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Graphical abstract 

 

 

 

Synopsis: Pd nanoparticles with the size of about 3–6 nm were loaded on the Bi4O5Br2 nanosheets 

with excellent visible-light photocatalytic activity for degradation of Bisphenol A 

 

 

 

Highlights 

 

 

 

 Pd nanoparticles-loaded ultra-thin Bi4O5Br2 nanosheet is reported. 

 Pd/Bi4O5Br2 showed high photocatalytic activity for Bisphenol A under visible light 

irradiation. 

 Pd/Bi4O5Br2 effectively promote the migration of photogenerated charge carriers. 

 

 

 

ABSTRACT: 

Bismuth oxyhalides are important visible-light-responsive photocatalysts due to their unique 
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electronic and layered crystal structure. In this study, Pd nanoparticles with the size of about 3–6 nm 

were loaded on the Bi4O5Br2 nanosheets by applying solvothermal-reduction method. The 

photoelectrochemical performance and photocatalytic activity for the degradation of Bisphenol A in 

aqueous solution of Bi4O5Br2 and Pd/Bi4O5Br2 were evaluated. Compared with pure Bi4O5Br2, 

Pd/Bi4O5Br2 exhibited an excellent photocatalytic activity for the degradation of Bisphenol A in 

aqueous solution under LED visible light irradiation. 1.0 wt% loading of Pd was found to be most 

effective for improving the photocatalytic activity of Bi4O5Br2 for the degradation of Bisphenol A 

and near to 95.8% of degradation was achieved after 70 min LED visible light irradiation. Under 

535 and 630 nm monochromatic LED visible light irradiation for 70 min, only 7.9% and 4.8% 

Bisphenol A were degraded over 1.0% Pd/Bi4O5Br2 photocatalysts, respectively. Therefore, the 

improved photocatalytic activity of Pd/Bi4O5Br2 is mainly attributed to the formation of a Schottky 

barrier between the Pd nanoparticles and the Bi4O5Br2 nanosheet, promoting efficient separation of 

photogenerated electrons and holes. 

 

 

 

 

KEYWORDS:  

Bismuth oxyhalides; Layered structure; Visible light; Photocatalytic activity; Organic pollutant 

 

 

1. INTRODUCTION  

  Bisphenol A (BPA) is an important chemical raw material and widely used as monomer for the 
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production of polycarbonate plastics and epoxy resins [1–3].A large amount of BPA is released into 

the aquatic environment during its production, causing various diseases such as cancer [4], ovarian 

disease in women [5], thyroid hormone disruption [6], endocrine disorders, and obesity. In recent 

years, a number of chemical or physical technologies, including biological degradation [7], thermal 

decomposition, adsorption [8], ultra-filtration [9], chemical oxidation [10], have been developed for 

the removal of toxic organic compounds from industrial wastewaters. Among them, photocatalysis 

is one of the green technologies that utilizes solar light for the complete degradation of organic 

pollutants and has the potential for environment remediation applications [10-12]. Thus, the 

development of new, highly efficient photocatalysts is highly desirable from the viewpoint of using 

solar energy to solve environmental pollution. 

  Bismuth oxyhalides BixOyXz (X = Cl, Br, I) have been intensively studied due to their excellent 

electrical, optical, and photoluminescence properties [13-16]. Recently, these bismuth oxyhalides 

have received much attention for their photocatalytic ability in degrading organic pollutants under 

visible light irradiation because of their unique layered structures with an internal static electric 

field perpendicular to each layer, which can promote the effective separation of photogenerated 

electron–hole pairs [13,14,17,18]. Moreover, the variation in the x:y:z values of these compounds 

can result in significantly different photocatalytic activities [19-21]. As a member of the 

bismuth-rich bismuth oxyhalides, Bi4O5Br2 is of growing interest owing to its narrow band-gap and 

stable chemical energy and exhibits excellent photocatalytic activity for the degradation of organic 

pollutants [22-25], H2 evolution [26], and CO2 photoreduction [27]. Density functional theory (DFT) 

calculations showed that the conduction band minimum of Bi4O5Br2 primarily consists of the Bi 6p 

orbital, whereas the valence band maximum is mainly composed of the hybrid orbital of O 2p, and 

Br 4p [25]. In addition, theoretical and experimental studies demonstrated that the bismuth-rich 
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strategy can increase the conduction band minimum potential of bismuth-rich BixOyXz [28]. 

