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Abstract: Studies addressing many ecological problems require accurate evaluation of the total
population size. In this paper, we revisit a sampling procedure used for the evaluation of the
abundance of an invertebrate population from assessment data collected on a spatial grid of sampling
locations. We first discuss how insufficient information about the spatial population density obtained
on a coarse sampling grid may affect the accuracy of an evaluation of total population size. Such
information deficit in field data can arise because of inadequate spatial resolution of the population
distribution (spatially variable population density) when coarse grids are used, which is especially
true when a strongly heterogeneous spatial population density is sampled. We then argue that the
average trap count (the quantity routinely used to quantify abundance), if obtained from a sampling
grid that is too coarse, is a random variable because of the uncertainty in sampling spatial data.
Finally, we show that a probabilistic approach similar to bootstrapping techniques can be an efficient
tool to quantify the uncertainty in the evaluation procedure in the presence of a spatial pattern
reflecting a patchy distribution of invertebrates within the sampling grid.

Keywords: population size; spatial density distribution; sampling plan; sampling grid; coarse grid;
sparse data; bootstrapping

1. Introduction

Understanding the spatiotemporal ecology of invertebrates is important for developing strategies
to enhance biodiversity and encourage species of conservation interest and strategies for efficient pest
management [1]. Assessment of the population size or the average population density of invertebrate
species in ecosystems often provides a basis for decision-making in both nature conservation and
integrated pest management (IPM). Such assessments must be sufficiently accurate as an unreliable
estimate of the total population size can lead to inadequate decision-making, such as unnecessary
application of control measures and associated damage to the ecosystem [2]. Inaccurate evaluation
of the total population size (or average density) may also result in a loss of important information
about the properties of ecological dynamics. This can lead to incorrect conclusions, for instance, about
the existence of a strong correlation (synchronisation) between population fluctuations in different
habitats [3] or between different species, e.g., between pest and natural enemy populations [4].

A range of methods have been developed to collect information about species abundance, each
addressing the specific biological traits of different organisms, as well as the needs of conservation
or crop management advisors [5–8]. The differing biological characteristics of species found within
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a single habitat or crop often result in the simultaneous use of different methods both in research
programmes or by consultants in their decision-making, e.g., [9,10]. Ensuring that population or
distribution estimates are comparable between species is therefore important [4]. Both in research
programmes and consultancy, the situation can be complicated by the use of different assessment
methods and by uneven (heterogeneous) spatial distribution manifested as patches, each patch
containing higher numbers of a defined species than in adjacent areas of the habitat [11,12].

In research programmes a sampling grid of traps is frequently deployed across the monitored
area, and a time series of repeated standard samples covering the period of interest are analysed. Trap
counts can be used to quantify the population abundance of the monitored species using appropriate
indices (e.g., the average trap count), either by calculating the population density by dividing the
average trap count by the monitoring area [13,14] or by using more advanced algorithms [15,16].
Abundance estimates can provide important data for conservation decision-making [17], and both
approaches are often used. Cost implications often restrict the use of grid sampling in IPM, and other
factors such as sample size and distribution of sampling points need to be established by research
(which can involve grid sampling) to support accurate assessment by growers and consultants [18,19].
It is therefore important that uncertainty in the assessment of population abundance using coarse or
fine sampling grids is quantified and understood.

The accuracy of an estimate of the average population density is known to depend on the
properties of a sampling grid [20,21]. The sampling grid must capture sufficient information about the
population distribution in order to adequately represent the population abundance. One important
consideration in a sampling protocol is the total number of locations from which samples are taken
(say N). In some cases, this property is derived from theoretical assumptions [19,22], while in many
others it is based on expert judgement [23]. Although available resources often prevent application
of the technique, pre-sampling can be used to obtain a sample mean and variance from which an
estimate of the number of sample units needed to achieve a specified accuracy can be calculated;
e.g., see [18,24,25]. The trade-off between the number of sample units needed to achieve optimal
accuracy and the number that can be afforded can still, however, result in practitioners using coarse
sampling grids in a trapping procedure. A similar problem occurs when sampling is used for pest
management decision-making. The number of sample locations in agricultural fields with linear
dimensions measured in several hundred meters has, both historically and in recent practice in
major UK field crops, rarely exceeded twenty [9,10,26–28], and in some cases N can be as small as a
single location [29]. Such restrictions on sampling protocols may affect the accuracy of the assessed
population abundance. Previous work [30–32] suggests that standard evaluation procedures are
unlikely to provide accurate results when coarse sampling grids are used because of uncertainty about
the patterns of spatial distribution of the invertebrates within the sample area, which lead to unreliable
estimates of the population abundance.

The amount of information that needs to be collected to estimate population abundance with
a required accuracy depends not only on the number of samples but also on the properties of the
spatial pattern of population distribution [16,33]. For an extremely uniform distribution, an adequate
sampling grid can consist of a small number of traps—ultimately, a single trap (provided the inherent
effects of randomness are properly addressed, which may bring additional constraints, e.g., see Section
2.2 in [16].) A population with a strongly heterogeneous distribution should be monitored using a
sampling grid with a larger number of traps to allow for the resolution of all features of a complex
spatial pattern [19]. Using a coarse grid in this case risks crucial information about the population
being missed and population abundance evaluated with substantial errors.

The problem is exacerbated by the fact that population distribution is usually unknown prior
to implementation of the sampling/monitoring. Location of a given trap in relation to high or low
density patches is random, and if the objective of the assessment is to estimate average population
density, the uncertainty arising from the spatial pattern is inherent to the problem. When a coarse
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sampling grid is employed, because of this uncertainty, the estimate becomes essentially a random
variable, which has to be handled using appropriate probabilistic techniques [31,34].

In this paper, field data on three invertebrate species with different biological and behavioural
characteristics collected from agro-ecological systems, by quantifying uncertainty in the assessment of
population abundance using coarse sampling grids, is used to further develop the approach discussed
in [31,34]. The paper is organised as follows. In Section 2 we briefly revisit the problem of evaluation
of the average trap count. As an example, we will use field data from a recent study on a slow moving
mollusc, the slug Deroceras reticulatum (Müller); because slugs are pests [35], we consider the problem of
its population size evaluation in the context of IPM. In Section 3, we discuss the concept of uncertainty
in sampling data arising as a result of an unknown spatial pattern in the population distribution. We
then consider how the uncertainty can be dealt with using a modified bootstrapping approach to
quantify the probabilistic characteristics of the average trap count. Our approach is further tested in
Section 4 using published field data on the slow moving, free living terrestrial planarian Arthurdendyus
triangulatus (Dendy). In Section 5, we demonstrate that our approach can be applied to species from a
different taxa such as the highly active carabid beetle Pterostichus melanarius (Illiger). Since carabids
are known to be a natural enemy that can be used in conservation biocontrol of some pests [36], they
are generally regarded as a beneficial species; therefore, we consider its monitoring in the context of
conservation. Finally, in Section 6, we consider the implications of our findings in case the population
abundance changes in time using multiple trap data on D. reticulatum collected over a season. Section
7 provides a discussion and conclusions.

