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Highlights 
 

 The heterogeneous micro-scale microbial growth in pores reduces 

bioavailability 

 This growth form can reduce degradation rates by up to an order of magnitude. 

 Effective mass transfer rates for such limited biodegradation are derived. 

 A conceptual approach how these results may be scaled up is provided for two 

substances: acetate and toluene. 
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Abstract 

Groundwater microorganisms hardly ever cover the solid matrix uniformly–instead 

they form micro-scale colonies. To which extent such colony formation limits the 

bioavailability and biodegradation of a substrate is poorly understood. We used a 

high-resolution numerical model of a single pore channel inhabited by bacterial 

colonies to simulate the transport and biodegradation of organic substrates. These 

high-resolution 2D simulation results were compared to 1D simulations that were 

based on effective rate laws for bioavailability-limited biodegradation. We i) 

quantified the observed bioavailability limitations and ii) evaluated the applicability 

of previously established effective rate concepts if microorganisms are 

heterogeneously distributed. Effective bioavailability reductions of up to more than 

one order of magnitude were observed, showing that the micro-scale aggregation of 

bacterial cells into colonies can severely restrict the bioavailability of a substrate and 

reduce in situ degradation rates. Effective rate laws proved applicable for upscaling 

when using the introduced effective colony sizes.  

 

Key words 
 
pore-scale microbial degradation; bioavailability; effective rate laws; upscaling  
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1. Introduction 

Microbial degradation of organic compounds in groundwater is one of the most 

important processes controlling the fate of chemicals in the subsurface. In particular, 

natural attenuation and contaminant remediation commonly rely on this microbial 

ecosystem service, which emphasizes its relevance for environmental quality and 

water resources management [1], [2]. It is thus important to know where exactly, and 

under which circumstances, microbial degradation occurs, and how it can be 

promoted most effectively. For this, knowledge of the factors limiting in situ 

biodegradation rates is crucial. 

 

One important factor that controls the dynamics of in situ biodegradation in porous 

aquifers is the bioavailability of the substrate to the microorganisms [3], [4], which 

can lead to significant differences between in situ degradation rates observed for 

porous media and rates observed for ideal laboratory conditions [5]. Pore-scale mass 

transfer has been identified as an important process limiting the bioavailability of a 

substrate in a porous medium [6]–[8]. The majority of groundwater microorganisms 

are not found freely floating in the pore water but attached to the pore walls, i.e. the 

surface of the solid matrix [9]–[13]. Since groundwater flow in porous media is 

laminar, micro-scale advective transport to the attached microorganisms is restricted. 

Thus, microorganisms rely on diffusive mass transfer to the cells. Furthermore, it is 

now well known that microbes are not evenly spread along the pore walls, but their 

distribution is patchy [14] and, usually, microcolonies are formed [15]. In 

groundwater, microcolonies typically contain 100 cells or fewer [9].  
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The relevance of micro-scale mass transfer of substrate to the microorganisms 

imposes severe challenges for a quantitative assessment of biodegradation rates [6], 

[16]–[18]. In parallel to fine-scale sampling, models – once verified and validated – 

may be used as prediction and decision tools in order to steer groundwater resource 

management in the most effective and efficient way. However, the biodegradation 

rates applied in these models must consider all processes potentially limiting in situ 

degradation. While the micro-scale heterogeneity of the distribution of 

microorganisms has been acknowledged already in early modelling studies [19], [20], 

micro-scale mass transfer limitations are either not considered or based on effective 

rate expressions, the parameters of which are poorly constrained [21]. More recently, 

approaches combining high-resolution pore-scale descriptions with upscaling theory 

have led to an improved understanding of the link between the geometry of the pore 

space, effective rate expressions for mass transfer limited biodegradation and 

quantitative estimates of the associated effective rate parameters [16], [17], [22]–[24]. 

In particular, the Best equation [25], a combination of a linear exchange term linking 

bulk and bioavailable concentrations with Michaelis-Menten kinetics for the bacterial 

metabolism, has been verified as an appropriate effective rate law with mass transfer 

coefficients derived from the pore sizes and the diffusivity of the substrate [17]. 