Therefore, Bi4O5Br2 is expected to display higher photocatalytic activity than BiOBr. 

  In order to further improve the visible-light-induced photocatalytic activity of the Bi4O5Br2 

nanostructures, several works have been done by coupling with other semiconductors to form 

heterojunctions such as C3N4/Bi4O5Br2 [29], Bi4O5Br2/Bi24O31Br10/Bi2SiO5 [30], and BN/Bi4O5Br2 

[31]. The heterojunction can significantly reduce the recombination rate and increase the separation 

rate of photogenerated charge carriers, and the composite photocatalysts become photocatalytically 

more active than the individual counterparts. In previous reports, highly dispersed novel metal 

nanoparticles (e.g., Au, Ag, Pd, etc.) loaded on the surfaces of semiconducting materials exhibited 

extraordinarily high photocatalytic activity for the degradation of organic contaminants [32-34]. 

The incorporation of noble metal nanoparticles into semiconducting materials can effectively 

improve photocatalytic performance due to the formation of a Schottky barrier at the interface, 

which serves as an electron trap. Therefore, it can greatly promote the separation efficiency of 

photogenerated electrons and holes and increase the photocatalytic activity. Moreover, the noble 

metal nanoparticles have a wide range of absorption spectrum in the visible light region because of 

the surface plasmon resonance (SPR), which is defined as the collective oscillation of the 

conduction electrons [35,36]. Thus, the noble metal nanoparticles/semiconductor composite should 

have higher photocatalytic activity than the individual semiconductors. 

  Herein, Pd nanoparticles with the size of about 3–6 nm were loaded on the Bi4O5Br2 nanosheets 

by solvothermal-reduction method to improve the photocatalytic activity of Bi4O5Br2. The 

photoelectrochemical performance and photocatalytic activity for the degradation of Bisphenol A in 

aqueous solution of Pd/Bi4O5Br2 were investigated in comparison to Bi4O5Br2. Possible 

mechanisms for the improved photocatalytic activity for the degradation of Bisphenol A of 
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Pd/Bi4O5Br2 are discussed in detail on the basis of the obtained experimental data. 

2. EXPERIMENTAL 

2.1. Synthesis  

2.1.1. Synthesis of Bi4O5Br2 nanosheets 

  Bi4O5Br2 nanosheets were synthesized by a hydrothermal method. Typically, 7 mmol of 

Bi(NO3)3·5H2O (>99%, Sinopharm Chemical Reagent Co., Ltd.) and 3.5 mmol of cetyltrimethyl 

ammonium bromide (CTAB) (>99%, Sinopharm Chemical Reagent Co., Ltd.) were dissolved in 50 

mL of deionized water under magnetic stirring at room temperature. 4 mL of NaOH aqueous 

solution (Sinopharm Chemical Reagent Co., Ltd.) was added dropwise under vigorous stirring, and 

the precipitates were formed. The suspension was then transferred into an 80 mL Teflon-lined 

stainless steel autoclave and maintained at 160°C for 12 h. After cooling the autoclave gradually, 

the resulting precipitates were collected by filtration, washed several times with deionized water, 

and dried at 60°C for 12 h.  

2.1.2. Synthesis of the Pd/Bi4O5Br2 composite  

  Pd/Bi4O5Br2 composite was prepared by a reduction method with different loading of Pd 

nanoparticles (0.5, 1.0, 2.0, and 3.0 wt%). In a typical synthesis process, a certain amount of 

Bi4O5Br2 powder was dispersed in 30 mL of deionized water by ultrasonication and magnetic 

stirring. Then, K2PdCl2 (99.99%, Sigma-Aldrich) aqueous solution (0.06 M) was introduced into 

the Bi4O5Br2–containing suspension, and 30 mL of 1% hydrazine hydrate 

(Sinopharm Chemical Reagent Co., Ltd.) was subsequently added to the suspension under magnetic 

stirring for 1 h. The collected powders were washed with deionized water for several times and 

dried at 60°C for 6 h.  