2. Evaluation of the Average Trap Count on Coarse Sampling Grids: A Case Study of a Grey Field
Slug (Deroceras reticulatum) Population

Some key aspects of sampling-grid design that affect the estimation of average population density
in the presence of a spatial pattern, and which have previously been applied to the monitoring of
beetles (P. melanarius) [37] and flatworms (A. triangulatus) [38], are unlikely to be species-specific
and may remain valid for different taxa of invertebrates such as insects, arachnids, molluscs, and
annelids. Despite the broad relevance of the approach, important differences occur when it is applied
in the context of IPM (where the objective is often to reduce abundance of the monitored species)
and conservation (where the density of species of interest should remain sufficiently high). In IPM, a
threshold population (or sample) size may be established at which application of a control procedure
is justified on economic grounds [39], and it is important that the assessment procedure ascertains
whether this threshold is exceeded with the required level of accuracy. In conservation, the objective
may be to take action to prevent populations of defined species declining below an established density,
so such action thresholds may be used for different purposes. For the purposes of this study and to
avoid discussion of the relevance of specific thresholds, nominal ‘management action thresholds’ will
be considered to establish the principles investigated.

The grey field slug (Deroceras reticulatum) is a pest of a wide range of agricultural and horticultural
crops, resulting in significant economic losses in most years [40,41]. The species is slow moving and
has two activity peaks in arable fields, between November and December and again between late
February and May [35]. The discontinuous distribution of slugs in arable fields results in readily
detected patches of higher slug numbers interspersed within areas of lower slug densities irrespective
of the size of slug populations [42–44].

Sampling of slug populations in commercial winter wheat crops was carried out between autumn
2015 and autumn 2017 in four commercial winter wheat fields [44]. A standard experimental design
was established in all fields in both cropping years. Refuge traps had an upturned 18 cm diameter, and
plastic plant pot saucers were placed in a regular 10× 10 grid with 10 m between the nearest traps.
Sampling grids were established at a minimum of 20 m from the nearest field edge. The number of
slugs under each refuge trap were recorded after traps were left undisturbed for 14 days.
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The trap counts obtained in a given field on a given date are available as a table with N entries,
where N is the number of sampling locations (N = 10× 10 = 100). The average trap count can then be
evaluated as

S(N) =
1
N

N

∑
i=1

Ci (1)

e.g., , see [45,46], where Ci is the trap count in the ith refuge trap.
Our baseline example applies Equation (1) to trap counts collected from a sampling grid in a farm

field at Oadby, Leicestershire on 02 September 2016. The slug distribution reconstructed from the data
is shown in Figure 1, and the corresponding trap count values are shown in Figure 2a. The average
trap count obtained from Equation (1) is low (S = 1.07), which is typical for slugs in early autumn.

Figure 1. The slug spatial distribution reconstructed from trap counts. Trap counts were taken on a
sampling grid of 10× 10 locations in the Oadby field on 02 September 2016 (see details in the text), and
the corresponding numerical values are given in Figure 2a. The total length L of the sampling grid (100
m) in the x and y directions is rescaled as L = 1. The continuous distribution shown in the figure was
obtained from the discrete data (see Figure 2a) by using MATLAB software.

One important feature of Equation (1) is that the average trap count S depends explicitly on the
number N of sampling locations, S = S(N). In order to demonstrate this, and to investigate whether
the result S = 1.07 will significantly change if we use fewer sampling locations, average trap count was
re-calculated using a hypothetical trapping grid consisting of every second trap count in each row and
each column of the data table when rows and columns were numerated from a reference point in the
upper top left corner of the table (see Figure 2b). The average trap count obtained on a coarse grid of
25 sampling locations is Sc = 0.88 (where the subscript ‘c’ is used to indicate a coarse grid).
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Figure 2. Trap counts on fine and coarse sampling grids. (a) Trap counts on the original sampling grid
of 10× 10 locations. (b) Trap counts on a hypothetical sampling grid of 5× 5 locations. (c) Trap counts
on a hypothetical sampling grid of 3× 3 locations. (d) An extremely coarse sampling grid of 2× 2
locations is generated from the original grid.

The discontinuous, heterogeneous distribution of the slug population across the sampling grid
indicates that reduction in the number N of sampling locations may ultimately result in insufficient
information about the population being available to obtain an accurate evaluation of the average trap
count across the sample area. Thus, optimisation of the number N of sampling locations will enable
the required level of accuracy to be reached whilst minimising sampling effort.

To compare the average trap count Sc with that for S the relative error is defined as

e =
|S− Sc|

S
. (2)

Having substituted the values S = 1.07 and Sc = 0.88, we obtain e = 0.178, which means that
we underestimate the average trap count with the error of approximately 18% when we use a coarse
sampling grid of 25 traps instead of our original grid of 100 traps.

A common accuracy requirement used in ecological applications [47] is

e ≤ τ (3)
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where τ is a specified tolerance, i.e., the upper bound for the acceptable values of the estimation
error. Since the tolerance up to τ = 0.5 is often considered as acceptable [22,47,48], we conclude that
removing three quarters of the total number of traps does not make any significant impact on the
accuracy of this evaluation of the average trap count.

Generating an even coarser hypothetical sampling grid, by considering every third trap in each
row and column of the original table (Figure 2c) and substituting the remaining trap counts into
Equation (1) results in the average trap count Sc = 0.78 on a sampling grid of N = 9 traps. The error is
e = 0.273; i.e., we underestimate the average trap count by approximately 27%.

Finally, constructing a very coarse sampling grid of N = 4 sampling locations (Figure 2d) by
taking every fourth trap count in each row and column of the table in Figure 2a and substituting the
four remaining trap counts into (1) gives us Sc = 1.0 and e = 0.065. This is a surprising result, as the
evaluation of the average trap count obtained when just N = 4 sampling locations are used appears
to be more accurate than the two previous cases when trap counts at N = 25 and N = 9 sampling
locations were used. In order to resolve this paradox, let us notice that in this choice of sampling
locations we started counting rows and columns from the top left corner of the table. Repeating the
same evaluation but this time counting every fourth row and fourth column from the top right corner,
the average trap count of Sc = 1.5 is evaluated with the error e = 0.4019, which appears to be a more
logical outcome.

The above result clearly demonstrates that an average trap count estimated on a coarse sampling
grid is essentially a random value. In the case where the sampling grid is set up without reference to
the location of either slug patches or factors that may influence the distribution of slugs in the field
a single estimate is not reliable. However, in cases where the original sampling grid is sufficiently
large, it appears possible to provide a reliable estimate by quantifying the statistical properties of the
estimate. This will be investigated in the next section.

