our lower bound then a convex relaxation that satisfies these
properties cannot exist. We now make these statements formally.

Theorem 4.4. Let Q be a distribution over k-clauses of complexity r. Assume that there exists a
mapping that maps each k-clause C ∈ Xk to a convex function fC : K → [−1, 1] over some convex
N -dimensional set K that for some ε > 0 and α satisfies:

• Prσ∈{±1}n [minx∈K {EC∼Qσ [fC(x)]} ≤ α] ≥ 1/2;

• minx∈K{EC∼Uk [fC(x)]} > α+ ε.

Then for every q ≥ 1, solving Opt(K,F , ε) using VSTAT
(

nr

(log q)r

)
requires Ω(q) queries.

The first condition on the value of the solution requires that for most σ’s the value of the
minimum of the expected objective is at most α. The planted instances are usually the instances
which have a higher number of satisfied clauses so this is a weakening of the condition that a convex
relaxation should only decrease the value of the minimum. The second condition requires that the

20

value of the minimum of the expected objective on the uniform distribution is at least α + ε. For
comparison, the standard condition on a convex relaxation requires that the value of the solution
obtained on m clauses randomly sampled from the uniform distribution is large. Our condition is
weaker since for every m and x∗ = arg minx∈K{EC∼Uk [fC(x)]},

E
C1,...,Cm∼Uk

[
min
x∈K

{
1

m

∑
i

fCi(x)

}]
≤ E

C1,...,Cm∼Uk

[
1

m

∑
i

fCi(x
∗)

]
= min

x∈K
{ E
C∼Uk

[fC(x)]}.

Now Theorem 4.4 can be combined with upper bounds on the complexity of solving stochastic
convex programs we gave above to obtain lower bounds on the parameters of convex relaxations
that can be used to solve planted satisfiability problems. For example the algorithm described in
Theorem 4.2 implies Corollary 1.4. Using Theorem 4.3 we can exclude convex relaxations even in
exponentially high dimension as long as the convex set is bounded in `p norm and functions satisfy
a Lipschitz condition. For simplicity we take these constraints to be 1 (a more general statement
can be obtained easily by rescaling).

Corollary 4.5. Let Q be a distribution over k-clauses of complexity r. For p ∈ [1, 2], let K ⊆ BNp (1)
be convex and compact set and Fp = {f(·) | ∀x ∈ K, ‖∇f(x)‖q ≤ 1} (where q = 1/(1 − 1/p)).
Assume that there exists a mapping that maps each k-clause C ∈ Xk to a convex function fC ∈ Fp.
Further assume that for some ε > 0 and α ∈ R,

Pr
σ∈{±1}n

[
min
x∈K

{
E

C∼Qσ
[fC(x)]

}
≤ α

]
≥ 1/2.

and

min
x∈K

{
E

C∼Uk
[fC(x)]

}
> α+ ε.

Then N = 2Ω̃k(nr/(r+2)·ε2/(r+2)).

For instances of planted satisfiability there is a constant gap between the fraction of clauses
that can be satisfied in a formula sampled from Uk and the fraction of clauses that can be satisfied
in a formula sampled from Qσ. Thus, for convex relaxations that satisfy the conditions of Corollary
4.5 the lower bounds imply a large integrality gap.

Note that these corollaries give concrete lower bounds on the dimension and other structural
properties of convex programs that can be used to solve an average-case k-CSP without any as-
sumptions about how the convex program is solved. In particular, it does not need to be solved
via a statistical algorithm or even computationally efficiently. As far as we know, this approach to
obtaining lower bounds for convex relaxations from convex optimization algorithms and statistical
query lower bounds is new.

Remark 4.6. We observe that standard lift-and-project procedures (Sherali-Adams, Lovász-Schrijver,
Lasserre) for strengthening LP/SDP formulations do not affect the analysis above. While these pro-
cedures add a large number of auxiliary variables and constraints the resulting program is still a
convex optimization problem in the same dimension (although implementation of the separation ora-
cle becomes more computationally intensive). Hence the use of such procedures does not necessarily
affect the bounds on the number of queries and tolerance we gave above.

21

At a more conceptual level, the primary difference between the commonly considered hierarchies
of LP/SDP relaxations and our approach is as follows. The expected objective value of the stochas-
tic convex programs corresponding to these hierarchies of relaxations captures the expected objec-
tive of the original Boolean k-CSP. Yet, solving stochastic convex programs corresponding to these
relaxations for all distributions requires Ω(nr/2) samples information theoretically (e.g. [FGV15]).
Lower bounds against such relaxations effectively prove that this number of samples is necessary
even for the uniform distribution over the clauses: given fewer samples the optimum of the objective
based on the given random samples will have a much lower value than the optimum of the expected
objective (a phenomenon that is referred to as overfitting). In contrast, our approach rules out
relaxations for which the resulting stochastic convex program can be solved by a statistical query

algorithm using q queries to VSTAT
(

nr

(log q)r

)
. In particular there is no overfitting. However, such

relaxations end up not being sufficiently expressive: the optimum of the expected objective of the
relaxation does not differentiate between the planted distributions and the uniform one. This dif-
ference makes our lower bounds incomparable and, in a way, complementary to existing work on
lower bounds for specific hierarchies of convex relaxations.

5 Statistical Dimension of Planted Satisfiability

In this section, we prove our lower bound on the statistical dimension with discrimination norm
of the planted satisfiability problem (Theorem 3.5). Recall that the theorem states that for any
distribution Q over k-clauses of distributional complexity r, there exists a constant c > 0 such that
for any q ≥ 1,

SDN

(
B(DQ, Uk),

c(log q)r/2

nr/2

)
≥ q.

Proof overview: We first show that the discrimination operator corresponding to Q applied to a
function h : Xk → R can be decomposed into a linear combination of discrimination operators for
`-XOR-SAT. Namely, we show that

E
Qσ

[h]− E
Uk

[h] = −2k
∑
S⊆[k]

Q̂(S) · (E
Z`,σ

[hS]− E
U`

[hS]),

where Z`,σ is the `-XOR-SAT distribution over `-clauses with planted assignment σ, and hS is a
projection of h to X` defined below.

The two key properties of this decomposition are: (i) the coefficients obtained in the decom-
position are exactly Q̂(S)’s, which determine the distribution complexity of Q, and (ii) ‖hS‖U` is
upper-bounded by ‖h‖Uk . This step implies that the discrimination norm for the problem defined
by Q is upper bounded (up to constant factors) by the discrimination norm for r(Q)-XOR-SAT.

In the second step of the proof we bound the discrimination norm for the r(Q)-XOR-SAT
problem. Our analysis is based on the observation that EZ`,σ [hS]−EU` [hS] is a degree-` polynomial
as a function of σ. We exploit known concentration properties of degree-` polynomials to show
that the function cannot have high expectation over a large subset of assignments. This gives the
desired bound on the discrimination norm for the r(Q)-XOR-SAT problem.

We now give the formal details of the proof. For a distribution Qσ and query function h : Xk →
R, we define ∆(σ, h) = EQσ [h]− EUk [h]. We start by introducing some notation:

Definition 5.1. For ` ∈ [k],

22

• Let Z` be the `-XOR-SAT distribution over {±1}`, that is a distribution such that Z`(i) =
1/2`−1 if i is odd and 0 otherwise.

• For a clause C ∈ Xk and S ⊆ [k] of size `, let C|S denote a clause in X` consisting of literals
of C at positions with indices in S (in the order of indices in S).

• For h : Xk → R, S ⊆ [k] of size ` and C` ∈ X`, let

hS(C`) =
|X`|
|Xk|

∑
C∈Xk, C|S=C`

h(C).

• For g : X` → R, let Γ`(σ, g) = EZ`,σ [g]− EU` [g].

Recall the discrete Fourier expansion of a function Q : {±1}k → R:

Q(x) =
∑
S⊆[k]

Q̂(S)χS(x),

where χS(x) =
∏
i∈S xi is a parity or Walsh basis function, and the Fourier coefficient of the set S

is defined as:

Q̂(S) =
1

2k

∑
y∈{±1}k

Q(y)χS(y)

We show that ∆(σ, h) (as a function of h) can be decomposed into a linear combination of
Γ`(σ, hS).

Lemma 5.2. For every σ in {±1}n and h : Xk → R,

∆(σ, h) = −2k
∑

S⊆[k],S 6=∅

Q̂(S) · Γ`(σ, hS).

Proof. Recall that for a clause C we denote by σ(C) the vector in {±1}k that gives evaluation of
the literals in C on σ with −1 corresponding to TRUE and 1 to FALSE. Also by our definitions,

Qσ(C) = 2k·Q(σ(C))
|Xk| . Now, using ` to denote |S|,

E
Qσ

[h] =
∑
C∈Xk

h(C) ·Qσ(C) =
2k

|Xk|
∑
C∈Xk

h(C) ·Q(σ(C))

=
2k

|Xk|
∑
S⊆[k]

Q̂(S)
∑
C∈Xk

χS(σ(C)) · h(C)

=
2k

|Xk|
∑
S⊆[k]

Q̂(S)
∑
C`∈X`

∑
C∈Xk,C|S=C`

χS(σ(C)) · h(C) (2)

Note that if C|S = C` then for ` ≥ 1,

χS(σ(C)) = χ[`](σ(C`)) = 1− 2` · Z`(σ(C`))

23

and for ` = 0, χ∅(σ(C)) = 1. Therefore, for ` ≥ 1 and ` = 0 respectively,∑
C∈Xk,C|S=C`

χS(σ(C)) · h(C) = (1− 2` · Z`(σ(C`))) ·
∑

C∈Xk,C|S=C`

h(C) and

2k

|Xk|
∑
C∈Xk

[Q̂(∅)h(C)] = 2k · Q̂(∅) · E
Uk

[h(C)] = E
Uk

[h(C)],

where Q̂(∅) = 2−k follows from Q being a distribution over {±1}k. Plugging this into eq.(2) we
obtain

∆(σ, h) = E
Qσ

[h]− E
Uk

[h]

=
2k

|Xk|
∑

S⊆[k],S 6=∅

Q̂(S)
∑
C`∈X`

(1− 2` · Z`(σ(C`))) ·
∑

C∈Xk,C|S=C`

h(C)

=

∑
S⊆[k],S 6=∅

2k

|X`|
Q̂(S)

∑
C`∈X`

[
(1− 2` · Z`(σ(C`))) · hS(C`)

]

= 2k
∑

S⊆[k],S 6=∅

Q̂(S)

(
E
U`

[hS]− E
Z`,σ

[hS]

)

= −2k
∑

S⊆[k],S 6=∅

Q̂(S) · Γ`(σ, hS),

where we used that, by definition of Z`,σ, 1
|X`| · 2

` · Z`(σ(C`)) = Z`,σ(C`).