2.2. Characterization 
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  The X-ray diffraction (XRD) patterns were recorded on a powder X-ray diffractometer (Bruker 

D8) with Cu Kα (λ = 1.5406 Å) radiation. The UV–Vis diffuse reflectance spectra (UV–Vis DRS) 

of the samples were measured by a Cary 5000 UV–VIS–NIR spectrophotometer (Agilent) in the 

wavelength range of 200–800 nm, and BaSO4 was used as a reference. The transmission electron 

microscopic (TEM) and high-resolution transmission electron microscopic (HRTEM) images of the 

samples were taken with a JEM-2100 electron microscope (JEOL) with an acceleration voltage of 

200 kV. The chemical states of the elements present in the samples were analyzed by using an 

Escalab MKII X-ray photoelectron spectrometer (XPS, VG Scienta) with Mg Kα radiation. The 

morphologies of the samples were observed by field-emission scanning electron microscopy 

(FE-SEM, Nova NanoSEM 450, FEI) equipped with an energy-dispersive X-ray spectroscopy (EDS) 

operated at an acceleration voltage of 10 kV. The Brunauer–Emmett–Teller (BET)-specific 

surface areas of the samples were measured by a N2 gas adsorption method using an ASAP 

2020 instrument (Micromeritics).  

2.3. Photocatalytic activity test 

  The photocatalytic activities of the prepared samples were evaluated toward the photodegradation 

of Bisphenol A in aqueous solution at ambient temperature. The PCX50A Discover (Perfect Light 

Co., Ltd.) multi-channel parallel photocatalytic reaction system with a 5 W white LED light (400 

nm ≤ λ ≤ 800 nm) was used. In detail, 0.05 g of the prepared sample was dispersed in 50 mL of 

Bisphenol A aqueous solution (20 mg·L–1) in a glass reactor. Prior to irradiation, the suspension was 

kept in the dark for 30 min to ensure adsorption-desorption equilibrium. During the photocatalytic 

reaction, 2 mL of suspension was taken out at certain time intervals for subsequent analysis of the 

concentration of Bisphenol A in aqueous solution by a U-3010 UV–Vis spectrophotometer (Hitachi).  

3. RESULTS AND DISCUSSION  
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3.1. XRD 

  Fig. 1a shows the XRD patterns of Bi4O5Br2 and Pd/Bi4O5Br2 samples, indicating strong 

diffraction peaks at 2θ = 24.29, 29.54, 31.80, 32.86, and 45.49°. These diffraction peaks correspond 

to the (112), (11-3), (020), (021), and (422) planes of tetragonal Bi4O5Br2 with space group of P21(4) 

(ICDD card no. 37–0699). As can be seen, no diffraction peaks belonging to any impurity phases 

are detected in the XRD patterns. The diffraction peaks of Pd nanoparticles are also absent in the 

XRD pattern of Pd/Bi4O5Br2 composite possibly due to the low concentration and high dispersion 

of Pd nanoparticles in the composite. Although the XRD pattern of Pd/Bi4O5Br2 composite does not 

provide enough evidence for the presence of Pd nanoparticles in the composite, the yellow color of 

the Bi4O5Br2 powders apparently turned to gray after loading the Pd nanoparticles, as shown in Fig. 

1a. As illustrated in Fig. 1b, the Bi4O5Br2 possesses a layered crystal structure with the [Bi2O2]
2+ 

and Br– slices stacked together by the non-bonding interaction through the Br atoms along the 

c-axis to form the unique layered structure. This layered structure is indicative of the existence of 

the self-induced electric field in Bi4O5Br2, which promotes effective separation of photogenerated 

electron-hole pairs [13,14]. 