3. Random Selection of Sampling Locations on a Quasi-Regular Grid (Deroceras reticulatum)

In order to quantify the uncertainty of the average trap count, in this section we generate auxiliary
data sets of trap counts using sub-grids of the original sampling grid of data collected in the Oadby
field on 02 September 2016. Starting from the original table of trap counts, which corresponds to a
regular sampling grid of N = 10× 10 locations shown in Figure 2a, the original sampling grid was
divided into 25 sub-domains each containing 4 trap counts as shown in Figure 3b. A single trap count
in each sub-domain was randomly selected resulting in a hypothetical coarse grid of N = 25 sampling
locations. This ‘quasi-regular’ sampling grid preserves a regular structure whilst allowing the position
of each trap being shifted within each sub-domain.

The random choice of a single trap count in each sub-domain has already been discussed in
Section 2 but can now be further justified by the following argument. Considering, for example, the
top left corner of the original domain. There are four trap counts in the corresponding sub-domain, i.e.,
{1, 2, 0, 4}; see Figure 3a. A random choice of any of the above values can be interpreted as moving a
trap location across the sub-domain. Thus, the location of the sub-domain is fixed; however, depending
on the precise trap location, any one of the four values {1, 2, 0, 4} for the trap count might occur. If the
distribution of trap counts collected in the field arises from a certain probability density function [49–51],
then some trap count values are more likely to be recorded than others. However, it is not known
from the probability density function where those trap counts can be found in a spatial domain. The
same probability density function will generate different spatial patterns at different times. Thus, we
can predict the existence of patches with high slug density and patches with low slug density if the
probability density function for the slug distribution is available, yet we cannot predict the spatial
arrangement of those patches. Hence, the results of the sampling procedure depend not only on the
probability density function of the slug population but also on the particular spatial pattern of slug
distribution at the time trap counts are collected. Since a priori information about that spatial pattern is
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usually not available, the optimal location of each trap on a coarse sampling grid cannot be predicted.
Therefore, in order to reveal the statistical properties, all possible cases must be simulated.
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Figure 3. Generating a sequence of quasi-regular coarse sampling grids. Only one trap count is
randomly selected with equal probability from each sub-domain on a coarse grid. The boundaries of
each sub-domain on a coarse sampling grid are shown as bold lines (see details in the text). (a) The
original sampling grid of N = 100 locations. (b) An example of trap counts randomly selected on a
quasi-regular sampling grid of N = 25 locations. (c) A random choice of trap counts on a coarse grid of
N = 9 locations. (d) A very coarse sampling grid where one trap count is randomly selected in each of
four sub-domains.

Using the example of data from the sampling grid of 25 traps shown in Figure 3b, the average trap
count is Sc = 1.24 with an error e = 0.1589. Clearly this result is different from the answer obtained on
the sampling grid with the same number of sampling locations considered in Section 2, which reflects
the random nature of the average trap count.

It can be readily seen that, by shifting the location of the trap between the four possible positions
within each of the 25 sub-domains, one obtains in total as much as K = 425 different sampling grids
and, correspondingly, 425 possible average trap count values Sc. Since the average trap count Sc is
essentially a random variable, this procedure gives us K realisations of that random variable. The
whole multiplicity of K possible values of Sc then can be used to establish its statistical properties,
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e.g., the mean and the standard deviation. This approach is similar to well-known bootstrapping
techniques [52].

Each value of Sc obtained in the above procedure can be compared with the average trap count S
obtained from the original (fine) sampling grid of Figure 2a by computing the error (2). For the coarse
sampling grid of N = 25 locations, it will produce K = 425 values of the evaluation error e. Since Sc

is essentially a random variable, e is a random variable too. Hence, similarly to Sc, the whole array
of K realisations of e can be quantified by some statistical measures, e.g., the mean and the standard
deviation.

Consider K realisations of Sc and let the range of Sc be Sc ∈ [Smin
c , Smax

c ]. The interval [Smin
c , Smax

c ]

is divided into M subintervals or ‘bins’ and the size of each bin is defined as s = (Smax
c − Smin

c )/M.
The boundaries of each bin are then defined as Sm+1

c = Sm
c + s, m = 1, 2, . . . , M− 1, S1

c = Smin
c . The

mean value µS of Sc is given by the following expression:

µS =
1

2K

M−1

∑
m=1

km(Sm
c + Sm+1

c ) (4)

where km is the number of realisations of random variable Sc in the subinterval [Sm
c , Sm+1

c ]; for a
detailed explanation of Equation (4), see [34].

Equation (4) takes into account that some values of Sc are more likely to occur than others. Note

that, in general, the mean value of Equation (4) is different from the arithmetic average µ̂S = 1
K

K
∑

k=1
Sk

c .

The value of µS defined by Equation (4) will only coincide with the arithmetic average if estimated
on the full ‘fine’ sampling grid, but it may become different when estimated on a coarse grid (i.e., a
‘sub-grid’ of the full grid, cf. Figure 3).

Once the mean µS has been computed, the standard deviation is

σS =

√√√√M−1

∑
m=1

km

K

(
Sm

c + Sm+1
c

2
− µS

)2

(5)

where again we take into account frequencies of finding certain realisations of random variable Sc.
Similarly, we define the mean value µe of error e as

µe =
1

2K

M−1

∑
m=1

km(em + em+1) (6)

and the standard deviation as

σe =

√√√√M−1

∑
m=1

km

K

(
em + em+1

2
− µe

)2

. (7)

Here km is now the number of realisations of random variable e in the subinterval [em, em+1],
where each sub-interval [em, em+1] is defined from the range [emin, emax] in the same manner as has
been done for variable Sc.

The definition of accuracy in Equation (3) now has to be revised to determine that the upper
bound of the evaluation error falls below the specified tolerance:

µe + σe ≤ τ. (8)

Consider, for example, the tolerance τ = 0.25. If the condition of Equation (8) holds, the coarse
sampling grid can be regarded as sufficiently accurate: whatever the geometry of a quasi-regular
sampling grid of N = 25 sampling locations (i.e., wherever we install a trap in each sub-domain of the
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grid), we will have an accurate evaluation of the average trap count. The average trap count will be
within 25% of the average trap count obtained on the fine grid of N = 100 sampling locations. We will
further discuss this issue (including the estimation of the probabilities to get an inaccurate answer) in
Section 6.

Applying the above procedure to our baseline case of the Oadby field (see Figures 1 and 2a), we
can establish whether the condition of Equation (8) holds on sub-grids with a different number N of
sampling locations. The results of the simulation are shown in Table 1. The second column in the table
corresponds to the original grid of N = 100 sampling locations. All trap counts contribute equally to
Equation (1), and no bootstrapping is possible; thus, only a single average trap count can be computed,
i.e., S = 1.07. Therefore, both the standard deviation of S is zero, and the evaluation error is zero.