We now analyze Γ`(σ, hS). For a clause C let I(C) denote the set of indices of variables in the
clause C and let #(C) denote the number of negated variables is C. Then, by definition,

Z`,σ(C) =
Z`(σ(C))

|X`|
=

1− (−1)#(C) · χI(C)(σ)

|X`|
.

This implies that Γ`(σ, hS) can be represented as a linear combination of parities of length `.

Lemma 5.3. For g : X` → R,

Γ`(σ, g) = − 1

|X`|
∑

A⊆[n],|A|=`

 ∑
C`∈X`,I(C`)=A

g(C`) · (−1)#(C`)

 · χA(σ).

Proof.

Γ`(σ, g) = E
Z`,σ

[g]− E
U`

[g]

= − 1

|X`|
∑
C`∈X`

g(C`) · (−1)#(C`) · χI(C`)(σ)

= − 1

|X`|
∑

A⊆[n],|A|=`

 ∑
C`∈X`,I(C`)=A

g(C`) · (−1)#(C`)

 · χA(σ).

24

For S ⊆ {±1}n we now bound Eσ∼S [|Γ`(σ, g)|] by exploiting its concentration properties as a
degree-` polynomial. To do this, we will need the following concentration bound for polynomials
on {±1}n. It can be easily derived from the hypercontractivity results of Bonami and Beckner
[Bon70, Bec75] as done for example in [Jan97, DFKO07].

Lemma 5.4. Let p(x) be a degree ` polynomial over {±1}n. Then there is constant c such that for
all t > 0,

Pr
x∼{±1}n

[|p(x)| ≥ t‖p‖2] ≤ 2 · exp(−c` · t2/`),

where ‖p‖2 is defined as (Ex∼{±1}n [p(x)2])1/2.

In addition we will use the following simple way to convert strong concentration to a bound on
expectation over subsets of assignments.

Lemma 5.5. Let p(x) be a degree ` ≥ 1 polynomial over {±1}n, let S ⊆ {±1}n be a set of
assignments for which d = 2n/|S| ≥ e`. Then Eσ∼S [|p(σ)|] ≤ 2(ln d/(c`))`/2 · ‖p‖2, where c is the
constant from Lemma 5.4.

Proof. Let c0 = ` · c. By Lemma 5.4 we have that for any t > 0,

Pr
x∼{±1}n

[|p(x)| ≥ t‖p‖2] ≤ 2 · exp(−c0 · t2/`).

The set S contains 1/d fraction of points in {±1}n and therefore

Pr
x∼S

[|p(x)| ≥ t‖p‖2] ≤ 2 · d · exp(−c0 · t2/`).

For any random variable Y and value a ∈ R,

E[Y] ≤ a+

∫ ∞
a

Pr[Y ≥ t]dt.

Therefore, for Y = |p(σ)|/‖p‖2 and a = (ln d/c0)`/2 we obtain

Eσ∼S [|p(σ)|]
‖p‖2

≤ (ln d/c0)`/2 +

∫ ∞
(ln d/c0)`/2

d · e−c0t2/`dt = (ln d/c0)`/2 +
` · d

2 · c`/20

·
∫ ∞

ln d
e−zz`/2−1dz

= (ln d/c0)`/2 +
` · d

2 · c`/20

·
(
−e−zz`/2−1

)∣∣∣∞
ln d

+ (`/2− 1)

∫ ∞
ln d

e−zz`/2−2dz = . . .

≤ (ln d/c0)`/2 +
` · d

2 · c`/20

d`/2e−1∑
`′=1/2

(
−d`/2e!

`′!
e−zz`

′
)∣∣∣∣∞

ln d

= (ln d/c0)`/2 +
1

2 · c`/20

d`/2e−1∑
`′=0

d`/2e!
`′!

(ln d)`
′ ≤ 2(ln d/c0)`/2,

where we used the condition d ≥ e` to obtain the last inequality.

We can now use the fact that Γ`(σ, g) is a degree-` polynomial of σ to prove the following
lemma:

25

Lemma 5.6. Let S ⊆ {±1}n be a set of assignments for which d = 2n/|S|. Then

E
σ∼S

[|Γ`(σ, g)|] = O`

(
(ln d)`/2 · ‖g‖2/

√
|X`|

)
,

where ‖g‖2 =
√
EU` [g(C`)2].

Proof. By Lemma 5.5 we get that

E
σ∼S

[|Γ`(σ, g)|] ≤ 2(ln d/(c`))`/2 · ‖Γ`,g‖2,

where Γ`,g(σ) ≡ Γ`(σ, g). Now, by Parseval’s identity and Lemma 5.3 we get that

E
σ∼{±1}n

[
Γ`,g(σ)2

]
=
∑
A⊆[n]

Γ̂`,g(A)2

=
1

|X`|2
∑

A⊆[n],|A|=`

 ∑
C`∈X`,I(C`)=A

g(C`) · (−1)#(C`)

2

≤ 1

|X`|2
∑

A⊆[n],|A|=`

|{C` | I(C`) = A}| ·

 ∑
C`∈X`,I(C`)=A

g(C`)
2

=

2``!

|X`|2
∑
C`∈X`

g(C`)
2 =

2``!

|X`|
E
U`

[g(C`)
2].

We are now ready to bound the discrimination norm.

Lemma 5.7. Let Q be a clause distribution of the distributional complexity r = r(Q), let D′ ⊆
{Qσ}σ∈{±1}n be a set of distributions over clauses and d = 2n/|D′|. Then κ2(D′, Uk) = Ok

(
(ln d/n)r/2

)
.

Proof. Let S = {σ | Qσ ∈ D′} and let h : Xk → R be any function such that EUk [h2] = 1. Let `
denote |S|. Using Lemma 5.2 and the definition of r,

|∆(σ, h)| = 2k ·

∣∣∣∣∣∣
∑

S⊆[k]\{0}

Q̂(S) · Γ`(σ, hS)

∣∣∣∣∣∣ ≤ 2k ·
∑

S⊆[k],`=|S|≥r

∣∣∣Q̂(S)
∣∣∣ · |Γ`(σ, hS)| .

Hence, by Lemma 5.6 we get that,

E
σ∼S

[|∆(σ, h)|] ≤ 2k ·
∑

S⊆[k], |S|≥r

∣∣∣Q̂(S)
∣∣∣ · E

σ∼S
[|Γ`(σ, hS)]| = Ok

 ∑
S⊆[k], |S|≥r

(ln d)`/2 · ‖hS‖2√
|X`|

 (3)

26

By the definition of hS ,

‖hS‖22 = E
U`

[hS(C`)
2]

=
|X`|2

|Xk|2
· E
U`

 ∑
C∈Xk, C|S=C`

h(C)

2
≤ |X`|2

|Xk|2
· E
U`

 |Xk|
|X`|

·

 ∑
C∈Xk, C|S=C`

h(C)2

= E

Uk
[h(C)2] = ‖h‖22 = 1,

where we used Cauchy-Schwartz inequality together with the fact that for any C`,∣∣{C ∈ Xk | C|S = C`}
∣∣ =
|Xk|
|X`|

.

By plugging this into eq.(3) and using the fact that ln d < n we get,

E
σ∼S

[|∆(σ, h)|] = Ok

∑
`≥r

(ln d)`/2√
2` · n!/(n− `)!

 = Ok

(
(ln d)r/2

nr/2

)
.

By the definition of κ2(D′, Uk) we obtain the claim.

We are now ready to finish the proof of our bound on SDN.

Proof. (of Theorem 3.5) Our reference distribution is the uniform distribution Uk and the set of
distributions D = DQ = {Qσ}σ∈{±1}n is the set of distributions for all possible assignments. Let
D′ ⊆ D be a set of distributions of size |D|/q and S = {σ | Qσ ∈ D′}. Then, by Lemma 5.7, we get

κ2(D′, Uk) = Ok

(
(ln q)r/2

nr/2

)
.

By the definition of SDN, this implies the claim.

6 Planted k-CSPs

While the focus of our presentation is on planted satisfiability problems, the techniques can be
applied to other models of planted constraint satisfaction. Here we describe describe how to apply
our techniques to prove essentially identical lower bounds for the planted k-CSP problem. Recall
that our generalization of this planted k-CSP problem is defined by a function P : {±1}k → [−1, 1]
and we are given access to samples from a distribution Pσ, where σ is a planted assignment in
{±1}n. A random sample from this distribution is a randomly and uniformly chosen ordered k-
tuple of variables (without repetition) xi1 , . . . , xik together with a randomly and independently
chosen value b ∈ {−1, 1} such that E[b] = P (σi1 , . . . , σik) (or Pr[b = 1] = (1 + P (σi1 , . . . , σik))/2).
This captures the important special case when P is a Boolean predicate.

27

Before going into the proof of the lower bound for this model we show two additional connections
between this model and our planted satisfiability model. First we show that planted satisfiability can
be easily reduced to the planted k-CSP above while preserving the complexity parameter (we remark
that the reduction will always produce a non-boolean P and hence requires our generalization).
The second connection is that both of these models can be seen as special cases of a more general
model of planted constraint satisfaction introduced by Abbe and Montanari [AM15].

To describe the first reduction we start with some notation. Let Yk denote the set of all k-tuples
of variables without repetition and let X ′k = Yk × {−1, 1}. For a function P : {±1}k → R we use
r(P) to denote the degree of the lowest-degree non-zero Fourier coefficient of P and refer to it as
the complexity of P . For a clause C = (l1, . . . , lk) ∈ Xk we denote by v(C) the k-tuple of variables
in C (in the same order). For j ∈ [k] let sj be the sign of literal lj (with 1 meaning not negated
and −1 meaning negated) and let s(C) = s1, . . . , sk. We use 1k to denote the k-dimensional vector
(1, 1, . . . , 1).