3.2. XPS 

  To investigate the chemical states of the elements, 1.0 wt% Pd/Bi4O5Br2 composite was analyzed 

by X-ray photoelectron spectroscopy (XPS). Fig. 2a shows the XPS survey spectrum of the 

composite, which consists of Bi, O, Br and Pd. The high-resolution XPS spectra of Bi 4f in Fig. 2b 

showed that the binding energy of pure Bi4O5Br2 and 1.0 wt% Pd/Bi4O5Br2 composite were the 

same. The two symmetric peaks centered at 158.8 and 164.2 eV correspond to the typical binding 

energies of Bi 4f7/2 and Bi 4f5/2 [10], respectively. This revealed that Pd nanoparticles deposition did 

not affect the valence state of the surface atoms of Bi4O5Br2. Fig. 2c shows the asymmetric O 1s 
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XPS spectra that are deconvoluted into two symmetric peaks by using an XPS peak-fitting software. 

The peak at 529.6 eV is assigned to oxygen in the Bi–O of Bi4O5Br2 [10,24], whereas the peak at 

531.3 eV is associated with the external –OH group or water molecules adsorbed on the surface of 

the sample [21,36]. As shown in Fig. 2d, the peaks observed at around 68.4 eV are attributed to the 

Br 3d doublet. Fig. 2e shows two asymmetric peaks in the range of 333.6–343.8 eV. The main XPS 

peaks located at 335.3 and 340.6 eV are assigned to Pd 3d5/2 and Pd 3d3/2 of metal Pd nanoparticles 

[37], respectively. In addition, the peaks located at 336.8 and 342.1 eV are related to Pd 3d5/2 and Pd 

3d3/2 of Pd2+ in 1.0 wt% Pd/Bi4O5Br2 composite [37], respectively.  

3.3. TEM 

  The morphology and microstructure of the prepared samples were investigated by TEM. The 

TEM and HRTEM images of the Bi4O5Br2 powders are shown in Fig. 3a and 3b, respectively. It is 

clear from Fig. 3a that the Bi4O5Br2 particles are composed of ultra-thin nanosheets with the 

thickness of about 9 nm. The HRTEM image of an individual nanosheet of the Bi4O5Br2 sample is 

shown in Fig. 3b, confirming its single-crystalline nature. It can be seen that the Bi4O5Br2 

crystallites have distinct lattice spacings of about 0.276 nm, corresponding to the (120) 

crystallographic planes. Fig. 3c shows the TEM image of the 1.0 wt% Pd/Bi4O5Br2 composite, 

indicating that many Pd nanoparticles with the size of about 3–6 nm are distributed on the surfaces 

of the Bi4O5Br2 nanosheets. The HRTEM images in Fig. 3e-g indicate that two different lattice 

fringes of 0.276 and 0.225 nm can be observed, which correspond to the (120) plane of Bi4O5Br2 

and the (111) plane of Pd, respectively. Integrated with the above-given XPS, TEM, and HRTEM 

results, it can be deduced that the Pd nanoparticles were successfully deposited on the surfaces of 

the Bi4O5Br2 nanosheets. 

3.4. EDS  
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  The elemental composition and distribution of 1.0 wt% Pd/Bi4O5Br2 composite were analyzed by 

energy dispersive X-ray spectroscopy (EDS). Fig. 4 shows the SEM image, EDS spectrum, and 

EDS element mapping images of O, Bi, Br, and Pd of 1.0 wt% Pd/Bi4O5Br2. Fig. 4a clearly shows 

that the Bi4O5Br2 particles were assembled by ultra-thin nanosheets, and the EDS spectrum in Fig. 

4b confirms the presence of Bi, O, Br, and Pd in the prepared composite. In addition, the EDS 

element mapping images shown in Fig. 4c-f suggest homogenous distribution of Bi, O, Br, and Pd 

in the prepared composite.   