Table 1. Evaluation of the average trap count on coarse sampling grids. Analysis of the evaluation
accuracy for the slug distribution from data taken in the Oadby field on 02 September 2016. The
mean value µS(N) and the standard deviation σS(N) are computed for the average trap count Sc on
a sequence of quasi-regular grids with number N of sampling locations. For any realisation of the
average trap count the error (2) is computed. Given K realisations of error (2), the mean evaluation error
µe(N), the standard deviation σe(N) of the evaluation error, and the upper error bound µe(N) + σe(N)

are computed for each N in the table. The values of the estimate of the average trap count that exceed a
hypothetical management action threshold of 1.5 slugs per trap (in this case, suggesting application of
control measures) are shown in red.

N 100 25 9 4 1
µS(N) 1.07 1.09205 1.10693 1.06380 1.09375
σS(N) 0.0 0.191571 0.349385 0.53295 1.04197
µe(N) 0.0 0.137604 0.26325 0.401503 0.800444
σe(N) 0.0 0.100688 0.192173 0.287855 0.638311

ē = µe(N) + σe(N) 0.0 0.238292 0.455424 0.689358 1.43876
Sso f t = µS + σS 1.07 1.283621 1.456315 1.59675 2.13572

Shard = µS(1 + ē) 1.07 1.352276 1.611052 1.797139 2.667393

The third column in the table corresponds to the range of data sets generated on a quasi-regular
grid of N = 25 sampling locations. It is not possible to consider all K = 425 data sets (sub-grids)
as it would require an unrealistically long computation time. Correspondingly, in our statistical
experiments, K = 425 of all possible realisations of random variables Sc and e was replaced by a
smaller number K = 3× 105. The mean and standard deviation were then computed for Sc and e
using Equations (4)–(7); see the third column of Table 1. The mean value µS = 1.092 of the average
trap count is very close to the ‘exact’ answer S = 1.07 obtained on the original sampling grid of
100 sampling locations. Furthermore, the standard deviation σc is not large. Hence, for any single
trap count selected from four trap counts available in each sub-domain of a coarse sampling grid, a
sufficiently accurate estimate of the average trap count is obtained. This conclusion is supported by
the associated evaluation error. The mean error is µe(N) = 0.138, and the upper bound of the error is
µe(N) + σe(N) = 0.238 < τ = 0.25. Thus, for a quasi-regular sampling grid of 25 locations (whichever
combination of N = 25 trap counts is selected), the evaluation error is unlikely to exceed 25%.

Generating another hypothetical coarse sampling grid that utilises N = 9 sampling locations
from the original grid, the corresponding domain partition is shown in Figure 3c. This grid preserves
a quasi-regular structure so that each of those nine locations can be randomly selected with equal
probability from a defined sub-domain of the original grid. Note that, unlike the previous case, it is
not possible to include the same number of sampling locations into each sub-domain.

The number of ways to generate a sub-grid using a single trap count from those available in each
sub-domain is now K = 94 × 124 × 16 = 2, 176, 782, 336. Because of the computation time constraints,
it is replaced with K = 3× 105. The results are shown in the fourth column of Table 1. It can be readily
seen that the evaluation of the average trap count is not sufficiently accurate when a sampling grid
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of N = 9 locations is employed. The mean value of the error remains low, but the larger standard
deviation σe(N) indicates that an accuracy within 25% cannot be reliably achieved using this coarse
grid.

Next, a coarse sub-grid consisting of N = 4 sampling locations is obtained from the original grid,
with the geometry shown in Figure 3d. In this case, a total of K = 254 = 390, 625 different data sets
(sub-grids) can be generated. The results of the simulation are shown in the fifth column of Table 1.
The accuracy of evaluation has decreased as the number N of sampling locations is decreased. The
mean error is approximately 40%, and the upper error bound is about 70%. This result confirms the
conclusion in Section 2 that a sampling grid of four traps will unlikely yield a reliable assessment of
average trap count.

Finally, the original sampling grid can be reduced to a ‘grid’ consisting of just one trap. The
results are presented in the last column of Table 1. As expected from previous analyses, the accuracy
of evaluation is unacceptably low as the mean error is about 80% and the upper error bound is more
than 100%.

Once the statistical properties of the average trap count are established, they can be used as a basis
for making a management decision. Pest management approaches often recommend an application of
pesticides only when the average trap count (being regarded as a proxy of the population abundance)
exceeds a defined threshold, say ST. The number of traps used to assess population abundance is
important, as too few will result in inaccurate decision-making, but the costs associated with assessment
can result in prophylactic treatment, an economically attractive option if many traps are used.

In the above, we have shown how the required statistical information about trap count distribution
can be obtained: it can be extracted from the data if the grid contains a sufficiently large number of
nodes for the bootstrapping procedure described above. In order to make a comparison between this
information and the management threshold, one can construct two different quantities that takes into
account the range of possible realisations; see Sso f t and Shard in Table 1. It is these two quantities that
should be compared with the threshold. It can be readily seen that one of them provides a stricter
test than the other: for instance, on the grid of intermediate coarseness containing 3× 3 = 9 traps,
Shard > ST (hence recommending application of control measures), but Sso f t < ST . Which of the two
quantities should be chosen in monitoring of a given pest will depend on the acceptable level of risk;
in case of a high risk species, a stricter test must be used.

The results of applying the same approach to the evaluation of the average trap count from three
different fields where data on slug population were collected in autumn 2016 using a similar sampling
grid are presented in Table 2. The slug population in all cases was low (total number of slugs: Adeney
Middle field – 58, South Kyme – 112, Uppington – 50). The results of evaluation in Table 2 show the
same trend reported for the Oadby field. The mean error along with the upper error bound increase
steadily as the number of sampling locations decreases.

As one common property of the field data considered above is a low average trap count, a question
may arise here as to whether our approach remains valid in the case of higher counts. This also evokes
a question, albeit indirectly, as to how the quality of the estimate may depend on the biological traits
of the monitored species. It is well known that the typical degree of spatial aggregation may differ
significantly between different species [12]. This may have an effect on the pattern of the population
spatial distribution; hence, it may affect the distribution of trap counts. Applying the approach to
data collected for other species where the total population is larger may provide some insight into
these questions.
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Table 2. Evaluation of the average trap count on coarse sampling grids. Analysis of the evaluation
accuracy for the slug distribution from data taken in various agricultural fields (as shown in the table).
The mean value µS(N) and the standard deviation σS(N) are computed for the average trap count Sc

on a sequence of quasi-regular grids with number N of sampling locations. For any realisation of the
average trap count the error (2) is computed. Given K realisations of error (2), the mean evaluation error
µe(N), the standard deviation σe(N) of the evaluation error, and the upper error bound µe(N) + σe(N)

are computed for each N in the table.