However, these approaches and their conclusions regarding the magnitude of the mass 

transfer limitations are based on the assumption that the microorganisms are covering 

the pore walls evenly as a film-like biofilm of constant thickness. While this 

conceptual simplification facilitates the derivation of closed-form effective rate 

expressions and provides a link to models applied to abiotic, surface-catalysed 

reactions in porous media [26]–[28], it might fail to describe effective rates in case of 

heterogeneous colony-like distributions of microbial cells. Other well established 
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approaches to effective boundary expressions include homogenization techniques [29] 

or (heterogeneous) multiscale modeling [30], as well as rough reactive walls concept 

[31], reviewed in [32], focus on the heterogeneity of the surface structure rather than 

on the heterogeneity of the reactivity. Such formulation allows for a mathematically 

closed form and renders numerical calculations unnecessary. This is adequate where 

the knowledge of average properties is sufficient and details on the flow at the 

roughness scale are not required, and where a steady state for the geometry is reached 

and does not evolve anymore. No effective rate approaches currently exist that 

consider a heterogeneous micro-scale distribution of the microorganisms forming 

colonies or micro-aggregates instead of evenly covering the pore walls. It is therefore 

not known to which extent the tendency of the microorganisms to form such colonies 

affects the bioavailability and thus biodegradation of a substrate. 

 

The main aim of this paper is therefore to examine to what extent colony-wise 

microbial distribution decreases bioavailability and degradation in pores. For this 

purpose, we couple the fluid dynamics and substrate transport with an individual-

based model (IbM; [33]) of bacterial colonies to simulate the reactive transport of 

organic substrates within a pore channel. These computations are combined with 

upscaled simulations using effective rate laws, which allows for i) quantification of 

the observed bioavailability limitations and ii) evaluation of the applicability of 

previously established effective rate concepts in the more realistic case of 

heterogeneously distributed microorganisms.   
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2. Methods 

 
We performed two-dimensional (2D) finite element (FE) simulations and one 

dimensional (1D) simulations of fluid flow and solute transport with reaction in a pore 

channel in order to show the effect of microbial cell distribution on the degradation of 

a dissolved substrate. The modelled domain had a length Lx = 10
-3

 m (Table 1) and 

represented a 2D cross-section of a pore channel in flow direction (schematic 

overview in Figure 1). Only one half of the cross-section was simulated (height Ly = 

10
-4

 m; Table 1), assuming symmetry in the other half. Gradients were considered to 

be absent along the z direction. 

 

 

 

Figure 1: Schematic setup of the three types of simulation scenarios. a) Homogeneous 

distribution of biomass suspended in the aqueous phase, posing no resistance to flow; b) Biomass 

distributed along the pore wall like a thin continuous biofilm of uniform thickness, quasi-

impermeable to flow; c) Discrete colonies formed by spherical cells aggregated in one to eight 

colonies on the wall of the pore channel. Left boundary: laminar flow profile with a set average 

velocity and fixed concentration; Lower boundary: impermeable wall (zero flow (no slip), zero 

solute flux normal to the surface); Upper boundary: symmetry axis; Right boundary: set 

pressure and zero diffusive flux perpendicular to the boundary. 
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Parameter Description Value Unit Source 

Geometry      

Lx System dimension along the 

length 

10
-3 

 m  

Ly System dimension along the 

height 

10
-4 

 m  

    

Dissolved components    

c0,ac Inlet concentration acetate  0.162 gacetate ∙ m
-3

 [34] 

c0,tol Inlet concentration toluene 1.8 gtoluene ∙ m
-3

 SI 2 

Dm,ac Diffusion coefficient acetate 8.35∙10
-10

 m
2
 ∙ s

-1
 SI 1 

Dm,tol Diffusion coefficient toluene 6.30∙10
-10

 m
2
 ∙ s

-1
 SI 1 

uin Average inlet velocity 1.25 ∙  

10
-6

             

to 40 ∙ 10
-

6
 

m ∙ s
-1

 chosen to represent 

groundwater velocity 

ρwater, 10°C Density of water at 10°C 999.7027 g ∙ m
-3

 [35] 

µwater, 10°C Viscosity of water at 10°C 1.31∙10
-3

 Pa ∙ s [36] 

     
Biomass components    

ρX 
Dry biomass density of bacterial 

cells
 
 

200,000 g ∙ m
-3

 

Assuming biomass 

density to be equal to 

water and biomass to 

be 80% water 

VX 
Constant volume of bacterial 

cells  
10

-18
 m

-3
 

Groundwater cell 

volume rounded up 

from Griebler et al. 