Lemma 6.1. There exists an algorithm that for every distribution Q over {±1}k of complexity r,
and any σ ∈ {±1}n, given a random sample distributed according to Qσ outputs a random sample
distributed according to Pσ, where P ≡ Q− 2−k. Further, r(Q) = r(P).

Proof. Given a random clause C the algorithm outputs the tuple of variables v(C) together with
a bit b chosen according to the following rule. With probability 1/2: if s(C) = 1k then output 1,
otherwise −1; with probability 1/2− 2−k−1 output 1 and −1 with probability 2−k−1.

Let us analyze the resulting distribution. First we note that the output distribution is uniform
over Yk. This follows from the fact that for every u ∈ Yk,

∑
v(C)=uQσ(C) =

∑
y∈{±1}k Q(y) = 1.

We now evaluate the expectation of the bit b produced by our reduction as a function of σ(u) (the
values assigned by σ to variables in u). From the definition of Qσ, for every u ∈ Yk and z ∈ {±1}k,

Pr
C∼Qσ

[s(C) = z | v(C) = u] = Q(σ(C)) = Q(σ(u) ◦ z), (4)

where we use ◦ to denote the element-wise product of two vectors. In particular, PrC∼Qσ [s(C) =
1k | v(C) = u] = Q(σ(u)). This means that

E[b] =
1

2
(Q(σ(u))− (1−Q(σ(u)) +

(
1

2
− 2−k−1

)
− 2−k−1 = Q(σ(u))− 2−k.

This means that the reduction produces a random sample from Pσ for P (y) ≡ Q(y) − 2−k. Note
that P̂ (∅) = 0 and hence this reduction satisfies r(Q) = r(P).

We now show how both of these models can be seen as special cases of the model in [AM15]. The
model is specified by a collection of distributions {Φ(· | y)}y∈{±1}k over some output alphabet Z.
For a planted assignment σ ∈ {±1}n (their model allows a more general alphabet for each variable
but {±1} suffices to subsume the models discussed in this paper) the planted distribution Φσ is
defined as follows. A random sample from this distribution is a randomly and uniformly chosen
ordered k-tuple of variables u ∈ Yk together with value z chosen randomly and independently
according to Φ(· | σ(u)). We first observe that for any P : {±1}k → [−1, 1], setting Z = {±1} and
having Φ(b | y) = (1 + b · P (y))/2 recovers exactly the generalized Goldreich’s planted k-CSP for
function P .

28

To recover the planted satisfiability model for distribution Q, we let Z = {±1}k and then define
Φ(z | y) = Q(y ◦ z). Here the output alphabet represents the negation signs of variables. A k-tuple
of variables u ∈ Yk with k negation signs z ∈ {±1}k uniquely describes a clause C ∈ Xk such that
v(C) = u and s(C) = z. Further, by Eqn. (4), we get that Φσ for Φ defined as above is exactly
Qσ. It is not hard to see that the techniques in this work can also be applied to characterize the
SQ complexity of solving planted k-CSPs in this more general model.

6.1 Lower Bounds for Planted k-CSPs

We prove the analogue of Theorem 3.5 for the planted k-CPS, which, in turn, immediately implies
that the lower bounds stated in Theorem 3.1 apply to this problem verbatim. We first note that the
reduction in Lemma 6.1 implies the desired lower bound for all functions P such that P ≡ Q− 2−k

for some distribution Q over {±1}k. Unfortunately, this is not sufficient to obtain a lower bound
for all functions P : {±1}−k → [−1, 1]. Indeed, this does not give a lower bound for any Boolean
P . At the same time, we show that the reduction in Lemma 6.1 can be used to reduce bounds on
the discrimination norm of the planted k-CSP problem to the bounds on the discrimination norm
for planted satisfiability that we gave in Section 53. We are not aware of similar reductions in the
literature and our technique might be useful for relating the complexity of other problems for which
standard reductions are not known.

We now give the formal details. Let P : {±1}k → [−1, 1] be a function on k-bits. Let DP
denote the set of all distributions Pσ, where σ ∈ {±1}n and U ′k be the uniform distribution over
X ′k = Yk × {−1, 1}. Let B(DP , U ′k) denote the decision problem in which given samples from an
unknown input distribution D ∈ DP ∪ {U ′k} the goal is to output 1 if D ∈ DP and 0 if D = U ′k.
Our goal is to prove the following results.

Theorem 6.2. For any function P : {±1}k → [−1, 1] of complexity r, there exist a constant c > 0
(that depends on P) such that for any q ≥ 1,

SDN

(
B(DP , U ′k),

c(log q)r/2

nr/2

)
≥ q.

As in the case of Theorem 3.5, it suffices to prove the following analogue of Lemma 5.7.

Lemma 6.3. Let P : {±1}k → [−1, 1] be any function of complexity r = r(P), let D′ ⊆ {Pσ}σ∈{±1}n

be a set of distributions over clauses and d = 2n/|D′|. Then κ2(D′, U ′k) = Ok
(
(ln d/n)r/2

)
.

Proof. We first note that this bound does not say anything non-trivial for r = 0 (and, indeed, the
label distribution is biased in this case and can be distinguished from U ′k using a constant number
of samples). Therefore, from now on we assume that r ≥ 1. Let S = {σ | Pσ ∈ D′} and let

h′ : X ′k → R be any function such that ‖h′‖U ′k = 1 and Eσ∼S
[∣∣∣EPσ [h′]− EU ′k [h′]

∣∣∣] = κ2(D′, U ′k).
We define a function h on Xk as follows. If for C ∈ Xk, s(C) = 1k then h(C) = h′(v(C), 1),
otherwise h(C) = h′(v(C),−1). We now claim that for every σ ∈ {±1}n,

E
Pσ

[h′]− E
U ′k

[h′] = 22k−1 ·
(
E
Qσ

[h]− E
Uk

[h]

)
, (5)

3A direct proof of this bound can be found in an earlier version of this work [FPV13, v5].

29

where Q ≡ (P + 1)/2k. Note that Q defined in this way is a distribution since for all y ∈ {±1}k,
Q(y) ≥ 0 and

∑
y∈{±1}k Q(y) = 2k · P̂ (∅) + 1 = 1.

Distributions Qσ,Pσ Uk and U ′k are uniform over k-tuples of variables and therefore to prove
eq. (5), it suffices to prove that for every u ∈ Yk,

E
(v,b)∼Pσ

[h′(v, b) | v = u]− E
(v,b)∼U ′k

[h′(v, b) | v = u]

= 22k−1 ·
(

E
C∼Qσ

[h(C) | v(C) = u]− E
C∼Uk

[h(C) | v(C) = u]

)
. (6)

The left hand side of this equality is equal to

h′(u, 1)·1 + P (σ(u))

2
+h′(u,−1)·1− P (σ(u))

2
−1

2
·h′(u, 1)+

1

2
·h′(u,−1) =

P (σ(u)) · (h′(u, 1)− h′(u,−1))

2
.

By equation (4), the right side of eq. 6 is equal to

22k−1 · 2−k·
∑

C,v(C)=u

h(C) · (Q(C)− 1)) =

= 2k−1 ·

h′(u, 1) · P (σ(u))

2k
+

∑
C,v(C)=u,s(C) 6=1k

h′(u,−1) · P (σ(u) ◦ s(C))

2k

=

1

2
·
(
h′(u, 1) · P (σ(u))− h′(u,−1) · P (σ(u))

)
=
P (σ(u)) · (h′(u, 1)− h′(u,−1))

2
,

where we used the fact that
∑

y∈{±1}k P (y) = 2k · P̂ (∅) = 0 to obtain the equality of the second
line to the third one.

Now all we need to bound κ2(D′, U ′k) is an upper bound on ‖h‖Uk . First, note that by our
assumption,

E
U ′k

[h′2] =
1

|Yk|
·
∑
u∈Yk

1

2

(
h′(u, 1)2 + h′(u,−1)2

)
= 1. (7)

For every v ∈ Yk,

E
C∼Uk

[(h(C))2 | v(C) = u] =
1

2k
·
(
h′(u, 1)2 + (2k − 1)h′(u,−1)2

)
≥ 1

2k
(
h′(u, 1)2 + h′(u,−1)2

)
.

Using eq. (7) we get that,

‖h‖2Uk ≥
1

|Yk|
· 1

2k
·
∑
u∈Yk

(
h′(u, 1)2 + h′(u,−1)2

)
=

1

2k−1
.

Using this bound on the norm and eq. (5) we can now bound κ2(D′, U ′k) as follows. Let D′Q
.
=

{Qσ | σ ∈ S}.

κ2(D′, U ′k) = E
σ∼S

[∣∣∣∣∣EPσ[h′]− E
U ′k

[h′]

∣∣∣∣∣
]

= 22k−1 · E
σ∼S

[∣∣∣∣ E
Qσ

[h]− E
Uk

[h]

∣∣∣∣]
≤ 22k−1 ·

κ2(D′Q, Uk)
‖h‖Uk

≤ 22k−1+k/2−1/2 · κ2(D′Q, Uk) = Ok

(
(ln d/n)r/2

)
,

where we used Lemma 5.7 to obtain the last bound.

30

7 Lower Bounds using Statistical Dimension

7.1 Lower bound for VSTAT

We first prove an analogue of lower-bound for VSTAT from [FGR+12] but using the statistical
dimension based on discrimination norm instead of the average correlation. It is not hard to see
that discrimination norm is upper-bounded by the square root of average correlation and therefore
our result subsumes the one in [FGR+12].

Theorem 7.1. Let X be a domain and B(D, D) be a decision problem over a class of distributions D
on X and reference distribution D. Let d = SDN(B(D, D), κ) and let DD be a set of distributions for
which the value d is attained. Consider the following average-case version of the B(D, D) problem:
the input distribution D′ equals D with probability 1/2 and D′ equals a random uniform element
of DD with probability 1/2. Any randomized statistical algorithm that solves B(D, D) with success
probability γ > 1/2 over the choice of D′ and randomness of the algorithm requires at least (2γ−1)d
calls to VSTAT(1/(3κ2)).

Proof. We prove our lower bound for any deterministic statistical algorithm and the claim for
randomized algorithms follows from the fact that the success probability of a randomized algorithm
is just the expectation of its success probability for a random fixing of its coins.