3.5. UV-Vis DRS 

  The UV-Vis diffuse reflectance spectra of the prepared samples are shown in Fig. 5a. The 

Bi4O5Br2 shows a light absorption from the UV to visible light region, and the wavelength of the 

absorption edge is about 488 nm, implying that Bi4O5Br2 can be applied in the visible-light-induced 

photocatalytic reactions. As noticed, the presence of Pd nanoparticles enhanced the absorption 

ability of the Bi4O5Br2 powders in the visible-light region, and the absorption intensity of the 

prepared composites was increased with increasing Pd loading. The optical band-gap energies of the 

prepared samples were estimated by using Eq. (1)   

                                   2
n

gEhAh                                           (1) 

where α, h, ν and Eg are the absorption coefficient, Planck constant, light frequency, and band gap 

energy, respectively. A in the equation (1) is just a constant. According to Eq. (1), n is determined 

from the type of an optical transition of semiconductor (n = 1 for direct transition, and n = 4 for 

indirect transition). The optical band-gap energy of the Bi4O5Br2 powders is estimated to be about 

2.30 eV (Fig. 5b). 

3.6. Surface area 

  The surface area of the as-prepared samples was investigated by N2 adsorption and desorption 
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isotherms. Fig. 6 shows the nitrogen adsorption–desorption isotherms for pure Bi4O5Br2, 0.5 wt% 

Pd/Bi4O5Br2, 1.0 wt% Pd/Bi4O5Br2, 2.0 wt% Pd/Bi4O5Br2 and 3.0 wt% Pd/Bi4O5Br2 samples. The 

isotherms of all the samples can be classified as type IV, possessing a distinct H3-type hysteresis 

loop. The BET specific surface area (SBET) of the pure Bi4O5Br2, 0.5wt% Pd/Bi4O5Br2, 1.0wt% 

Pd/Bi4O5Br2, 2.0wt% Pd/Bi4O5Br2 and 3.0wt% Pd/Bi4O5Br2 are 15.16, 18.45, 20.09, 21.00 and 

22.83 m2/g, respectively. From the above results, it can be seem that the surface area of the samples 

increased with increasing the amount of Pd phase in the composite.  

3.7. Photocatalytic activity  

  The photocatalytic activities of the Bi4O5Br2 and Pd/Bi4O5Br2 samples were evaluated by the 

degradation of Bisphenol A under LED visible light irradiation. The temporal changes of Bisphenol 

A (BPA) concentration were monitored by examining the variation in the maximum absorption in 

the UV–Vis spectra of Bisphenol A aqueous solution (20 mg·L–1) at 276 nm. Fig. 7a shows the 

variation of the BPA concentration (C/C0) against photodegradation time over the prepared samples. 

An additional experiment was also performed for the direct photolysis of BPA in the absence of 

photocatalysts, and no obvious change was observed in the BPA concentration within 70 min of 

LED visible light irradiation. Meanwhile, the photodegradation of BPA over Bi4O5Br2 sample was 

about 53.3% after 70 min of LED visible light irradiation, indicating that the Bi4O5Br2 nanosheets 

can degrade BPA under visible light irradiation. Clearly, the photocatalytic performance of 

Bi4O5Br2 is significantly improved after loading a suitable amount of Pd nanoparticles. Under the 

identical experimental conditions, the photodegradation of BPA over Pd/Bi4O5Br2 composites 

loaded with 0.5, 1.0, 2.0, and 3.0 wt% Pd nanoparticles is 87.0, 95.8, 67.2, and 51.4%, respectively. 

In order to quantitatively understand the reaction kinetics of the BPA degradation over the prepared 

samples, the pseudo-first order was used to fit the experimentally obtained data. The pseudo-first 
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order is expressed as ln(C0/C) = kt, where C0 and C are the concentrations of BPA in aqueous 

solution at time 0 (the time to obtain adsorption–desorption equilibrium) and t, respectively, and k is 

the pseudo-first order rate constant. The pseudo-first order rate constant (k) for the prepared 