[12] 

     
Microbial rate parameters, calculated for 10°C ambient temperature  

Yac Yield for bacterial oxidation of 

acetate 

0.353 gdrymass∙ 

gtoluene
-1

 

[37] 

Ytol Yield for bacterial oxidation of 

toluene 

1.2 gdrymass∙ 

gacetate
-1

 

[38] 

kmax,ac Specific reaction rate for 

bacterial oxidation of acetate 

13∙10
-5

 gacetate ∙ 

gdrymass
-1

 ∙ s
-1

 

SI 1 

kmax,tol Specific reaction rate for 

bacterial oxidation of toluene 

6.3∙10
-5

 gtoluene ∙ 

gdrymass
-1

 ∙ s
-1

 

SI 1, SI 2 

Ks,ac Michaelis-Menten half-saturation 

coefficient for acetate oxidation  

0.101 gacetate ∙ m
-3

 SI 1 

Ks,tol Michaelis-Menten half-saturation 

coefficient for toluene oxidation 

0.0544 gtoluene ∙ m
-3

 SI 1, SI 2 

Table 1: Parameters used in the models, considering the typical groundwater temperature of 

10°C. Sources are listed where values were directly taken from the literature, otherwise the 

derivation of the parameters is explained in the SI. Some of the parameters only apply to the 

COMSOL simulations. 
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2.1   2D simulations – general setup 

This model was implemented in a combination of MATLAB (www.mathworks.com) 

code with Java (www.java.com) and COMSOL Multiphysics 3.5 (Comsol, 

Stockholm, Sweden, www.comsol.com). A homogeneously spatially discretized, 

rectangular 2D grid with square grid cells of side length of 2∙10
-6

 m was defined in 

MATLAB. In this proof-of-principle study, the biomass distribution was defined only 

once in MATLAB and cells were not growing (pseudo-equilibrium simulation). 

Different biomass distribution patterns were considered (see Figure 1): i) 

homogeneous distribution of biomass suspended throughout the aqueous phase; all of 

the grid cells were assigned solute viscosity, but at the same time, the total biomass 

was evenly allocated into all grid cells, not only to those along the wall. ii) For 

scenarios considering a continuous biofilm of uniform thickness along the pore walls, 

the total biomass was divided equally into all wall-bound grid cells so that each wall-

bound grid cell received biomass. Therefore, in this wall type scenario, all wall-bound 

grid cells were attributed the same viscosity as those grid cells containing colony 

cells. This led to a flow profile with a decreased flow velocity close to the wall. iii) In 

the case of discrete colonies of cells on the wall, microcolonies were generated with 

an individual-based algorithm [39] from single cells placed at pre-determined points 

along the pore walls that were far enough from the pore inlet and outlet so as not to be 

influenced by edge effects from pore ends. The algorithm divided cells stepwise, until 

the desired total cell number of the colony was reached (details on the spatial 

allocation of the new cells are given in Lardon et al. [33] and Kreft et al. [40]; the 

positions of the cells were adjusted to avoid overlap, using the shoving algorithm 

described by Picioreanu et al. [41]). This algorithm was implemented in Java and 
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called from MATLAB. After this, the positions and sizes of the cells were constant 

and no further growth of biomass was considered during the simulations.  

 

After the colony-generating or equivalent steps, two matrices were set up: one matrix 

held the biomass concentrations for each grid cell, which was used for calculating 

reaction rates, and a second matrix held the viscosities for each grid cell. Biomass-

free grid cells were defined as belonging to the liquid compartment and their viscosity 

was set to the value for water at 10°C of 1.31∙10
-3

 Pa∙s [36]. We set the fluid in these 

cells to be incompressible and the flow unidirectional. Biofilms and biocolonies 

consist of cells and extracellular polymeric substance (EPS) which itself has a gel-like 

consistency [42]. Wet densities of both biomass and EPS are roughly the same [42]. 

We treated the biofilm and colonies as an incompressible viscous Newtonian fluid 

[14], [43]–[46] and set the viscosity of biomass-containing grid cells to 1∙10
4
 Pa∙s 

(~10
7
 times the value for water), in order to make sure that only diffusion takes place 

inside the biofilm, but no flow.  

 

Based on the channel geometry thus formed, the stationary laminar flow field and the 

steady-state concentration distribution of substrate were computed by solving an 

advection-diffusion-reaction equation using COMSOL Multiphysics 3.5a, called with 

the MATLAB code. The model geometry, biomass and viscosity matrices as well as 

parameters (Table 1; kinetics derived in SI 1 and 2) were imported into COMSOL. 