Field: Adeney Middle, 05.09.2016

N 100 25 9 4 1
µS(N) 0.58 0.580306 0.574507 0.659841 0.601875
σS(N) 0.0 0.13028 0.254346 0.402294 0.75277
µe(N) 0.0 0.180296 0.348967 0.543847 1.15625
σe(N) 0.0 0.121942 0.251273 0.371136 0.69694

µe(N) + σe(N) 0.0 0.302238 0.60024 0.914983 1.85319

Field: South Kyme MC, 25.11.2016

N 100 25 9 4 1
µS(N) 1.12 1.12206 1.18208 1.19131 1.40625
σS(N) 0.0 0.228638 0.426481 0.679341 1.40987
µe(N) 0.0 0.168173 0.315422 0.480558 0.94519
σe(N) 0.0 0.121077 0.239031 0.330425 0.73124

µe(N) + σe(N) 0.0 0.28925 0.554353 0.810983 1.67643

Field: Uppington, 13.09.2016

N 100 25 9 4 1
µS(N) 0.5 0.499703 0.549732 0.487895 0.55
σS(N) 0.0 0.129847 0.257785 0.397644 1.17853
µe(N) 0.0 0.218399 0.442847 0.633147 1.77875
σe(N) 0.0 0.151841 0.311785 0.523172 1.17853

µe(N) + σe(N) 0.0 0.37024 0.754633 1.15632 2.95728

4. Analysis of Trap Count Data for Flatworm Arthurdendyus triangulatus

The New Zealand flatworm, Arthurdendyus triangulatus [53], is an invasive free living predaceous
terrestrial planarian that is spread by trade or other movement of plants and soil within their country
of origin and abroad. It was first reported in the UK in Northern Ireland in 1963 and subsequently in
Scotland in 1965, with some established colonies reported in Northern England [54]. Once established
in an area, populations can expand into other suitable habitats in search of prey [55,56]. A. triangulatus
is slow moving and probably feeds exclusively on earthworms [57,58], capturing living prey by
wrapping itself around and entangling the worm in a mucus that may play a role in the immobilisation
and digestion of the prey [59,60]. Initial work investigating the distribution of flatworms in grassland
has included an evaluation of techniques used for trap catch analysis [38] using data previously
collected in extensive field studies.

The current study uses data originally collected in January–March of 2002 from a grassland field
near Belfast, UK [61]. Refuge traps were positioned at the nodes of a 12× 12 regular grid, with two
meters between adjacent traps. The traps were examined at weekly intervals and the numbers of
flatworms counted. Further details of the trapping procedure are provided in [38,61]. Here, we consider
one record of trap counts made in January 2002 where, for the sake of comparison with the analysis of
the preceding sections, we consider a sub-grid with 10 traps in each direction. The corresponding trap
count data are shown in Figure 4a. The total number of flatworms collected from the sampling grid
of N = 100 locations is 454, which is a significantly higher number than the population abundance
evaluated from trap counts on a similar grid for the slug populations. The flatworm spatial distribution
visualized from the trap count data on a sampling grid of N = 10× 10 = 100 traps is shown in
Figure 4b.
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Figure 4. (a) An example of trap counts collected by Murchie and Harrison in their field study of
flatworm populations; see [61] for more details. (b) A flatworm spatial distribution reconstructed
(using MATLAB software) from the field data in Figure 4a, where, for convenience, the area’s linear
size is scaled to one.

Whatever management action may be needed, the decision will only be well informed if it is
based on a reliable, sufficiently accurate estimate of the average trap count. Therefore, evaluation
of the average trap count still requires the condition of Equation (8) to hold. In order to make our
analysis consistent with Section 3, we consider tolerance τ = 0.25, i.e., the estimation error up to 25%
is regarded as acceptable. We also introduce a hypothetical ‘management point’ ST of the average trap
count, so that a management action can only be applied (e.g., aiming to ease the pressure on the earth
worm population) if an estimate of the average trap count is larger than the given management point:

Sc ≥ ST . (9)

For the sake of discussion only, in our analysis below, we consider ST = 5.
We now apply the procedure described in Section 3 to the flatworm sampling data to coarsen the

original fine sampling grid (cf. Figure 4a) and to investigate the statistical properties of the average trap
count and of the estimation error calculated on various sub-grids. The results are shown in Table 3.

Table 3. Results for the flatworm average trap counts obtained on a sequence of coarse grids from
the data in Figure 4a. The mean value µS(N) and the standard deviation σS(N) are computed for the
average trap count Sc on a sequence of quasi-regular grids with number N of sampling locations. For any
realisation of the average trap count the error (2) is computed. Given K realisations of error (2), the mean
evaluation error µe(N), the standard deviation σe(N) of the evaluation error, and the upper error bound
µe(N) + σe(N) are computed for each N in the table. The values of the estimate of the average trap
count that exceed the hypothetical management point of ST = 5 flatworms per trap are shown in red.

N 100 25 9 4 1
µS(N) 4.54 4.53945 4.81888 4.5333 5.25875
σS(N) 0.0 0.391353 1.01255 1.29929 3.17851
µe(N) 0.0 0.069316 0.142631 0.229832 0.573995
σe(N) 0.0 0.0511691 0.103361 0.166017 0.368445

ē = µe(N) + σe(N) 0.0 0.120561 0.245992 0.395849 0.942441
Sso f t = µS + σS 4.54 4.931353 5.83143 5.83259 8.43726

Shard = µS(1 + ē) 4.54 5.086731 6.004286 6.327802 10.21481

The results obtained for the flatworm average trap count on a sampling grid of N = 25 locations
show good accuracy as the upper bound µe(N) + σe(N) of the estimation error is 12%. Hence, the
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estimate of the average trap count can be taken as reliable. However, the comparison of the average
trap count estimate to the management point ST is less straightforward. We recall from the previous
section that the array of all possible values of the average trap count S can be quantified in at least
two different ways, i.e., by calculating quantities Sso f t and Shard. To increase the robustness of the
estimation, both these quantities should be considered. For a coarse grid of N = 25 sampling locations,
Shard > ST , but Sso f t < ST . Whilst the former apparently recommends a management action, the
latter does not. This ambiguity indicates that the ‘actual’, precise value of the average trap count
(which is not available due to the insufficient information inherent for coarse grids) is very close to the
management point. To make a decision whether a management action needs to be taken, one would
have to use additional data.

Interestingly, the results obtained in the case of a coarser grid of N = 9 locations appears to
be easier to utilise. The ‘upper bound’ (µe + σe) of the estimation error has now increased to 24.6%;
however, since it is still below the required tolerance, the estimation can be regarded as reliable. In
this case, both Shard > ST and Sso f t > ST consistently indicate that management action should be
considered in spite of µS < ST .

In the cases of N = 4 and N = 1, ē > τ, indicating that the accuracy of the population estimate, is
unacceptably low. Hence, despite the finding that both Shard > ST and Sso f t > ST , management action
cannot be recommended: the true value of the average trap count is likely to be below the management
point and an intervention is likely to be unjustified.

5. Analysis of Trap Count Data for the Carabid Beetle Pterostichus melanarius

The above conclusions on the accuracy of evaluation on coarse sampling grids are further
corroborated by the analysis of the results of a field study on another species, the predatory carabid
beetle Pterostichus melanarius [37]. Trap counts for this fast moving, very active species were obtained
from a 16× 16 regular grid of pitfall traps established in a winter wheat field in Devon, UK (Figure 5).
Details of the trapping procedures are provided in [37]. For the purpose of the current study, two
rectangular sub-grids, each with 100 sampling locations, were extracted from the original square grid
of 16× 16 = 256 traps. The two sub-grids are highlighted in grey in Figure 5. In our analysis below,
we refer to the upper part of the original table as Data Set I and to the the lower part of the table as
Data Set I I.