Let A be a deterministic statistical algorithm that uses q queries to VSTAT(1/(3κ2)) to solve
B(D, D) with probability γ over a random choice of an input distribution described in the statement.
Following an approach from [Fel12], we simulate A by answering any query h : X → [0, 1] of A
with value ED[h(x)]. Let h1, h2, . . . , hq be the queries asked by A in this simulation and let b be the
output of A. A is successful with probability γ > 1/2 and therefore b = 0, that is A will certainly
decide that the input distribution equals to D.

Let the set D+ ⊆ DD be the set of distributions on which A is successful (that is outputs
b = 1) and we denote these distributions by {D1, D2, . . . , Dm}. We recall that, crucially, for A to
be considered successful it needs to be successful for any valid responses of VSTAT to A’s queries.
We note that the success probability of A is 1

2 + 1
2

m
|DD| and therefore m ≥ (2γ − 1)|DD|.

For every k ≤ q, let Ak be the set of all distributions Di such that∣∣∣∣E
D

[hk(x)]− E
Di

[hk(x)]

∣∣∣∣ > τi,k
.
= max

{
1

t
,

√
pi,k(1− pi,k)

t

}
,

where we use t to denote 1/(3κ2) and pi,k to denote EDi [hk(x)]. To prove the desired bound we
first prove the following two claims:

1.
∑

k≤q |Ak| ≥ m;

2. for every k, |Ak| ≤ |DD|/d.

Combining these two implies that q ≥ d ·m/|DD| and therefore q ≥ (2γ − 1)d giving the desired
lower bound.

In the rest of the proof for conciseness we drop the subscript D from inner products and norms.
To prove the first claim we assume, for the sake of contradiction, that there exists Di 6∈ ∪k≤qAk.
Then for every k ≤ q, |ED[hk(x)]−EDi [hk(x)]| ≤ τi,k. This implies that the replies of our simulation

ED[hk(x)] are within τi,k of EDi [hk(x)], in other words are valid responses. However we know that
for these responses A outputs b = 0 contradicting the condition that Di ∈ D+.

31

To prove the second claim, suppose that for some k ∈ [d], |Ak| > |DD|/d. Let pk = ED[hk(x)]
and assume that pk ≤ 1/2 (when pk > 1/2 we just replace hk by 1− hk in the analysis below). We
will next show upper and lower bounds on the following quantity

Φ =
∑
Di∈Ak

[∣∣∣∣E
D

[hk(x)]− E
Di

[hk(x)]

∣∣∣∣] =
∑
Di∈Ak

|pk − pi,k|. (8)

By our assumption for Di ∈ Ak, |pi,k − pk| > τi,k = max{1/t,
√
pi,k(1− pi,k)/t}. If pi,k ≥ 2pk/3

then

|pk − pi,k| >
√
pi,k(1− pi,k)

t
≥

√
2
3pk ·

1
2

t
=

√
pk
3t
.

Otherwise (when pi,k < 2pk/3), pk − pi,k > pk − 2pk/3 = pk/3. We also know that |pi,k − pk| >
τi,k ≥ 1/t and therefore |pi,k − pk| >

√
pk
3t . Substituting this into eq. (8) we get that

Φ > |Ak| ·
√
pk
3t

= |Ak| ·
√
pk · κ. (9)

Now, by the definition of discrimination norm and its linearity we have that∑
Di∈Ak

[∣∣∣∣E
D

[hk(x)]− E
Di

[hk(x)]

∣∣∣∣] = |Ak| · E
D′∼Ak

[∣∣∣∣E
D

[hk(x)]− E
D′

[hk(x)]

∣∣∣∣] ≤ |Ak| · κ2(Ak, D) · ‖hk‖2.

We note that, hk is a [0, 1]-valued function and therefore ‖hk‖2 = ED[hk(x)2] ≤ ED[hk(x)] = pk.
Also by definition of SDN, κ2(Ak, D) ≤ κ. Therefore Φ ≤ |Ak| ·κ ·

√
pk. This contradicts the bound

on Φ in eq. (9) and hence finishes the proof of our claim.

7.2 Lower bounds for MVSTAT and 1-MSTAT

We now describe the extension of our lower bound to MVSTAT and 1-MSTAT(L) oracles. For
simplicity we state them for the worst case search problems but all these results are based on a
direct simulation of an oracle using a VSTAT oracle and therefore they equivalently apply to the
average-case versions of the problem defined in Theorem 7.1.

Given the lower bound VSTAT we can obtain our lower bound for MVSTAT via the following
simple simulation. For conciseness we use L0 to denote {0, 1, . . . , L− 1}.

Theorem 7.2. Let D be the input distribution over the domain X, t, L > 0 be integers. For any
multi-valued function h : X → L0 and any set S of subsets of L0, L queries to VSTAT(4L · t) can
be used to give a valid answer to query h with set S to MVSTAT(L, t).

Proof. For i ∈ L0 we define hi(x) as hi(x) = 1 if h(x) = i and 0 otherwise. Let vi be the response

32

of VSTAT(4L · t) on query hi. For any Z ⊆ L0,∣∣∣∣∣∑
`∈Z

v` − pZ

∣∣∣∣∣ ≤∑
`∈Z
|vi − pi|

≤
∑
`∈Z

max

{
1

4Lt
,

√
pi(1− pi)

4Lt

}

≤ |Z|
4Lt

+
∑
`∈Z

√
pi(1− pi)

4Lt

≤ |Z|
4Lt

+
√
|Z| ·

√∑
`∈Z pi(1− pi)

4Lt

≤ |Z|
4Lt

+
√
|Z| ·

√
pZ(1− pZ)

4Lt

≤ 1

4t
+

√
pZ(1− pZ)

4t

≤ max

{
1

t
,

√
pZ(1− pZ)

t

}
,

where pZ = PrD[h(x) ∈ Z].

We now describe our lower bound for 1-MSTAT(L) oracle.

Theorem 7.3. Let B(D, D) be a decision problem. For κ > 0, let d = SDN(B(D, D), κ). Any
(possibly randomized) statistical algorithm that solves B(D, D) with probability γ > 1/2 requires at
least m calls to 1-MSTAT(L) for

m = Ω

(
1

L
min

{
d(2γ − 1),

γ2

κ2

})
.

In particular, any algorithm with success probability of at least 2/3 requires at least Ω
(

1
L ·min{d, 1/κ2}

)
samples from 1-MSTAT(L).

The proof of this result is based on the following simulation of 1-MSTAT(L) using VSTAT.

Theorem 7.4. Let Z be a search problem and let A be a (possibly randomized) statistical algorithm
that solves Z with probability at least γ using m samples from 1-MSTAT(L). For any δ ∈ (0, 1/2],
there exists a statistical algorithm A′ that uses at most O(m · L) queries to VSTAT(L ·m/δ2) and
solves Z with probability at least γ − δ.

A special case of this theorem for L = 2 is proved in [FGR+12]. Their result is easy to generalize
to the statement of Theorem 7.4 but is it fairly technical. Instead we describe a simple way to
simulate m samples of 1-MSTAT(L) using O(mL) samples from 1-STAT. This simulation (together
with the simulation of 1-STAT from [FGR+12]) imply Theorem 7.4. It also allows to easily relate
the powers of these oracles. The simulation is based on the following lemma (proof by Jan Vondrak).

Lemma 7.5. Let D be the input distribution over X and let h : X → L0 be any function. Then
using L + 1 samples from 1-STAT it is possible to output a random variable Y ∈ L0 ∪ {⊥}, such
that

33

• Pr[Y 6= ⊥] ≥ 1/(2e),

• for every i ∈ L0, Pr[Y = i | Y 6= ⊥] = pi.

Proof. Y is defined as follows. For every i ∈ L0 ask a sample for hi from 1-STAT and let Bi
be equal to the outcome with probability 1/2 and 0 with probability 1/2 (independently). If the
number of Bi’s that are equal to 1 is different from 1 then Y = ⊥. Otherwise let j be the index
such that Bj = 1. Ask a sample for hj from 1-STAT and let B′j be the outcome with probability
1/2 and 0 with probability 1/2. If B′j = 0 let Y = j, otherwise Y = ⊥. From the definition of Y ,
we obtain that for every i ∈ L0,

Pr[Y = i] =
pi
2
·
∏
k 6=i

(1− pk
2

) · (1− pi
2

) =
pi
2
·
∏
k∈L0

(1− pk
2

).

This implies that for every i ∈ L0, Pr[Y = i | Y 6= ⊥] = pi. Also

Pr[Y 6= ⊥] =
∑
i∈L0

pi
2
·
∏
i∈L0

(1− pi
2

) ≥ 1

2

∏
k∈L0

e−pi = e−1/2,

where we used that for a ∈ [0, 1/2], (1− a) ≤ e−2a.

Given this lemma we can simulate 1-MSTAT(L) by sampling Y until Y 6= ⊥. It is easy to see
that simulating m samples from 1-MSTAT(L) will require at most 4e ·m(L + 1) with probability
at least 1− δ for δ exponentially small in m.

We now combine Theorems 7.1 and 7.4 to obtain the claimed lower bound for statistical algo-
rithms using MVSTAT.

Proof of Theorem 7.3. Assuming the existence of a statistical algorithm using less than m samples
we apply Theorem 7.4 for δ = γ/2 − 1/4 to simulate the algorithm using VSTAT. The bound on
m ensures that the resulting algorithm uses less than Ω(d(2γ − 1)) queries to VSTAT(1

3κ2) and has
success probability of at least γ/2 + 1/4. By substituting these parameters into Theorem 7.1 we
obtain a contradiction.

Finally we state an immediate corollary of Theorems 7.1, 7.2 and 7.3 that applies to general
search problems and generalizes Theorem 3.4.

Theorem 7.6. Let B(D, D) be a decision problem. For κ > 0, let d = SDN(B(D, D), κ) and let
L ≥ 2 be an integer. Any randomized statistical algorithm that solves B(D, D) with probability
≥ 2/3 requires either

• Ω(d/L) calls to MVSTAT(L, 1/(12 · κ2 · L));

• at least m calls to 1-MSTAT(L) for m = Ω
(
min

{
d, 1/κ2

}
/L
)
.

8 Algorithmic Bounds

In this section we prove Theorem 3.2. The algorithm is a variant of the subsampled power iteration
from [FPV14] that can be implemented statistically. We describe the algorithm for the planted
satisfiability model, but it can be adapted to solve Goldreich’s planted k-CSP by considering only
the k-tuples of variables that the predicate P evaluates to 1 on the planted assignment σ.