The Matlab matrices were represented in COMSOL by two-dimensional interpolation 

of the rectangular Matlab grid. The substrate degradation in the regions occupied by 

biomass was described by Michaelis-Menten type kinetics considering only one rate-

limiting substrate (Table 1). The spatial substrate distribution and the flow field were 
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calculated by solving the laminar flow simplified Navier-Stokes equation, as well as 

the diffusion-reaction mass balance on a finite element mesh generated in COMSOL 

with the default settings. For this, a no-slip condition (zero velocity) was applied at 

the pore wall, while flow symmetry was assumed at the upper boundary of the 

simulated domain (Figure 1). A constant pressure was considered at the outlet 

boundary, while a fully developed (i.e. parabolic) laminar flow velocity profile was 

set at the inlet boundary, by setting a length of the inlet channel outside the model 

domain sufficiently long for a laminar flow profile to have developed (i.e. parabolic 

flow profile) at the inlet (Figure 1). The inflow received the set concentration at the 

velocity specified from the coupled Navier-Stokes equation. The lower (solid wall) 

and upper (symmetry) axes were set to zero flux normal to the surface, and the 

outflow was set to convection-only substrate transport. The mass balances were 

solved, with ε in the Navier-Stokes equation, i.e. the rate-of-strain tensor, having been 

derived from the viscosity grid. Results averaged for each finite element, including 

substrate concentrations and internal stresses, were returned to Matlab following an 

operator-splitting procedure [47] – in the present study these values were only applied 

to derive the graphical representations, but in future applications of this framework, 

these returned values will be used for simulating the temporal development of the 

bacterial colonies. The steps from creating the matrices for biomass and viscosity 

based on the microbial growth up to solving the laminar flow simplified Navier-

Stokes equation, as well as the diffusion-reaction mass balance and growing bacteria 

according to the new velocity and substrate field, can be iterated over for resolution in 

time. Similar procedures were used previously [48]–[51]. The graphical 

representations were prepared using R [52], in particular packages „lattice‟ (v. 0.20-34 

[53]) and „ggplot2‟ (v. 2.2.2 [54]). 
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2.2  1D simulations 

Processes in the pore channel were also simulated by combining a one-dimensional 

(1D) description of flow and transport along the length of the pore with an effective 

degradation rate that considered the spatial arrangement of the biomass in the pore. 

The length of the pore channel, the 1D spatial discretization along the pore length and 

the in- and outflow boundary conditions were the same as for the 2D simulations. 

Flow velocity was constant along the pore length and corresponded to the average 

flow velocity in the 2D simulations.  

 

For a homogeneous biomass distribution in the aqueous phase, substrate degradation 

was described by Michaelis-Menten kinetics analogous to the 2D simulations. For 

scenarios with biomass covering the pore wall as a thin, constant thickness biofilm, 

the effective rate was described by Heße et al. [16], [17] who showed that the 

combination of a linear mass transfer term with Michaelis-Menten degradation 

kinetics can adequately describe the diffusive mass transfer towards the pore wall, 

where microbial degradation takes place. The resulting combined rate expression is 

known as the Best equation [25]: 

 

          
      

 
(  

 

  
 

    
 

      
)  (  √  

 
 

  
 
    
 

      

(  
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where c is the concentration of substrate and Ks is the Michaelis-Menten half-

saturation coefficient for the substrate. Values for the maximum reaction rate 

  
                were derived from the maximum specific reaction rates      

and the average bacterial biomass concentration in the simulated pore channel 

(                  ⁄  where Nbac is the number of bacterial cells in the domain 

and the pore volume given as               , where    is a thin layer of 2∙10
-6

 

m; mx is the bacterial mass, derived from the volume of the bacterial cells Vx and dry 

biomass density ρx). The mass transfer coefficient,     
  

 
 
  

  
  [17] depends on the 

molecular diffusion coefficient Dm and the height Ly of the simulated pore channel. 

 

We adapted this approach to describe the presence of microbial colonies (i.e. 

discontinuous distributions of biomass along the pore wall). An effective size (length) 

was attributed to the colonies (same value for each colony) and the degradation 

activity was restricted to individual, discontinuous sections of the pore length, the 

position of each section given by the location and effective size of the colonies. 