Figure 5. Two data sets of N = 100 trap counts of P. melanarius; each have been extracted from a single
original data set of N = 256 trap counts collected by Alexander et al. (2005). Data Set I has been taken
from the upper half of the original data table, and Data Set I I has been taken from the lower half of the
original data table. Both data sets are shadowed in grey.
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P. melanarius is a beneficial species predating several pest species [36], so the concept of a
control threshold is irrelevant. However, monitoring and management action may be needed for
different reasons, e.g., in the context of conservation. One concern therefore is that the average trap
count (considered as a proxy of the beetle’s population abundance) should not fall below a certain
management point, say S∗ = 2 beetles per trap.

Before the average trap count can be compared with the management point, the randomness of
population estimation on a coarse grid has to be considered. Therefore, as well as the above procedure
(see Section 3), we calculate the array of values of the average trap count Sc and the estimation error e
on various sub-grids for Data Sets I and I I. Once the statistical measures of the distribution of Sc and
e are established, one can consider two values that quantify the whole range of possible trap count
values, namely, Shard and Sso f t; see the lower two rows in Tables 4 and 5. Note that, due to the different
context—conservation rather than control—the definition of these values is different from Sections 3
and 4). Whenever one of these values is below the management point, there is a concern; if both of
them fall below the management point, then conservation measures become necessary.

First considering Data Set I, in order to make the results comparable with the analysis of the
previous sections, before coarsening the grid we first rearrange the one hundred samples available in
the data set as a 10× 10 grid. The results of the coarse grid analysis are shown in Table 4. The total
number of beetles on the baseline sampling grid of N = 100 locations is 419 so that the average trap
count S = 4.19 (see the second column of the table). Since it is above the management point S∗ = 2, a
management action is not required. Note that, because the bootstrapping procedure is not possible in
this case, Sso f t = Shard = S.

Table 4. Results for the average trap counts obtained for the beetle population on a sequence of
coarse grids from Data Set I in Figure 5. The mean value µS(N) and the standard deviation σS(N)

are computed for the average trap count Sc on a sequence of quasi-regular grids with number N of
sampling locations. For any realisation of the average trap count the error (2) is computed. Given K
realisations of error (2), the mean evaluation error µe(N), the standard deviation σe(N) of the evaluation
error, and the upper error bound µe(N) + σe(N) are computed for each N in the table. The estimated
values of the average trap count that falls below the hypothetical management point (conservation
target) of S∗ = 2 beetles per trap are shown in red.

N 100 25 9 4 1
µS(N) 4.19 4.19118 4.22304 4.20802 4.26312
σS(N) 0.0 0.831115 1.59125 2.54429 5.0996
µe(N) 0.0 0.160162 0.291408 0.462822 0.800091
σe(N) 0.0 0.117191 0.241096 0.425638 0.912036

ē = µe(N) + σe(N) 0.0 0.277352 0.532503 0.888461 1.71213
Shard = µS − σS 4.19 3.360065 2.63179 1.66373 <0

Sso f t = µS(1− ē) 4.19 3.028748 1.974258 0.469358 <0

The spatial distribution of the beetles in the corresponding area (see the top part of Figure 5) is
mostly homogeneous with one relatively small patch with a high population density. However, the
trap count taken from that patch contributes approximately 10% of all the beetles sampled, so may
exert high leverage on the accuracy of evaluation. In particular, one can expect that a coarser grid that
misses the patch would provide an estimate of unacceptable accuracy. This expectation is confirmed
by the results shown in Table 4. Already for N = 25, the upper bound of the estimation error is above
the assumed value τ = 0.25 of the tolerance and further increases on coarser sub-grids. Therefore, if
the data are collected on a coarse sampling grid (N = 25 or less), a reliable estimate of the average trap
count is not possible, precluding a management decision. Even in a case where both Sso f t and Shard fall
below the management point (e.g., see the N = 4 column in Table 4), the ‘true’ average trap count is
likely to be above the point, as the uncertainty of the estimate is very high. Interestingly, for all four
coarse grids, i.e., for N = 25, N = 9, N = 4, and N = 1, the expected average trap count µS is almost
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the same, demonstrating that, even with the use of the bootstrapping procedure, a single statistical
measure is not sufficient to provide a robust estimate.

In Data Set I I, the total number of beetles recorded on the fine sampling grid of N = 100 locations
is 949, so that S = 9.49. The average trap count is therefore well above the management point S∗ = 2;
thus, no management action is needed. This value remains approximately the same on all coarse grids
considered; see Table 5. Similarly to Data Set I, the standard deviations for the average count σS and
for the estimation error σe increase with a decrease in N. However, the rate of increase is somewhat
slower than in the case of Data Set I; as a result, for N = 25 the upper bound of the estimation error
is still below the tolerance. This is consistent with the properties of the beetle distribution over the
corresponding area; see the bottom of Figure 5. Unlike Data Set I, there are three patches of high
population density, not one. A distribution with multiple patches is known to be somewhat less
sensitive to the number of sampling locations in the grid compared to the case of extreme population
aggregation in one single patch [31,33,38].

Table 5. Results for the average trap counts obtained for the beetle population on a sequence of
coarse grids from Data Set I I in Figure 5. The mean value µS(N) and the standard deviation σS(N)

are computed for the average trap count Sc on a sequence of quasi-regular grids with number N of
sampling locations. For any realisation of the average trap count the error (2) is computed. Given K
realisations of error (2), the mean evaluation error µe(N), the standard deviation σe(N) of the evaluation
error, and the upper error bound µe(N) + σe(N) are computed for each N in the table. The estimated
values of the average trap count that falls below the hypothetical management point (conservation
target) of S∗ = 2 beetles per trap are shown in red.

N 100 25 9 4 1
µS(N) 9.49 9.48836 9.32295 9.47697 9.54531
σS(N) 0.0 1.53983 2.65411 3.99768 8.54964
µe(N) 0.0 0.129577 0.225206 0.33965 0.725803
σe(N) 0.0 0.0964533 0.164412 0.247537 0.56588

ē = µe(N) + σe(N) 0.0 0.22633 0.389618 0.587188 1.29168
Shard = µS − σS 9.49 7.94853 6.66884 5.47929 0.99567

Sso f t = µS(1− ē) 9.49 7.340859 5.690561 3.912207 <0

Due to the large population counts in the case of Data Set I I, both Sso f t and Shard are much higher
than the hypothetical management point S∗ = 2 on the coarse grids with N = 25, N = 9, and N = 4.
In practical terms, this suggests that, even if the accuracy of estimation becomes low (e.g., 0.38 in case
N = 9), the true value of the average count S is unlikely to fall below S∗. We therefore conclude that
the use of coarse sampling grids, in particular in the context of conservation, may still be justified for
the population abundance evaluation when the average trap count is expected to be well above the
management point.