34

8.1 Set-up

Lemma 1 from [FPV14] states that subsampling r literals from a distribution Qσ on k-clauses with
distribution complexity r and planted assignment σ induces a parity distribution over clauses of
length r, that is a distribution over r-clauses with planting function Qδ : {±1}r → R+ of the form
Qδ(x) = δ/2r for |x| even, Qδ(x) = (2 − δ)/2r for |x| odd, for some δ ∈ [0, 2] , δ 6= 1, where |x| is
the number of +1’s in the vector x. The set of r literals to subsample from each clause is given by
the set S ⊂ {1, . . . , k} with Q̂(S) 6= 0.

From here on the distribution on clauses will be given by Qδσ, for δ 6= 1 and planted assignment σ.
For ease of analysis, we define Qσ,p as the distribution over k-clause formulas in which each possible
k-clause with an even number of true literals under σ appears independently in Qσ,p with probability
δp, and each clause with and odd number of true literals appears independently with probability
(2 − δ)p, for an overall clause density p. We will be concerned with p = Θ̃(n−k/2). Note that it
suffices to solve the algorithmic problem for this distribution instead of that of selecting exactly
m = Θ̃(nk/2) clauses independently at random. In particular, with probability 1− exp(−Θ(n)), a

sample from Qσ,p will contain at most 2p · 2kn!
(n−k)! = O(nkp) clauses.

We present statistical algorithms to recover the partition of the n variables into positive and
negative literals. We will recover the partition, which gives σ up to a sign change.

The algorithm proceeds by constructing a biadjacency matrix M of size N1 × N2 with N1 =
2dk/2e n!

(n−dk/2e)! , N2 = 2bk/2c n!
(n−bk/2c)! . We set N =

√
N1N2. For even k, we have N1 = N2 = N and

thus M is a square matrix. The rows of the matrix are indexed by ordered subsets S1, . . . , SN1 of
dk/2e literals and columns by subsets T1, . . . , TN2 of bk/2c literals. For a formula F , we construct a
matrix M̂(F) as follows. For each k-clause (l1, l2, . . . , lk) in F , we put a 1 in the entry of M̂ whose
row is indexed by the set (l1, . . . , ldk/2e) and column by the set (ldk/2e+1, . . . , lk).

Let Mσ,p denote the distribution on random N1 × N2 matrices induced by drawing a random
formula according to Qσ,p and forming the associated matrix M(Qσ,p) as above.

For k even, let u ∈ {±1}N be the vector with a +1 entry in every coordinate indexed by subsets
containing an even number of true literals under σ, and a −1 entry for every odd subset. For k
odd, define the analogous vectors uy ∈ {±1}N1 and ux ∈ {±1}N2 , again with +1’s for even subsets
and −1 for odd subsets.

The algorithm will apply a modified power iteration procedure with rounding to find u or ux
(up to a change of sign). From these vectors the partition σ into true and false literals can be
determined by solving a system of linear equations.

For even k, the discrete power iteration begins by sampling a random vector x0 ∈ {±1}N and
multiplying by a sample of Mσ,p. We then randomly round each coordinate of Mσ,px

0 to ±1 to
get x1, and then repeat, drawing a fresh sample from Mσ,p at each step. The rounding at each
is probabilistic and depends on the value of each coordinate and the maximum value of all the
coordinates. The number of clauses used by the algorithm is the sum of the number of clauses used
in each sampled matrix, or in other words, if we use T samples from Mσ,p, our original formula
needs density T · p. 4

For odd k, we begin with a random x0 ∈ {±1}N2 and a random sample Mσ,p, then form y0 by
deterministically rounding Mσ,px

0 to a vector with entries −1, 0, or +1. Then we form x1 by taking
a fresh sample of Mσ,p and perform a randomized ±1 rounding of MT

σ,py
0, and repeat. There is a

4Obtaining T (nearly) independent samples of Mσ,p from one sample of Mσ,Tp is a subtle issue and is addressed in
[FPV14]; for the purposes of the implementation by statistical oracles this is irrelevant and so we avoid the discussion
here.

35

final rounding step to find a ±1 vector that matches u or ux.
In Section 8.4 we will prove that this algorithm can be implemented statistically in any of the

following ways:

1. Using O(nr/2 log2 n) calls to 1-MSTAT(ndr/2e);

2. For even r: using O(log n) calls to MVSTAT(nr/2, nr/2 log logn);

3. For odd r: using O(log n) calls to MVSTAT(O(ndr/2e), O(nr/2 log n)).

8.2 Algorithm Discrete-Power-Iterate (even k).

1. Pick x0 ∈ {±1}N uniformly at random. For i = 1, . . . logN , repeat the following:

(a) Draw a sample matrix M ∼Mσ,p.

(b) Let x = Mxi−1.

(c) Randomly round each coordinate of x to ±1 to get xi as follows: let

xij =

{
sign(xj) with probability 1

2 +
|xj |

2 maxj |xj |

−sign(xj) otherwise.

2. Let x = MxlogN and set u∗ = sign(x) by rounding each coordinate to its sign.

3. Output the solution by solving the system of parity equations defined by u∗.

Lemma 8.1. If p = K logN
(δ−1)2N

for a sufficiently large constant K, then with probability 1− o(1) the

above algorithm returns the planted assignment.

The main idea of the analysis is to keep track of the random process (u · xi). It starts at
Θ(
√
N) with the initial randomly chosen vector x0, and then after an initial phase, doubles on

every successive step whp until it reaches N/9.
We will use the following Chernoff bound several times (see eg. Corollary A.1.14 in [AS11]).

Proposition 8.2. Let X =
∑m

i=1 ξiYi and Y =
∑m

i=1 Yi, where the Yi’s are independent Bernoulli
random variables and the ξi’s are fixed ±1 constants. Then

Pr[|X − E[X]| ≥ αE[Y]] ≤ e−α2 E[Y]/3.

Proposition 8.3. If |xi · u| = βN ≥
√
N log logN , then with probability 1−O(1/Nβ2),

|xi+1 · u| ≥ min

{
N

9
, 2|xi · u|

}
.

Proof. We assume WLOG that δ > 1 and x0 · u > 0 in what follows. Let U+ = {i : ui = +1},
U− = {i : ui = −1}, X+ = {i : xi = +1}, and X− = {i : xi = +1}. For a given j ∈ [N], let
Aj = {i : sets i and j share no variables}. We have |Aj | = N∗ for all j.

Let z = Mxi. Note that the coordinates z1, . . . zN are independent and if j ∈ U+,

zj ∼ Z++ + Z−+ − Z+− − Z−− − p(|X+| − |X−|)

36

where

Z++ ∼ Bin(|U+ ∩X+ ∩Aj |, δp),
Z−+ ∼ Bin(|U− ∩X+ ∩Aj |, (2− δ)p),
Z+− ∼ Bin(|U+ ∩X− ∩Aj |, δp),
Z−− ∼ Bin(|U− ∩X− ∩Aj |, (2− δ)p).

We can write a similar expression if j ∈ U−, with the probabilities swapped. For j ∈ U+ we
calculate,

E[zj] = δp|U+ ∩X+ ∩Aj |+ (2− δ)p|U− ∩X+ ∩Aj | − δp|U+ ∩X− ∩Aj | − (2− δ)p|U− ∩X− ∩Aj |
− p

(
|X+| − |X−|

)
= δp|U+ ∩X+|+ (2− δ)p|U− ∩X+| − δp|U+ ∩X−|
− (2− δ)p|U− ∩X−| − p

(
|X+| − |X−|

)
+O((N −N∗)p)

= (δ − 1)p(u · x) +O(nk/2−1p).

For j ∈ U− we get E[zj] = (1− δ)p(u · x) +O(nk/2−1p).
To apply Proposition 8.2, note that there are N entries in each row of M , half of which have

probability δp of being 1, and the other half with probability (2 − δ)p of being a 1, so E[Y] =
Np. Using the proposition with α = (δ − 1)/26 and union bound, we have that with probability
1− o(N−1),

max
j
|zj | ≤ (δ − 1)p · (u · x) +

(δ − 1)Np

26
+O(nk/2−1p) (10)

≤ (δ − 1)p · (u · x) +
(δ − 1)Np

25
.

For each ordered set of k/2 literals indexed by j ∈ U+, there is a set indexed by j′ ∈ U− that is
identical except the first literal in j′ is the negation of the first literal in j. Note that Aj = Aj′ ,
and so we can calculate:

E[zj]− E[zj′] = 2(δ − 1)p
[
|U+ ∩X+ ∩Aj |+ |U− ∩X− ∩Aj | − |U− ∩X+ ∩Aj | − |U+ ∩X− ∩Aj |

]
which is simply 2(δ−1)p times the dot product of u and x restricted to the coordinates Aj . Summing
over all j ∈ [N] we get

E[u · z] = |Aj |(δ − 1)p(u · x)

= N∗(δ − 1)p(u · x)

= N(δ − 1)p(u · x)(1 + o(1)).

Applying Proposition 8.2 to (u · z) (with E[Y] = N2p, and α = (δ−1)(u·x)
2N), we get

Pr[(u · z) < N(δ − 1)p(u · x)/2] ≤ exp

[
−N

2p(δ − 1)2(u · x)2

12N2

]
(11)

= exp

[
−K logN(u · x)2

12N

]
= o

(
1

N

)
.

37

Now we round z to a ±1 vector x′ as above. Let Z be the number of j’s so that x′j = uj . Then,
conditioning on u · z and max |zj | as above,

E[Z] =

N∑
j=1

(
1

2
+

ujzj
2 max |zj |

)
=
N

2
+

u · z
2 max |zj |

≥ N

2
+

N(δ − 1)p(u · x)

4((δ − 1)p(u · x) + (δ−1)Np
25)

.

If (δ − 1)p(u · x) ≤ (δ−1)Np
25 , we have

E[Z] ≥ N

2
+
N(δ − 1)p(u · x)

8(δ − 1)Np/25
≥ N

2
+ 3(u · x).

If (δ − 1)p(u · x) ≥ (δ−1)Np
25 , we have

E[Z] ≥ N

2
+
N(δ − 1)p(u · x)

8(δ − 1)p(u · x)
=

5N

8
.