Within these sections, the biomass of the corresponding colony was considered to be 

continuously distributed along the pore wall. Compared to the continuous biofilm case 

described by the Best equation, the value of k
*

max is elevated by a factor   
  

     
 due 

to the increased biomass concentration in the colony sections, where Lx is the length 

of the pore, Nc the number of colonies in the pore and dc the effective colony size. 

Outside these sections, k
*

max is set to zero. Furthermore, an alternative description was 

considered assuming degradation to take place continuously along the entire pore 

length. To account for the aggregation of cells in the colonies k
*

max was again 
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increased by the factor F, but subsequently the resulting rate was divided by F since 

the wall was covered by the biomass only in a fraction 1/F of pore length. 

 

The 1D model was implemented in the Biogeochemical Reaction Network Simulator 

(BRNS; [55], [56]) Transient simulations were performed until a steady state was 

reached. All parameters describing the reactive transport had the same value as in the 

2D simulations or were directly derived from them. The only exception was the 

effective colony size dc, which was fitted for each individual scenario to achieve a 

maximal match between the 1D and 2D simulation results. For this comparison, 2D 

concentration distributions c(x,y) were averaged across the height of the simulated 

pore channel using flux-weighted averages: 

                 
∫                 

∫          

 with caverage,flux(x) as average concentration and 

u(x,y) as pore water velocity. 

 

Results of the 1D simulations were used to determine the effective bioavailability Beff 

of the substrate for the different distributions of the bacterial cells [57]: 

 

     
         

   
         (2) 

 

with         
  

 

    
 given by Michaelis-Menten kinetics considering a 

homogeneous distribution of the cells in the aqueous phase without bioavailability 

restrictions. The effective rate is given according to Eq. 1 for a biofilm-like 

distribution along the pore wall or by using Eq. 1 with an elevated value of k
*

max 

based on the fitted effective colony sizes. 
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2.3. Simulated scenarios 

Simulations were performed for different combinations of transport and degradation 

conditions. Average flow velocities in the pore inlet covered a range of 1.25∙10
-6

 m s
-1

 

(0.108 m day
-1

) to 20∙10
-6

 m s
-1

 (1.73 m day
-1

). Groundwater bacterial cells usually 

have a – rounded up – volume VX of 10
-18

 m
3
 [58]. We set the dry biomass density ρX 

= 200,000 g∙m
-3

, assuming wet biomass density equal to the density of water, 

1,000,000 g∙m
-3

, and the water content of biomass to be 80% (Table 1). The microbial 

cell numbers were varied from 50 to 800 cells/domain, which would be equivalent to 

a range from 7.5∙10
13

 to 1.2∙10
15

 cells m
-3

 aquifer material (assuming a porosity of 

30%; see SI 2). These single pore values are largely in agreement with measured 

values (averaged for larger sampling volumes). For pristine aquifers, densities of 

1.8∙10
12

 to 2.3∙10
14

 cells m
-3

 were reported [59], [60]. In contaminated aquifers, 

densities of 6∙10
12

 and 1.5∙10
14

 cells m
-3 

were reported [61], [62]. 

 

Simulations were performed for two different organic substrates with different 

degradability: acetate and toluene. Acetate was chosen as an easily degradable, 

ubiquitous substrate involved in a large variety of reaction pathways, occurring 

naturally both as a product from catabolic [63] and anabolic reactions [64], and 

generally as a reaction partner [65], [66]. Toluene was chosen as a common, 

environmentally significant representative of hydrocarbon contaminants [67], widely 

studied both at spill sites [68], [69] and in the laboratory [70]–[73]. A large excess of 

the electron acceptor was assumed, thus not affecting the degradation rates. The 

degradation rates for each compound (Table 1) at 10°C were adapted from the 

literature (see SI 1 and SI 2 for details).  
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For a base case scenario, an average flow velocity of uin = 5∙10
-6

 m s
-1

, 200 

cells/domain, and acetate as substrate with an inlet concentration of 0.16 g m
-3

 were 

chosen. In all other scenarios one of these parameters was varied while keeping the 

others fixed. For the longitudinal transport along the pore channel the combination of 

parameters corresponds to Péclet numbers (    
      

  
) of 1.5 to 24 for acetate and 8 

for toluene. The resulting Damköhler numbers (    
  

   
  

⁄

   
  

⁄
   are between 13 and 

210 for acetate and 47 for toluene, respectively.  
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3. Results 

The 2D simulation results for the base case scenario (acetate as substrate) show that 

changing the distribution of biomass affected the concentration distribution within the 

pore channel (Figure 2). The more aggregated the biomass was, the more pronounced 

the local micro-scale gradients were toward the location of the biomass aggregates. 