6. Analysis of the Temporal Dynamics of Slug Populations

The conclusions on the use of coarse sampling grids for population abundance evaluation can
be further tested by applying our approach to data describing temporal population dynamics where
the average trap count may change significantly as time progresses. In this section, we consider the
data describing slug abundance (see Section 2 for details) obtained from trap counts collected from the
standard 10× 10 grids established in two fields (Uppington and Stoney Lawn, Shropshire, UK) on
several dates between December 2015 and May 2016. For each of the census dates (8 for Uppington; 12
for Stoney Lawn), the data were analysed using the procedure described in Section 3 to calculate the
mean value µS of the average trap count and the standard deviation σS on several sub-grids with a
different number N of sampling locations. The range of possible values for the average trap count is
then described by the interval (µS − σS, µS + σS).
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The results obtained for four coarse grids using the data from the Uppington field are shown in
Figure 6: (a) for N = 25, (b) for N = 9, (c) for N = 4, and (d) for N = 1. In all of these cases, the mean
value µS (solid black line, open squares) is presented along with the ‘exact’ value S of the average trap
count (solid red line, open diamonds) calculated on the original grid of N = 100 locations. The range
µS ± σS is shown by the dashed lines. The solid green line shows the hypothetical threshold value
ST = 5.
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Figure 6. Temporal dynamics of slug populations in the Uppington field. Field assessments
commenced on 7 December 2015 (Day 1). The mean value µS (solid black line, open squares), the ‘exact’
value S of the average trap count calculated on the original grid of N = 100 locations (solid red line,
open diamonds), the lower bound µS − σS (dashed line, open circles), and the upper bound µS + σS

(dashed line, stars) of the range of the average trap count are shown. The hypothetical threshold value
ST = 5 is shown by the horizontal solid green line. (a) Sampling grid of N = 25 locations. (b) Sampling
grid of N = 9 locations. (c) Sampling grid of N = 4 locations. (d) Sampling grid of N = 1 location.

For all dates during the first three months of observations, the average trap count was well below
the threshold value ST . Note that the value of µS calculated on coarse grids was always very close
to the ‘exact’ average trap count, µS ≈ S, so that the range µS ± σS is centred around the true value
of the average count. However, a confident conclusion as to whether the population is below the
threshold (above the threshold) can only be made if not only µS < ST but also the entire range of
possible values is below the threshold, i.e., µS + σS < ST (respectively, µS − σS > ST). In other words,
ST must lie outside of the interval (µS − σS, µS + σS). It can be readily seen that this unambiguous
situation only occurs for grids with N = 25 and N = 9 locations: in Figure 6a,b, the horizontal line
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ST = 5 never intersects the range of average trap counts between the dashed lines for any of the census
dates. Meanwhile, for the grids with N = 4 (Figure 6c) and N = 1 (Figure 6d), for the last two census
dates, the value ST = 5 lies within the range of possible values of the average trap count so that no
immediate conclusion can be made. In particular, for those two very coarse grids for the data collected
on the last census date, the range of the average trap count is so large that an estimate Sc < ST = 5 can
likely be obtained, while the true value (known from the fine grid) is actually S > ST . We therefore
conclude that the use of coarse grids may be justified (providing information of sufficient accuracy)
when the average trap count is expected to lie well below the management point. However, it is hardly
justified when the average trap count appears to be close to the management point.

The data collected at the other, more densely populated field (Stoney Lawn) were analysed using
a similar approach; see Figure 7. The situation differs from the previous case because, for all coarse
grids, the line ST = 5 intersects the range µS ± σS at least twice. Therefore, for several census dates,
inaccurate estimates of the average trap count are likely.
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Figure 7. Temporal dynamics of slug populations in the Stoney Lawn field. Field assessments
commenced on 7 December 2015 (Day 1). The mean value µS (solid black line, open squares), the ‘exact’
value S of the average trap count calculated on the original grid of N = 100 locations (solid red line,
open diamonds), the lower bound µS − σS (dashed line, open circles), and the upper bound µS + σS

(dashed line, stars) of the range of the average trap count are shown. The hypothetical threshold value
ST = 5 is shown by the horizontal solid green line. (a) Sampling grid of N = 25 locations. (b) Sampling
grid of N = 9 locations. (c) Sampling grid of N = 4 locations. (d) Sampling grid of N = 1 location.
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In order to quantify the uncertainty arising in cases where the threshold ST lies within the interval
(µS − σS, µS + σS), one can calculate the probability p of drawing a wrong conclusion:

p =
k
K

(10)

where K is the total number of realisations of the estimate Sc of the average trap count S (emerging in
the bootstrapping procedure, see Section 3) on a sampling grid of N locations, and k is the number of
realisations for which values S− ST and Sc − ST have a different sign. If inaccurate estimates of the
average trap count are likely to appear, then the probability p is high, while if accurate estimates of the
average trap count appear on a rare occasion, then p is low.

The results of the probability computation on various sampling grids are shown in Table 6. It can
be seen from the comparison of Table 6 and Figure 7 that the above conclusion is further confirmed: a
fine sampling grid must be used for evaluation when the average trap count is close to the threshold
value. Even on a relatively fine grid of N = 25 sampling locations, we have p = 0.27 on Day 11 of
the measurements when the average trap count is S = 4.67. Meanwhile, it also follows from the
computation of the probability p that even a very coarse sampling grid can be used in the sampling
routine if the average trap count is sufficiently far away from the threshold value.

Table 6. The probability of drawing a wrong conclusion about the slug population in the Stoney Lawn
field. N is the number of sampling locations.

N = 25

day 1 11 15 30 35 38 45 50 55 71 144 166
p 0.0 0.27 0.26 0.06 0.07 0.21 0.07 0.0 0.05 0.0001 0.0 0.0

N = 9

day 1 11 15 30 35 38 45 50 55 71 144 166
p 0.002 0.35 0.36 0.21 0.25 0.42 0.27 0.015 0.25 0.036 0.0 0.0

N = 4

day 1 11 15 30 35 38 45 50 55 71 144 166
p 0.03 0.42 0.42 0.33 0.36 0.46 0.37 0.06 0.30 0.10 0.0 0.005

N = 1

day 1 11 15 30 35 38 45 50 55 71 144 166
p 0.0 0.44 0.49 0.41 0.5 0.62 0.52 0.22 0.46 0.33 0.04 0.13