Note that the variance of Z is at most N/4. From Chebyshev’s inequality, with probability
1−O(N/(u · x)2), Z ≥ min

{
N
2 + (u · x), 5N

9

}
, which completes the proof of Proposition 8.3.

Finishing: We consider two phases. When |u · x| <
√
N log logN , with probability at least 1/2,

|u · xi+1| ≥ max{
√
N/10, 2|u · xi|}. This follows from Berry-Esseen bounds in the Central Limit

Theorem: Z is the sum of N independent 0, 1 random variables with different probabilities, and
we know at least 9N/10 have a probability between 2/5 and 3/5 (comparing a typical |zi| with
max |zi|). This shows the variance of Z is at least N/5 when u · x is this small.

Now call a step ‘good’ if |u ·xi+1| ≥ max{
√
N/10, 2|u ·xi|}. Then in logN steps whp there is at

least one run of at least log logN good steps, and after any such run we have |u ·x| ≥
√
N log logN

with certainty, completing the first phase.
Once we have |u · x| ≥

√
N log logN , then according to Proposition 8.3, after O(logN) steps

the value of |xu · u| successively doubles with error probabilities that are geometrically decreasing,
and so whp at the end we have a vector x ∈ {±1}N so that |u · x| ≥ N

9 . In the positive case, when
we multiply x once more by M ∼ Mσ,p, we have for i : ui = 1, E[(Mx)i] ≥ (δ − 1)pN/9. Using
Proposition 8.2 (with E[Y] = Np and α = (δ − 1)/10),

Pr[(Mx)i ≤ 0] ≤ e−cNp = o(N−2)

Similarly, if ui = −1, Pr[(Mx)i ≥ 0] = o(N−2), and thus whp rounding to the sign of x will give
us u exactly. The same holds in the negative case where we will get −u exactly.

8.3 Algorithm Discrete-Power-Iterate (odd k)

1. Pick x0 ∈ {±1}N2 uniformly at random. For i = 1, . . . logN , repeat the following:

(a) Draw a sample matrix M ∼Mσ,p.

38

(b) Let yi = Mxi−1; round yi to a vector yi with entries 0,+1, or −1, according to the sign
of the coordinates.

(c) Draw another sample M ∼Mσ,p.

(d) Let xi = MT yi. Randomly round each coordinate of xi to ±1 as follows to get xi:

xij =

{
sign(xj) with probability 1

2 +
|xj |

2 maxj |xj |

−sign(xj) otherwise.

2. Set u∗ = sign(xlogN) by rounding each coordinate to its sign.

3. Output the solution by solving the system of parity equations defined by u∗.

Lemma 8.4. Set p = K logN
(δ−1)2N

. Then whp, the algorithm returns the planted assignment.

We will keep track of the inner products xi · ux and yi · uy as the algorithm iterates.

Proposition 8.5. If |xi · ux| = βN2 ≥
√
N2/ log logN , then with probability 1− o(1/ logN),

1. |yi+1 · uy| ≥ Nβ logN

2. ‖yi+1‖1 = N2p(1 + o(1)).

Proof. Let x ∈ {±1}N2 and M ∼ Mσ,p. Let y = Mx. We will assume δ > 1 and x · ux > 0 for
simplicity.

If j ∈ U+
y , then

Pr[yj ≥ 1] = δp|X+ ∩ U+
x |+ (2− δ)p|X+ ∩ U−x |+O((N2 −N∗2)p) +O(p2N2),

and

Pr[yj ≤ −1] = δp|X− ∩ U+
x |+ (2− δ)p|X− ∩ U−x |+O((N2 −N∗2)p) +O(p2N2),

and similarly for j ∈ U−y :

Pr[yj ≥ 1] = δp|X+ ∩ U−x |+ (2− δ)p|X+ ∩ U+
x |+O((N2 −N∗2)p) +O(p2N2),

and

Pr[yj ≤ −1] = δp|X− ∩ U−x |+ (2− δ)p|X− ∩ U+
x |+O((N2 −N∗2)p) +O(p2N2).

Rounding y by the sign of each coordinate gives a 0,+1,−1 vector y′. Let Y + be the set of
+1 coordinates of y′, and Y − the set of −1 coordinates. An application of Proposition 8.2 with

E[Y] = N2p and α = 1/ logN immediately gives ‖y′‖1 = N2p(1+o(1)) with probability 1−o(N−1).
We can write

y′ · uy = |Y + ∩ U+
y |+ |Y − ∩ U−y | − |Y + ∩ U−y | − |Y − ∩ U+

y |,

and compute

E[y′ · uy] =
N∗1
2

[
(2δ − 2)(|X+ ∩ U+

x |+ |X− ∩ U−x | − |X+ ∩ U−x | − |X− ∩ U+
x |)
]

+O(N1N2p
2)

= N1p(δ − 1)(x · ux)(1 + o(1)).

39

Another application of Proposition 8.2 with E[Y] = N1N2p and α = (δ−1)(x·ux)
2N2

shows that with

probability 1− o(N−2),

y′ · uy ≥ N1p(δ − 1)(x · ux)/2 =
NβC logN

2(δ − 1)
≥ Nβ logN. (12)

Proposition 8.6. If |yi · uy| = γN ≥
√
N1 logN/ log logN with ‖y‖1 = N2p(1 + o(1)), then with

probability 1− o(1/ logN),

|xi · ux| ≥ min

{
N2

9
,
N2cγ√
logN

}
.

for some constant c = c(δ,K).

Proof. For j ∈ U+
x as above we calculate,

E[xj] = δp|U+
y ∩ Y +|+ (2− δ)p|U−y ∩ Y +| − δp|U+

y ∩ Y −|
− (2− δ)p|U−y ∩ Y −| − p

(
|Y +| − |Y −|

)
+O((N1 −N∗1)p)

= (δ − 1)p(uy · y) +O((N1 −N∗1)p)

= (δ − 1)p(uy · y) +O(N2p)

And for j ∈ U−x , E[xj] = −(δ − 1)p(uy · y) +O(N2p). We also have E[ux · x] = (δ − 1)N∗2 p(uy · y).

Proposition 8.2 with E[Y] = N1p and α = N2p√
logN

shows that with probability 1− o(N−1),

max
j
|xj | ≤ |δ − 1|p(uy · y) +

N2p2

√
logN

,

and applied with E[Y] = N1N
2
2 p

2 and α = 1√
N2 logN

shows that with probability 1− o(N−1),

(ux · x) ≥ (δ − 1)N2p(uy · y)− N2p2
√
N2√

logN

= (δ − 1)N2p(uy · y)(1 + o(1))

for (uy ·y) ≥
√
N1 logN/ log logN . Again we randomly round to a vector x∗, and if Z is the number

of of coordinates on which x∗ and ux agree,

E[Z] =
N2

2
+

ux · x
2 max |xj |

≥ N2

2
+

N2(δ − 1)p(uy · y)

4((δ − 1)p(uy · y) + N2p2
√

logN
)
.

If (δ − 1)p(uy · y) ≤ N2p2
√

logN
, we have

E[Z] ≥ N2

2
+
N2(δ − 1)p(uy · y)

8N2p2/
√

logN
=
N2

2
+
N2γ(δ − 1)3

8K
√

logN
.

If (δ − 1)p(u · x) ≥ N2p2
√

logN
, we have

E[Z] ≥ N2

2
+
N2(δ − 1)p(u · x)

8(δ − 1)p(u · x)
=

5N2

8
.

40

Another application of Proposition 8.2 with E[Y] = E[Z] and α = (δ−1)3γ

100K
√

logN
shows that with

probability 1− o(1),

Z ≥ min

{
N2

2
+
N2γ(δ − 1)3

9K
√

logN
,
5N2

9

}
,

which shows that x∗ · ux ≥ min
{

N2cγ√
logN

, N2
9

}
for some constant c = c(δ,K).

Finishing: Choosing x0 at random gives |x0 · ux| ≥
√
N2

log logN whp. After a pair of iterations,

Propositions 8.5 and 8.6 guarantee that whp the value of xi · ux rises by a factor of
√

logN/K, so
after at most logN steps we have a vector x ∈ {±1}N2 with |x·ux| ≥ N2

9 . One more iteration gives a

vector y with |uy ·y| ≥ N logN
9 . Now consider (MT y). In the positive case (when uy ·y ≥ N logN

9), we
have for i ∈ U+

x , E[(MT y)i] ≥ (δ−1)Np logN/9. Using Proposition 8.2, Pr[(MT y)i ≤ 0] = o(N−2).
Similarly, if i ∈ U−x , Pr[(MT y)i ≥ 0] = o(N−2), and thus whp rounding to the sign of the vector
will give us ux exactly. The same holds in the negative case where we will get −ux exactly.

8.4 Implementing the algorithms with the statistical oracle

We complete the proof of Theorem 3.2 by showing how to implement the above algorithms with
the statistical oracles 1-MSTAT and MVSTAT.

Lemma 8.7 (Even k). There is a randomized algorithm that makes O(N log2N) calls to the
1-MSTAT(N) oracle and returns the planted assignment with probability 1 − o(1). There is a
randomized algorithm that makes O(logN) calls to the MVSTAT(t, L) oracle with L = N and
t = N log logN , and returns the planted assignment with probability 1− o(1).

Proof. We can run the above algorithm using the 1-MSTAT(N) oracle. Given a vector x ∈ {±1}N ,
we compute x′, the next iteration, as follows: each j ∈ [N] corresponds to a different value of the
query functions h+ and h− defined as h+(X) = i if the clause X = (i, j) for j : xj = +1 and zero
otherwise, and similarly h−(X) = i if X = (i, j) for j : xj = −1 and zero otherwise. For use in
the implementation, we define the Boolean functions h+

i as h+
i (X) = 1 iff h+(X) = i. Let v+

i , v
−
i

denote the corresponding oracle’s responses to the two queries, and vi = v+
i − v

−
i . Now to compute

x′, for each coordinate we sum vi over all samples and subtract p
∑
xi. We use O(logN) such

iterations, and we use O(N logN) clauses per iteration (corresponding to p = K logN
(δ−1)2N

).