Bi4O5Br2 and Pd/Bi4O5Br2 samples were calculated based on the data plotted in Fig. 7b. The 

calculated pseudo-first order rate constant for the prepared samples can be placed in the following 

sequence according to the content of Pd nanoparticles: 0.0548 min–1 for 1.0 wt% > 0.0266 min–1 for 

0.5 wt% > 0.0156 min–1 for 2.0 wt% > 0.0108 min–1 for 0.0 wt% > 0.0101 min–1 for 3.0 wt%. It is 

obvious that the presence of a suitable amount of Pd nanoparticles loaded on Bi4O5Br2 nanosheets 

accelerates the photodegradation reaction of BPA under LED visible light irradiation. The 

degradation rate constant for BPA of 1.0 wt% Pd/Bi4O5Br2 is about 5 times higher than that of pure 

Bi4O5Br2. Fig. 7c and d show the UV–Vis spectra of BPA aqueous solution collected during the 

photocatalytic reactions with Bi4O5Br2 and 1.0 wt% Pd/Bi4O5Br2, respectively. As shown, the 1.0 

wt% Pd/Bi4O5Br2 composite shows higher photocatalytic activity for the degradation of BPA than 

Bi4O5Br2. 

  In recent years, the composite photocatalysts developed by loading metal nanoparticles (e.g., Bi, 

Au, Ag and Pd) on semiconductor nanostructures attracted much attention due to their enhanced 

visible light photocatalytic activity [38-42]. On one hand, the loading of noble metal nanoparticles 

on semiconductor nanostructures creates a Schottky barrier that acts as an electron trap, improving 

the quantum efficiency through efficient separation of photogenerated electron-hole pairs and 

enhancing the photocatalytic activity. On the other hand, the noble metal nanoparticles can induce 

localized surface plasmon resonance (LSPR), which improves the light absorption of semiconductor 

throughout the range from visible to near-infrared and transfers the plasmonic energy from the 

noble metal to the semiconductor. More importantly, the size of the noble metal nanoparticles plays 

ACCEPTED M
ANUSCRIP

T



13 
 

an essential role in determining the photocatalytic efficiency of the developed composite 

photocatalyst [43,44]. In previous report, larger noble metal nanoparticles (≥ 10 nm) were reported 

to result in a superior photocatalytic activity under visible light irradiation due to stronger surface 

plasmonic resonance [45].  

  In order to investigate the LSPR effect of the Pd nanoparticles with the size of 3–6 nm in the 

prepared composite, the photocatalytic activities of the Bi4O5Br2 and 1.0 wt% Pd/Bi4O5Br2 samples 

for the degradation of BPA under monochromatic 420, 450, 535, and 630 nm LED visible light 

irradiation were also investigated here, and the results are plotted in Fig. 8. Under 420 and 450 nm 

monochromatic LED visible light irradiation (Fig. 8a), the Bi4O5Br2 sample showed slightly higher 

photocatalytic activity (74.8%) than under white LED light irradiation (63.7%) for the degradation 

of BPA within 70 min. Obviously, when the wavelength of the monochromatic LED light exceeds 

535 nm, the photodegradation efficiency of BPA over Bi4O5Br2 becomes negligible (Fig. 8a). It can 

be seen from Fig. 8b that the 1.0 wt% Pd/Bi4O5Br2 composite exhibited excellent photocatalytic 

activity for the degradation of BPA under 420 and 450 nm monochromatic LED visible light 

irradiation. Especially, about 99.9% BPA was degraded under 420 nm monochromatic LED visible 

light irradiation. Interestingly, increasing the wavelength of the monochromatic light to 535 nm, the 

photodegradation efficiency of BPA over 1.0 wt% Pd/Bi4O5Br2 composite gradually declined within 

70 min. Only 7.9% and 4.8% BPA were degraded under 535 and 630 nm monochromatic LED 

visible light irradiation for 70 min, respectively (Fig. 8c). Fig. 8d shows the pseudo-first order rate 

constants (k) for the Bi4O5Br2 and Pd/Bi4O5Br2 samples under monochromatic 420, 450, 535, and 

630 nm LED visible light irradiation. From the results shown in Fig. 8, a weak LSPR effect on 

photocatalytic activity of 1.0 wt% Pd/Bi4O5Br2 composite was noticed. Notably, the 1.0 wt% 

Pd/Bi4O5Br2 composite exhibits higher photocatalytic activity than Bi4O5Br2 in the visible light 
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region due to the formation of Schottky barrier between the Pd nanoparticles and Bi4O5Br2 

nanosheets present in the composite. 