The latter led to a strong deviation between the substrate concentration at the location 

of the biomass and the concentration averaged across the height of the pore channel. 

As a consequence, the concentrations toward the outlet increased with increasing 

aggregation, indicating a decreasing overall degradation rate due to the aggregation. 

The same qualitative behaviour was observed with toluene as a substrate, different 

total cell number or average flow velocity (SI 3).  
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Figure 2: Computed steady state concentration distributions within a pore channel, for different 

biomass distribution models. These 2D simulation results are for the base case scenario (flow 

velocity 5∙10
-6

 m∙s
-1

, 200 cells/domain, acetate as substrate). Homogeneous = uniform 

concentration of biomass suspended in liquid; Wall = continuous biofilm with uniform thickness 

along the pore wall; Colonies = the same total biomass aggregated into 1, 2, 4, or 8 equidistant 

colonies, respectively. The section within the red box is enlarged in SI Figure 4. 

 

Degradation activity of the colonies was not restricted to the interface between 

biomass and pore water but substrate penetrated into the colonies (exemplary results 

shown in Figure 3 and Figure SI 4). The latter had an approximately semi-circular 
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cross section with radii varying between rc = 2 µm for the smallest and rc = 28 µm for 

the largest considered colonies. Using these colony sizes, values for the Thiele 

modulus (   
    
 

  
⁄

  
   

⁄
; i.e. second order Damköhler number for comparison of time 

scales for degradation relative to diffusive transport) in the colonies ranged between 

0.6 and 80, which broadly falls within the transition between diffusion and reaction 

limited regimes [16], [22]. 
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Figure 3: Acetate concentration profiles along Ly at the Lx position of the centre of one colony 

(line for colony radius marks interface between biomass and pore water) of 200 cells for the base 

case with different velocities.  

 

 

Results of the 2D simulations were converted into 1D profiles showing the flux-

weighted average concentration along the length of the pore channel (Figure 4). Note 

that an unweighted volumetric concentration averaging procedure led to nearly 

identical 1D profiles (SI 5). The profiles shown in Figure 4 were used as references 

for the 1D simulations. Results from the two simulation approaches for the 

homogeneous biomass distribution were in exact agreement. Also for the continuous 
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biofilm covering the pore walls, the 1D simulation results using the Best equation, 

with the mass transfer coefficient as predicted [17], were nearly identical to those 

from the 2D simulations. In scenarios with microbial colonies, the effective colony 

sizes were adjusted to fit the outlet concentrations of the 2D simulations (refer to 

section “1D simulation” in the method section). In the case of discontinuous reactive 

sections developed here, the obtained 1D profiles were also similar to the 2D 

simulation results. Results of the base case scenario are shown in Figure 4. Results of 

the other scenarios exhibited a similar agreement between 1D and 2D simulations (SI 

6). 
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Figure 4: Flux-weighted concentration profiles comparing the 2D simulations (averaged over the 

cross-section of the pore channel) with 1D simulations using effective rate descriptions. Results 

are shown for the base case scenario (flow velocity 5∙10
-6

 m∙s
-1

; 200 cells/domain, acetate as 

substrate) and different biomass distributions: a) homogeneous in the liquid phase, b) continuous 

biofilm of uniform thickness along the pore wall, c)-f) biomass aggregated in 1, 2, 4, or 8 

equidistant colonies, respectively; ‘disc’ refers to the effective rate expression for discontinuous 

reactive sections along the pore while ‘cont’ refers to the effective rate expression for one 

continuous reactive section along the entire pore.  
 