To use the MVSTAT oracle, we note that for each query function v, we make t = O(N logN)
calls to 1-MSTAT(N). We can replace each group of t calls with a one call to MVSTAT(N, t). Let
the response be a vector p in [0, 1]L, with L+2 subsets, namely singleton subsets for each coordinate
as well as for the subsets with positive parity and with negative parity on the unknown assignment
σ. For each coordinate l, we set vl = Binom(1, pl), the output of an independent random coin toss
with bias pl. The guarantees on MVSTAT imply that the result of this simulation are equivalent
for our purposes to directly querying 1-MSTAT. Here we give a direct simulation with smaller t.

For t = N log logN , versions of equations (10) and (11) (properly scaled) hold due to the oracle’s
bound on |vi| and the bound on

∑
V vi.

In particular, we can calculate that E[h+
i − h

−
i −

1
N

∑
j xj] = ui · (δ−1)β

N +O
(

1
N(N−N∗)

)
where

u · x = βN . The oracle bounds then give maxi |vi| ≤ (δ−1)β
N + 2√

tN
= (δ−1)β

N + 2
N
√

log logN
since

t� (N −N∗). The oracle also guarantees that |u · v − (δ − 1)β| ≤ 1√
t
, and so for β ≥ 2√

N log logN
,

u · v ≥ (δ − 1)β/2.

41

Now we do the same randomized rounding as above, and we see that

E[Z] =

N∑
j=1

(
1

2
+

ujvj
2 max |vj |

)
=
N

2
+

u · v
2 max |vj |

≥ N

2
+

(δ − 1)β

4((δ−1)β
N + 2

N
√

log logN
)
.

If (δ−1)β
N ≤ 2

N
√

log logN
, we have

E[Z] ≥ N

2
+

(δ − 1)β
16

N
√

log logN

=
N

2
+

√
log logN(δ − 1)

16
βN.

If (δ−1)β
N ≥ 2

N
√

log logN
, we have

E[Z] ≥ N

2
+

(δ − 1)β

8(δ − 1)β/N
=

5N

8
.

The variance of Z is at most N/4, and with probability 1 − o(1) we start with |x0 · u| ≥√
N/ log log logN . Then successive applications of Chebyshev’s inequality as above show that whp

after at most logN steps, we have |xi · u| ≥ 5N
8 .

Lemma 8.8 (Odd k). There is a randomized algorithm that makes O(nk/2 log2 n) calls to the
1-MSTAT(L) oracle for L = N1, and returns the planted assignment with probability 1− o(1).

Proof. We run the algorithm using 1-MSTAT, alternately querying N1-valued functions and N2-
valued functions, each with t = O(N logN) samples per iteration. Since there are O(logN) itera-
tions in all, this gives the claimed bound of O(N log2N) calls to 1-MSTAT(N1).

To implement using MVSTAT, we do as described in proof for the even case. Evaluation of an L-
valued query h with t samples via t calls to 1-MSTAT(L) is replaced by one call to MVSTAT(L, t)
and this response is used to generate a 0/1 vector, each time with subsets corresponding to all
singletons and the two subsets with different parities according to the planted assignment σ. This
gives the bounds claimed in Theorem 3.2. To see that the algorithm converges as claimed, we
note that Prop. 8.5 continues to hold, with a lower order correction term in Equation (12) for the
difference when y′ · uy when y′ is obtained by the above simulation. This difference is small as
guaranteed by the MVSTAT oracle on the two subsets corresponding to the positive support and
negative support of uy.

9 Discussion and open problems

By querying well-chosen sequences of functions, statistical query algorithms can be efficient and
just as powerful as unconstrained algorithmic approaches, in spite of not being able to directly
examine samples from an input distribution. As far as we know, there is only one counterexample,

42

namely solving equations over finite fields, which can be done easily by Gaussian elimination but
not with any efficient statistical query algorithm. Here we have given a unifying model of planted
constraint satisfaction problems and characterized their SQ complexity. Our bounds correspond
closely to known upper bounds for unconstrained algorithms.

Our work also gives a new technique for proving lower bounds on SQ algorithm that strengthens
and generalizes previous techniques. It has already been crucial in getting tight lower bounds on
SQ complexity of stochastic linear optimization and high-dimensional mean estimation [FGV15].
It also served as a step toward a characterization of the SQ complexity of solving general problems
over distributions given in [Fel16].

We conclude with some candidate directions for future research.

1. A long-standing and intriguing question is to find an additional example (besides solving
equations over finite fields) of a natural problem over distributions for which there exists an
efficient algorithm that beats the lower bound for statistical algorithms, and disproves our
conjecture.

2. Which additional problems can be addressed using the methods of this paper? One interesting
candidate is the problem of detection in a stochastic block model with k > 2 blocks? There is
currently a gap between the information-theoretic and algorithmic thresholds for the number
of edges needed for detection, but the gap is only a factor of roughly k/ log k. A special case
of this problem is planted k-coloring.

3. It would be interesting to better understand the relationship of our lower bounds for convex
program relaxations to those known for hierarchies of LP and SDP relaxations. Does there
exist a unifying approach?

Acknowledgments

We thank Amin Coja-Oghlan, Florent Krzakala, Ryan O’Donnell, Prasad Raghavendra, and Lenka
Zdeborová for insightful comments and helpful discussions. We also thank Jan Vondrak for the
proof idea of Lemma 7.5.

References

[ABBS14] Emmanuel Abbe, Afonso S Bandeira, Annina Bracher, and Amit Singer. Decoding
binary node labels from censored edge measurements: Phase transition and efficient
recovery. IEEE Transactions on Network Science and Engineering, 1(1):10–22, 2014.

[ABR12] Benny Applebaum, Andrej Bogdanov, and Alon Rosen. A dichotomy for local
small-bias generators. In Theory of Cryptography, pages 600–617. Springer, 2012.

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from
different assumptions. In STOC, pages 171–180. ACM, 2010.

[ACO08] Dimitris Achlioptas and Amin Coja-Oghlan. Algorithmic barriers from phase
transitions. In FOCS, pages 793–802. IEEE, 2008.

43

[AJM05] Dimitris Achlioptas, Haixia Jia, and Cristopher Moore. Hiding satisfying
assignments: Two are better than one. J. Artif. Intell. Res.(JAIR), 24:623–639,
2005.

[AL16] Benny Applebaum and Shachar Lovett. Algebraic attacks against random local
functions and their countermeasures. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pages 1087–1100. ACM, 2016.

[Ale11] Michael Alekhnovich. More on average case vs approximation complexity.
Computational Complexity, 20(4):755–786, 2011.

[AM09] Per Austrin and Elchanan Mossel. Approximation resistant predicates from pairwise
independence. Computational Complexity, 18(2):249–271, 2009.

[AM15] Emmanuel Abbe and Andrea Montanari. Conditional random fields, planted
constraint satisfaction, and entropy concentration. Theory of Computing,
11:413–443, 2015.

[AOW15] Sarah R. Allen, Ryan O’Donnell, and David Witmer. How to refute a random CSP.
In FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 689–708, 2015.

[App13] Benny Applebaum. Pseudorandom generators with long stretch and low locality
from random local one-way functions. SIAM Journal on Computing,
42(5):2008–2037, 2013.

[App16] Benny Applebaum. Cryptographic hardness of random local functions.
Computational complexity, 25(3):667–722, 2016.

[AS11] Noga Alon and Joel H Spencer. The Probabilistic Method, volume 73. John Wiley &
Sons, 2011.

[BBDV14] Jeremiah Blocki, Manuel Blum, Anupam Datta, and Santosh Vempala. Human
computable passwords. CoRR, abs/1404.0024, 2014.

[BD98] Shai Ben-David and Eli Dichterman. Learning with restricted focus of attention. J.
Comput. Syst. Sci., 56(3):277–298, 1998.

[BDMN05] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical
privacy: the SuLQ framework. In PODS, pages 128–138, 2005.

[Bec75] William Beckner. Inequalities in fourier analysis. The Annals of Mathematics,
102(1):159–182, 1975.

[BF15] Maria-Florina Balcan and Vitaly Feldman. Statistical active learning algorithms for
noise tolerance and differential privacy. Algorithmica, 72(1):282–315, 2015.

[BFJ+94] Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and
Steven Rudich. Weakly learning DNF and characterizing statistical query learning
using Fourier analysis. In STOC, pages 253–262, 1994.

44

[BFKV98] Avrim Blum, Alan Frieze, Ravi Kannan, and Santosh Vempala. A polynomial-time
algorithm for learning noisy linear threshold functions. Algorithmica, 22(1-2):35–52,
1998.

[BHL+02] Wolfgang Barthel, Alexander K Hartmann, Michele Leone, Federico Ricci-Tersenghi,
Martin Weigt, and Riccardo Zecchina. Hiding solutions in random satisfiability
problems: A statistical mechanics approach. Physical review letters, 88(18):188701,
2002.

[BKS13] Boaz Barak, Guy Kindler, and David Steurer. On the optimality of semidefinite
relaxations for average-case and generalized constraint satisfaction. In ITCS, pages
197–214. ACM, 2013.

[Bon70] Aline Bonami. Étude des coefficients de fourier des fonctions de lp(g). In Annales de
l’institut Fourier, volume 20, pages 335–402. Institut Fourier, 1970.

[Bop87] Ravi B Boppana. Eigenvalues and graph bisection: An average-case analysis. In
FOCS, pages 280–285. IEEE, 1987.

[BQ09] Andrej Bogdanov and Youming Qiao. On the security of Goldreich’s one-way
function. In RANDOM-APPROX, pages 392–405. Springer, 2009.

[CEMT09] James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldreich’s one-way
function candidate and myopic backtracking algorithms. In Theory of Cryptography,
pages 521–538. Springer, 2009.

[CKL+06] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski,
Andrew Y. Ng, and Kunle Olukotun. Map-reduce for machine learning on multicore.
In NIPS, pages 281–288, 2006.

[CO06] Amin Coja-Oghlan. A spectral heuristic for bisecting random graphs. Random
Structures & Algorithms, 29:3:351–398, 2006.

[COCF10] Amin Coja-Oghlan, Colin Cooper, and Alan Frieze. An efficient sparse regularity
concept. SIAM Journal on Discrete Mathematics, 23(4):2000–2034, 2010.

[COGL04] Amin Coja-Oghlan, Andreas Goerdt, and André Lanka. Strong refutation heuristics
for random k-SAT. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 310–321. Springer, 2004.