3.7. Mechanisms  

  It is well known that the photocatalytic process in the presence of semiconductor involves light 

photoexcitation, subsequent separation and transfer of photogenerated charge carriers, and final 

redox reactions between the photogenerated charge carriers and adsorbate on the semiconductor 

surface. Accordingly, the charge dynamics property plays an important role in determining the 

photoreactivity of photocatalysts. The separation and transfer of the photogenerated charge carriers 

in Bi4O5Br2 and 1.0 wt% Pd/Bi4O5Br2 samples were investigated by photoluminescence 

spectroscopy (PL) and photoelectrochemical method. The PL spectra of Bi4O5Br2 and 1.0 wt% 

Pd/Bi4O5Br2 samples with an excitation wavelength of 325 nm are shown in Fig. 9. As shown in Fig. 

9a, the observed peak position and shape of the PL spectrum at around 475 nm are identical for 

Bi4O5Br2 due to the radiative recombination process of e–/h+ pairs with emission of photon and 

self-trapped excitons. However, the same peak in the PL spectrum of 1.0 wt% Pd/Bi4O5Br2 sample 

at around 475 nm nearly disappears. In order to further confirm the separation rate of 

photo-generated electron-hole pairs, the transient photocurrent responses of both samples were 

measured under visible light irradiation using a 300 W Xenon lamp with 420 nm cutoff filter 

through light-on and light-off cycles. In Fig. 9b, the 1.0 wt% Pd/Bi4O5Br2 photoelectrode shows a 

two-fold higher photocurrent density compared with Bi4O5Br2 photoelectrode, indicating efficient 

separation and faster transfer of photo-generated charge carriers. 

  To further evaluate the role of reactive species, various quenchers have been used to scavenge the 

relevant reactive species, including hydroxyl radicals (•OH), superoxide anions (•O2
−), hole (h+), 

etc. In this work, ammonium oxalate (AO, 1.0 mmol·L–1), isopropanol (IPA, 1.0 mmol·L–1), and 
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ascorbic acid (AA, 1.0 mmol·L–1) were adopted as h+, •OH, and •O2
− scavengers during the 

photodegradation of BPA by 1.0 wt% Pd/Bi4O5Br2 under visible light irradiation, respectively, and 

the corresponding results are shown in Fig. 9c. With the addition of AO, IPA, and AA, about 12.6, 

35.8, and 90.7% of BPA were degraded under visible light irradiation. The above results suggested 

that both h+ and •O2
− species, especially the former, play an important role in the photodegradation 

of BPA over the 1.0 wt% Pd/Bi4O5Br2 under visible light irradiation. 

  As represented in Fig. 9d, possible mechanisms for the photodegradation of BPA over the 

Pd/Bi4O5Br2 can be explained in detail. As for a visible-light-responsive semiconductor, the 

electrons of the valence band of Bi4O5Br2 becomes excited and electron-hole pairs are formed when 

illuminated by visible light. Once the Pd nanoparticles are deposited on the Bi4O5Br2 nanosheets, 

they act as electron traps to promote the electron-hole separation, and the trapped electrons are 

subsequently withdrawn by the surface-adsorbed O2 on the surfaces of the Bi4O5Br2 nanosheets to 

form  reactive oxygen species •O2
−. Further, the •O2

− will oxidize BPA in aqueous solution. 

Simultaneously, the photo-generated holes in the valence band of Bi4O5Br2 will migrate to the 

surfaces of the photocatalyst and directly oxidize BPA. Hence, the prepared Pd/Bi4O5Br2 composite 

photocatalyst shows improved photocatalytic activity under visible light irradiation compared with 

Bi4O5Br2 and can be applied for the treatment of water contaminated with organic pollutants. 