 
The values of the effective colony sizes depended on the effective rate expressions 

used (several separate reactive sections vs. one continuous reactive section along the 

entire pore length): for the discontinuous case, values ranged between 36∙10
-6

 m and 

140∙10
-6

 m, while for the continuous case the range was 36∙10
-6

 m to 92∙10
-6

 m 

(Figure 5). For the discontinuous case, the effective colony sizes clearly increased 
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with the number of cells/colony while other factors (flow velocity, total number of 

cells in the pore channel, substrate concentration and reactivity) caused only minor 

variations. Similar, although less pronounced, behaviour was observed for the 

continuous biomass distribution. Depending on the obtained effective colony sizes, 

the effective reactivity due to the biomass aggregation increased by up to one order of 

magnitude. The resulting effective bioavailability (i.e. the ratio of the effective, 

bioavailability-limited rate and the rate in absence of any restrictions [57] shows that 

the biomass aggregation led to substantial reductions of the effective bioavailability 

(Figure 6). Such substantial reductions of the effective bioavailability due to 

aggregation of cells into discrete colonies were also observed in cases where the 

continuous distribution of these cells along the pore wall would have led to minor 

effects only (Figure 6). 
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Figure 5: Effective colony size as a function of number of cells/colony both for a) discontinuous 

and b) continuous distribution of reactive sections along the pore wall in the 1D simulations. For 

the base case scenario, a flow velocity of 5∙10
-6

 m s
-1

, 200 cells/domain and acetate or toluene as 

substrate were chosen. 
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Figure 6: Effective bioavailability in scenarios with biomass aggregated into colonies compared 

with the same scenarios with a homogeneous biofilm-like coverage of the pore walls. For each 

vertical group of symbols, the lowest Beff(colony) values are for 1 colony followed by values for 2, 

4 and 8 colonies. Note that Beff values of 1 indicate no bioavailability restrictions, while 

decreasing values indicate an increasing restriction. The 1:1 line indicates cases where 

aggregation into colonies does not lead to higher bioavailability restrictions than for a continuous 

biofilm. These results were calculated according to Eq. 2 with substrate concentrations equal to 

50% of the inlet concentrations. For the base case scenario, a flow velocity of 5∙10
-6

 m s
-1

, 200 

cells/domain and acetate or toluene as substrate were chosen.  
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4. Discussion 

The results of this study indicate that heterogeneity of biomass distribution can 

markedly affect pore-scale degradation. While this is in general agreement with 

previous studies [24], [43], [74]–[79], we were able to quantify the effects of biomass 

aggregations into colonies, which are acting as individual micro-scale hot spots of 

biodegradation. Such micro-scale hot spots require a sufficient mass transfer of 

substrate to their locations for unrestricted degradation activity. The results show that 

aggregation of the bacterial cells indeed led to a major reduction in the degradation 

activity of the entire bacterial population due to more severe restrictions of substrate 

bioavailability. Bacterial densities considered in the simulations were in agreement 

with measured densities for groundwater systems [59], [61], [62], [80]–[83], 

especially when considering the variability of biomass concentrations between 

individual pores. It has also been shown that the spatial distribution of 

microorganisms in an aquifer exhibits strong heterogeneities down to the micro-scale 

[9], [15]. Furthermore, acetate and toluene chosen as more or less readily degradable 

substrates in this study are organic compounds commonly found in (contaminated) 

groundwater either as metabolites of other degradation processes [67], [83]–[85] or as 

anthropogenic contaminants [67]. Thus, the effects presented in our study should be 

representative of real world aquifers. Measured concentrations of bacterial 

cells/biomass representing average values of a macro-scale sample may thus 

miserably fail to predict the in situ bacterial degradation potential: in addition to 

limitations caused by mass transfer from the aqueous phase to the pore walls [6], [16], 

[17], or by variation of biomass concentration between pores [74], [78], we show that 

the aggregation of cells inside single pores is a major factor to be considered [86]–

[89]. More experimental data on the in situ distribution of bacteria at the micro-scale 
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would be beneficial for determining the degree of aggregation to be expected in a 

given natural porous medium. However, given that most bacteria grow into clusters of 

cells upon attachment to surfaces, unless they have specific surface motility 

mechanisms, it is likely that the colony scenarios with their reduced bioavailability 

are the rule rather than the exception. 

 

Results show that the substrate concentration did not decrease immediately to zero at 

the colony surface (Figure 3 and SI 4). Thus, the colony thickness did impact 

biodegradation. The algorithm used in this study to generate the colonies and their 

specific sizes resulted in approximately symmetric colonies of constant cell density. 

One could consider additional factors such as shear forces or feedbacks between 

colony properties (e.g., EPS content or positioning of new cells) and colony growth 

that may result in more complex colony shapes and thicknesses, but such aspects were 

beyond the scope of the present study. 

 

Results of this study show that when bacteria form colony-like aggregates both the 

mass transfer to the colony as well as the reactive transport processes within the 

colony have an impact on pore-scale degradation rates. In addition to the 

discontinuous distribution of the biomass, this questions the use of simplifications 

(e.g., (rough) reactive surfaces or dual-porosity approaches) that consider only one of 

these rate-limiting processes. 