[COGLS04] Amin Coja-Oghlan, Andreas Goerdt, André Lanka, and Frank Schädlich.
Techniques from combinatorial approximation algorithms yield efficient algorithms
for random 2k-SAT. Theoretical Computer Science, 329(1):1–45, 2004.

[CW04] Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Extending
Grothendieck’s inequality. In FOCS, pages 54–60, 2004.

[DFKO07] Irit Dinur, Ehud Friedgut, Guy Kindler, and Ryan O’Donnell. On the Fourier tails
of bounded functions over the discrete cube. Israel Journal of Mathematics,
160(1):389–412, 2007.

45

[DKMZ11] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová.
Asymptotic analysis of the stochastic block model for modular networks and its
algorithmic applications. Physical Review E, 84(6):066106, 2011.

[DLR77] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society, Series B,
39(1):1–38, 1977.

[DLSS13] Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. More data speeds up training
time in learning halfspaces over sparse vectors. In NIPS, pages 145–153, 2013.

[DV08] John Dunagan and Santosh Vempala. A simple polynomial-time rescaling algorithm
for solving linear programs. Math. Program., 114(1):101–114, 2008.

[Fei02] Uriel Feige. Relations between average case complexity and approximation
complexity. In STOC, pages 534–543. ACM, 2002.

[Fel12] Vitaly Feldman. A complete characterization of statistical query learning with
applications to evolvability. Journal of Computer System Sciences, 78(5):1444–1459,
2012.

[Fel16] Vitaly Feldman. A general characterization of the statistical query complexity.
CoRR, abs/1608.02198, 2016. Extended abstract in COLT 2017.

[Fel17] Vitaly Feldman. Statistical query learning. In Encyclopedia of Algorithms, pages
2090–2095. 2017. Available at http://vtaly.net/papers/Kearns93-2017.pdf.

[FGK05] Joel Friedman, Andreas Goerdt, and Michael Krivelevich. Recognizing more
unsatisfiable random k-SAT instances efficiently. SIAM Journal on Computing,
35(2):408–430, 2005.

[FGR+12] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh Vempala, and Ying Xiao.
Statistical algorithms and a lower bound for detecting planted cliques. arXiv, CoRR,
abs/1201.1214, 2012. Extended abstract in STOC 2013.

[FGV15] Vitaly Feldman, Cristobal Guzman, and Santosh Vempala. Statistical query
algorithms for mean vector estimation and stochastic convex optimization. CoRR,
abs/1512.09170, 2015. Extended abstract in SODA 2017.

[Fla03] Abraham Flaxman. A spectral technique for random satisfiable 3cnf formulas. In
SODA, pages 357–363, 2003.

[FO04] Uriel Feige and Eran Ofek. Easily refutable subformulas of large random 3-CNF
formulas. In Automata, languages and programming, pages 519–530. Springer, 2004.

[FPV13] Vitaly Feldman, Will Perkins, and Santosh Vempala. On the complexity of random
satisfiability problems with planted solutions. CoRR, abs/1311.4821, 2013.
Extended abstract in STOC 2015.

[FPV14] Vitaly Feldman, Will Perkins, and Santosh Vempala. Subsampled power iteration: a
new algorithm for block models and planted CSP’s. CoRR, abs/1407.2774, 2014.
Extended abstract in NIPS 2015.

46

http://vtaly.net/papers/Kearns93-2017.pdf

[FPV15] Vitaly Feldman, Will Perkins, and Santosh Vempala. On the complexity of random
satisfiability problems with planted solutions. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, pages 77–86. ACM, 2015.

[GL03] Andreas Goerdt and André Lanka. Recognizing more random unsatisfiable 3-SAT
instances efficiently. Electronic Notes in Discrete Mathematics, 16:21–46, 2003.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. IACR
Cryptology ePrint Archive, 2000:63, 2000.

[GS90] Alan E. Gelfand and Adrian F.M. Smith. Sampling based approaches to calculating
marginal densities. Journal of the American Statistical Association, 85:398–409,
1990.

[GS14] David Gamarnik and Madhu Sudan. Performance of the survey propagation-guided
decimation algorithm for the random NAE-K-SAT problem. arXiv preprint
arXiv:1402.0052, 2014.

[GW95] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM, 42:1115–1145, 1995.

[Han12] Lars Peter Hansen. Large sample properties of generalized method of moments
estimators. Econometrica, 50:1029–1054, 2012.

[HPS09] Hiêp Hàn, Yury Person, and Mathias Schacht. Note on strong refutation algorithms
for random k-SAT formulas. Electronic Notes in Discrete Mathematics, 35:157–162,
2009.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with
constant computational overhead. In STOC, pages 433–442. ACM, 2008.

[Jan97] Svante Janson. Gaussian Hilbert spaces. Cambridge University Press, 1997.

[JMS05] Haixia Jia, Cristopher Moore, and Doug Strain. Generating hard satisfiable formulas
by hiding solutions deceptively. In AAAI, volume 20, page 384, 2005.

[Kea98] Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of
the ACM, 45(6):983–1006, 1998.

[KJV83] Scott Kirkpatrick, D. Gelatt Jr., and Mario P. Vecchi. Optimization by simmulated
annealing. Science, 220(4598):671–680, 1983.

[KMR17] Pravesh K. Kothari, Raghu Meka, and Prasad Raghavendra. Approximating
rectangles by juntas and weakly-exponential lower bounds for LP relaxations of csps.
In STOC, pages 590–603, 2017.

[KMRT+07] Florent Krzaka la, Andrea Montanari, Federico Ricci-Tersenghi, Guilhem Semerjian,
and Lenka Zdeborová. Gibbs states and the set of solutions of random constraint
satisfaction problems. Proceedings of the National Academy of Sciences,
104(25):10318–10323, 2007.

47

[KMZ14] Florent Krzakala, Marc Mézard, and Lenka Zdeborová. Reweighted belief
propagation and quiet planting for random k-sat. Journal on Satisfiability, Boolean
Modeling and Computation, 8:149–171, 2014.

[KV06a] A. T. Kalai and S. Vempala. Simulated annealing for convex optimization. Math.
Oper. Res., 31(2):253–266, 2006.

[KV06b] Michael Krivelevich and Dan Vilenchik. Solving random satisfiable 3cnf formulas in
expected polynomial time. In SODA, pages 454–463. ACM, 2006.

[KZ09] Florent Krzakala and Lenka Zdeborová. Hiding quiet solutions in random constraint
satisfaction problems. Physical review letters, 102(23):238701, 2009.

[Lev65] A.Yu. Levin. On an algorithm for the minimization of convex functions. Sov. Math.,
Dokl., 6:268–290, 1965.

[LV06] László Lovász and Santosh Vempala. Fast algorithms for logconcave functions:
Sampling, rounding, integration and optimization. In FOCS, pages 57–68, 2006.

[Mas14] Laurent Massoulié. Community detection thresholds and the weak Ramanujan
property. In STOC, pages 1–10, 2014.

[McS01] Frank McSherry. Spectral partitioning of random graphs. In FOCS, pages 529–537,
2001.

[MNS13] Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model threshold
conjecture. arXiv preprint arXiv:1311.4115, 2013.

[MNS15] Elchanan Mossel, Joe Neeman, and Allan Sly. Reconstruction and estimation in the
planted partition model. Probability Theory and Related Fields, 162(3-4):431–461,
2015.

[MPRT16] Raffaele Marino, Giorgio Parisi, and Federico Ricci-Tersenghi. The backtracking
survey propagation algorithm for solving random k-sat problems. Nature
communications, 7:12996, 2016.

[MST06] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On ε-biased generators in NC0.
Random Structures & Algorithms, 29(1):56–81, 2006.

[NJLS09] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro.
Robust stochastic approximation approach to stochastic programming. SIAM
Journal on Optimization, 19(4):1574–1609, 2009.

[NY83] A.S. Nemirovsky and D.B. Yudin. Problem Complexity and Method Efficiency in
Optimization. J. Wiley @ Sons, New York, 1983.

[O’D11] Ryan O’Donnell. Lecture 13. notes for 15-859 linear and semidefinite programming.
Available at
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture13.pdf,
2011.

48

[OW14] Ryan O’Donnell and David Witmer. Goldreich’s PRG: Evidence for near-optimal
polynomial stretch. In Conference on Computational Complexity, 2014.

[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for every
CSP? In STOC, pages 245–254, 2008.

[SD15] Jacob Steinhardt and John C. Duchi. Minimax rates for memory-bounded sparse
linear regression. In COLT, pages 1564–1587, 2015.

[SSSS09] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan.
Stochastic convex optimization. In COLT, 2009.

[SVW15] J. Steinhardt, G. Valiant, and S. Wager. Memory, communication, and statistical
queries. Electronic Colloquium on Computational Complexity (ECCC), 22:126, 2015.

[Tre08] Luca Trevisan. Checking the quasirandomness of graphs and hypergraphs.
http://terrytao.wordpress.com/2008/02/15/luca-trevisan-checking-the-
quasirandomness-of-graphs-and-hypergraphs/, February
2008.

[TW87] Martin A Tanner and Wing Hung Wong. The calculation of posterior distributions
by data augmentation (with discussion). Journal of the American Statistical
Association, 82:528–550, 1987.

[Č85] V. Černý. Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of Optimization Theory and Applications,
45(1):41–51, January 1985.

49

	Introduction
	Summary of results
	Evidence for Feige's hypothesis:
	Hard instances of k-SAT:
	Lower bounds for convex programs:

	Overview of the technique
	Other related work

	Definitions
	Planted satisfiability
	Statistical algorithms

	Results
	Lower bounds
	Algorithms
	Statistical dimension for decision problems
	Corollaries and applications
	Quiet plantings
	Feige's Hypothesis
	Hardness of approximation

	Convex Programs and SQ Algorithms for Solving CSPs
	LP/SDP relaxations for k-CSPs
	Statistical Query Algorithms for Stochastic Convex Optimization
	Corollaries for Planted k-CSPs

	Statistical Dimension of Planted Satisfiability
	Planted k-CSPs
	Lower Bounds for Planted k-CSPs

	Lower Bounds using Statistical Dimension
	Lower bound for VSTAT
	Lower bounds for MVSTAT and 1-MSTAT

	Algorithmic Bounds
	Set-up
	Algorithm Discrete-Power-Iterate (even k).
	Algorithm Discrete-Power-Iterate (odd k)
	Implementing the algorithms with the statistical oracle

	Discussion and open problems