7. Discussion and Concluding Remarks

Average trap counts have long been used to provide information on population abundance
in ecological applications or when making management decisions [5,6,28]. Accurate and reliable
evaluation of the average trap count is important when drawing conclusions about an agro-ecological
problem. In this paper, to determine the impact of the number of sampling locations on the accuracy
of an average trap count, the outcomes of assessments of three different invertebrate species were
investigated using a series of coarse sampling grids. In all cases, it was concluded that the average
trap count evaluated on coarse sampling grids should be considered as a random variable. The range
of that variable is influenced by a number of factors that can be related to the biology and behaviour
of the species sampled, such as the spatial pattern of the population distribution. Species such as the
slug D. reticulatum display a heterogeneous spatial distribution, characterised by spatio-temporally
stable patches of higher densities dispersed amongst areas of lower numbers [42,44]. In such situations,
coarse sampling grids usually result in inaccurate evaluation of average trap count. In this paper, we
have developed a method (see Section 3) that can provide an understanding of the degree of reliability
of assessments made.
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Given the commonly occurring limitations on available resources, the use of coarse grids of
traps in routine monitoring of invertebrate populations is almost ubiquitous. The question therefore
arises how the inherent uncertainty of the average trap count evaluation can be quantified and dealt
with. It is demonstrated in this paper that the results of sampling on coarse grids of traps can only
be considered as reliable if the mean value significantly differs from the management point, i.e., a
species-specific target value. In this case, almost any realisation of a random average trap count is likely
to be considerably different from the management point. However, in the case where the estimate of
the average trap count is close to the management point, the sampling data collected on a coarse grid
becomes insufficient. A management decision made based on the coarse grid data is then likely wrong
or irrelevant. A larger sampling grid is required and the data needs to be analysed more carefully, e.g.,
using the modified bootstrapped procedure considered in Section 3.

As suggested in the introduction and shown in our previous work, it is the spatial heterogeneity
(to which we somewhat loosely refer to as a spatial pattern) that makes the problem of the population
abundance evaluation challenging. The importance of spatial pattern has been appreciated in many
natural sciences, and a number of spatial-sensitive methods and approaches have been developed to
account for the effects of spatial heterogeneity, e.g., geostatistical and point pattern methods [62,63].
However, a closer look at the existing approaches readily reveals that the problem of an accurate
evaluation of the average sample count on coarse grids, which is central for many of those methods
(e.g., the ordinary kriging method), has been poorly investigated. A clear understanding of this issue
is lacking; instead, the problem is often circumvented by implicitly assuming that a good estimate of
the average count should somehow be available.

The problem of evaluation of the average sample size is by no means new [20,22]. However, the
majority of existing approaches are based on the assumption (sometimes implicit) that the sample
size is described by a normal distribution. Only in this special case can the mean and the confidence
interval of the estimation be readily obtained from a small number of samples (but see also the point
below). Meanwhile, considerable evidence has been obtained over the last two decades to show that
situations where an ecologically meaningful random variable is described by the normal distribution
are rare [64,65]. The situation is exacerbated by the observation that, in many cases, random variables
are described by distributions that do not have a finite variance (e.g., power laws), in which case the
standard analysis becomes irrelevant, even when a very large number of samples is available. Another
major assumption routinely made in the standard analysis is that the value of a single sample (or the
mean value calculated based on a small number of samples) is in the centre of the confidence interval
(cf. Lund et al. 1958, see especially the caption to Figure 2 in that paper). If this assumption is relaxed,
the accuracy of the standard approach becomes problematic even in the case of normal distribution. In
this paper, we have considered an approach that does not require the above assumptions.

It is perhaps not surprising that estimates based on a very small number of counts (ultimately,
just one count) are unreliable. An interesting aspect of our study is how intermediate sampling efforts
can provide reliable estimates. Our approach offers a means of controlling accuracy if a moderately
coarse grid is used in the monitoring protocol. Given the results of sampling, further coarsening of a
sampling grid can be applied, similar to that carried out in Section 3. This also allows for assessment
of the accuracy of the original ‘fine’ grid. By comparing the results obtained on the series of coarsened
grids (see Tables 1–4), the evaluation error shows a clear monotone increase with grid coarsening. For
instance, Table 1 shows that σs roughly doubles at each step when N decreases from 25 to 9 to 4 to 1.
It seems reasonable to expect that this tendency can be extended to the full grid; correspondingly, σs

should decrease about twofold when the full grid of 100 samples is decreased to 25 samples. It is then
readily seen that the accuracy of the fine grids used in Sections 3–5 is below the suggested tolerance of
25%. However, should the mean values of the average trap count obtained on coarsened sub-grids
appear to be very different from the average trap count on the original grid, and the range of possible
average trap count values be large, then the results obtained on the original grid would not be reliable.
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As is demonstrated in this paper, our approach can be applied to a broad range of invertebrate
species with widely differing biological and behavioural characteristics. For example, in arable
fields D. reticulatum, an indigenous mollusc is characterised by a highly heterogeneous spatial
distribution [43] with the stability of the relatively discrete patches of higher population densities being
enhanced by the species’ slow dispersal rate and responses to environmental factors. The New Zealand
flatworm (A. triangulatus) is an invasive free living planarian predator feeding on earthworms. At the
edges of its geographical range, it can be restricted to refuges offering micro-habitats with favourable
conditions for its survival, again resulting in a heterogeneous population distribution [54]. Nearer
to the centre of its geographical range, however, a more homogeneous distribution can be found in
favourable habitats. In such cases, the approach investigated in this study offers a method of modifying
sampling strategy to optimise assessment of average trap catches (average population density), thus
allowing more accurate ecological interpretation and comparisons between different parts of its range.
The carabid beetle P. melanarius also displays very different biological and behavioural characteristics,
being an active insect predator that is known to range widely within and between arable fields.
Patterns of population redistribution in the field can be explained by complex movement behaviour
both in crops and at the habitat interface, making accurate interpretation of average trap catches
essential when studying such populations [66]. Similarly, the spatial distribution of the development
and reproduction of the same species [67] will also affect the heterogeneity of sampled populations,
adding to the complexity of the problem. The technique investigated in this study may be used to
ensure more accurate and comparable population assessments to be conducted despite the complex
distribution/dispersion patterns of such species resulting from their biology.

In this paper, we have assumed that, at any given sampling location, the trap count is a reliable
proxy of the actual animal abundance in the vicinity of the trap. It should be mentioned that
calculating the population density from the trap count value(s) is not straightforward as it can be
affected by a variety of factors, in particular, by animals’ movement behaviour [14–16,68]. A general
observation—often referred to as the ‘activity-density paradigm’ [69] —is that the same trap count
may result from a scarce population of fast moving animals and from a less dense population of slower
moving animals. Therefore, trap counts have a relative rather than absolute meaning. A detailed
consideration of these issues lies beyond the scope of this paper.

Note that the goal of this paper is to discuss the problem of coarse grid sampling in the contexts of
conservation and pest control (i.e., where a comparison of the average trap count to the management
point may be required) rather than to provide a method fully ready for practical applications in the
field. In particular, a practical method should include a full understanding of the effect of various
spatial arrangements of samples (e.g., regular, random, transect, etc.) and to give recommendations
accordingly. Although our analysis suggests that the exact spatial arrangements of the traps may be
less important that their number (as follows from the bootstrapping results), this issue requires a more
careful, detailed analysis. Such analysis should become a focus of future work.
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