4. CONCLUSIONS 

  In summary, we have prepared a novel composite photocatalyst by depositing Pd nanoparticles 

with the size of about 3–6 nm on the Bi4O5Br2 nanosheets by applying a solvothermal-reduction 

method. The photoelectrochemical performance and photocatalytic activity for the degradation of 

Bisphenol A in aqueous solution of Bi4O5Br2 and Pd/Bi4O5Br2 with different amounts of Pd 

nanoparticles were evaluated. Expectedly, the Pd/Bi4O5Br2 composite exhibited excellent 
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photocatalytic activity for the degradation of Bisphenol A in aqueous solution under LED visible 

light irradiation compared with Bi4O5Br2. Particularly, 1.0 wt% Pd was found to be efficient for 

improving the photocatalytic activity of Bi4O5Br2. The improved photocatalytic activity of 

Pd/Bi4O5Br2 is attributed to the formation of a Schottky barrier between Pd nanoparticles and 

Bi4O5Br2 nanosheets, promoting an efficient separation of photogenerated electrons and holes. The 

Pd/Bi4O5Br2 composite can be used in water treatment process. 
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Figure Captions 

Fig. 1. (a) XRD patterns of Bi4O5Br2 and Pd/Bi4O5Br2 with different loading of Pd nanoparticles, 

and (b) crystal structure of Bi4O5Br2. 

Fig. 2. (a) XPS survey spectra and (b) Bi 4f, (c) O 1s, (d) Br 3d, and (e) Pd 3d XPS core-level 

spectra of the Bi4O5Br2 and 1.0 wt% Pd/Bi4O5Br2. 

Fig. 3. (a) TEM and (b) HRTEM images of Bi4O5Br2 and (c,d) TEM and (e-g) HRTEM images of 

1.0 wt% Pd/Bi4O5Br2. 

Fig. 4. (a) SEM image, (b) EDS spectrum, and EDS element mapping images of O (c), Bi (d), Br 

(e), and Pd (f) of 1.0 wt% Pd/Bi4O5Br2. 

Fig. 5. (a) UV–Vis diffuse reflectance spectra and (b) Tauc plots of Bi4O5Br2 and Pd/Bi4O5Br2 

composite with different amounts of Pd nanoparticles. 

Fig. 6. BET specific surface area of the as-prepared Bi4O5Br2 (a), 0.5 wt% Pd/Bi4O5Br2 (b), 1.0 

wt% Pd/Bi4O5Br2 (c), 2.0 wt% Pd/Bi4O5Br2 (d) and 3.0 wt% Pd/Bi4O5Br2 (e) samples. 
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Fig. 7. (a) Variation in the BPA concentration (C/C0) versus photodegradation time and (b) ln(C0/C) 

versus irradiation time of Bi4O5Br2 and Pd/Bi4O5Br2 composite with different amounts of Pd 

nanoparticles. UV–Vis spectra of BPA aqueous solution collected during the photocatalytic 

reactions with (c) Bi4O5Br2 and (d) 1.0 wt% Pd/Bi4O5Br2.  

Fig. 8. Photocatalytic activities of (a) Bi4O5Br2 and (b) 1.0 wt% Pd/Bi4O5Br2 under monochromatic 

LED visible light irradiation. (c) The degradation rate and (d) pseudo-first order rate constants of 

Bi4O5Br2 and 1.0 wt% Pd/Bi4O5Br2 under monochromatic LED visible light irradiation. 

Fig. 9. (a) PL spectra and (b) transient photocurrent responses (I-t) of Bi4O5Br2 and 1.0 wt% 

Pd/Bi4O5Br2. (c) Photodegradation efficiency of BPA in the presence of different scavengers over 

1.0 wt% Pd/Bi4O5Br2, and (d) schematic representation of the photodegradation of BPA over 1.0 

wt% Pd/Bi4O5Br2 under visible light irradiation. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACCEPTED M
ANUSCRIP

T