 

To obtain a more general quantitative assessment of the influence of biomass 

aggregation/colony formation on in situ biodegradation in aquifers or other water-

saturated porous media, the high-resolution 2D simulations were used to constrain the 

effective rate expression describing biodegradation along a 1D flow path. Results 
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show that this effective-rate concept introduced for biofilm-like biomass distributions 

[16], [17], can also be adapted to consider the formation of aggregates. For the more 

realistic representation of colonies and their distribution by discontinuous reactive 

zones, the obtained effective colony sizes show a very coherent result since only the 

number of cells/colony determined the effective colony size. For establishing a 

generally applicable functional relationship predicting the effective colony size for a 

given system, more simulations would be needed but the results shown indicate the 

existence of such a relationship and present a way to determine it. For the more 

abstract representation of colonies as a continuous reactive section of modified 

reactivity – which could more easily be implemented in reactive transport approaches 

for the macro-scale – the obtained effective colony sizes (and thus reactivities) allow 

only for a weaker link between cells/colony and apparent colony size. Nevertheless, 

this approach still allows a rough estimate of the resulting degradation rates and 

provides a route to consider the effect of colony formation in upscaled rate 

expressions for the macro-scale. 

 

Furthermore, the combination of high-resolution 2D simulations with 1D simulations 

using effective rate expressions enabled a quantification of effective bioavailabilities. 

These results confirm the strong impact of the micro-scale biomass distribution on 

substrate bioavailability. They show that even in cases where mass transfer toward a 

continuous biofilm along the pore wall would not impose major restrictions on 

bioavailability (i.e., high Beff(colony) values), the additional effect of biomass 

aggregation can lead to a more severe limitation of bioavailability (i.e., much lower 

Beff(colony) values; Figure 6). In the scenarios considered here, effective 

bioavailability reductions of up to more than one order of magnitude were observed, 
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showing that in situ degradation rates were highly affected by the micro-scale 

distribution of biomass.  

 

The Péclet number (Pe) represents the ratio between the time scales of convection and 

diffusion [90]. For Pe > 6, advection dominates, while diffusion is the important 

driver for Pe < 6 [91]. The range of velocities investigated here resulted in Pe ranging 

from 1.5 to 24, thus covering a representative set of conditions ranging from 

diffusion-dominated to advection-dominated. The investigated conditions were well 

within the range of Péclet numbers typical for groundwater, covering fine sand to 

gravel [92]. The dimensionless Damköhler (Da) number relates the time scales of 

reaction and of advective transport. A system is reaction rate-limited if Da << 1 and it 

is mass transport-limited if Da >> 1, which is the case for the scenarios presented 

here, where numbers ranged from 13 to 210. These numbers were also representative 

for fast reactions [93] in a coarse/ medium sand aquifer [23]. The dimensionless 

Thiele modulus    relates the time scales of reaction and diffusive transport [94] and 

is therefore more appropriate for biomass than the Damköhler number. In the 

colonies,    ranged between 0.6 and 80, which broadly falls within the transition 

between reaction (low Φ
2
) and diffusion limited regimes (high Φ

2
) [16]. These values 

are similar to Φ
2
-values of 0.4-18 reported reactive antimicrobial agents in a biofilm 

[95].  

 

The present study analysed processes within a cross section of a pore of regular 

geometry, which is certainly a severe simplification of the pore structure in a natural 

porous medium and of the flow and transport therein. Also, for Pe < 10 as considered 

for some of the scenarios, preferential flow can be assumed to occur [96]. Similarly, 
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microbial activity is restricted here to the degradation of a single substrate, no other 

factors than the substrate concentration are assumed to affect this degradation activity, 

colonies consist only of bacterial cells and no extracellular polymeric substances 

(EPS), and would – if extrapolated – be effectively rings around the 3D pore, instead 

of discrete three dimensional colonies. However, such simplifications have been 

shown to provide valuable information on the dynamics of bacterial systems [14], 

[16], [97]–[100]. They have been extended and applied to pore networks as well [43], 

[101]–[107]. These simplifications allow determining the relevance of the studied 

processes without confounding effects. Furthermore, these simplifications enabled the 

systematic comparison of the 2D simulations with effective rate-law expressions that 

provide the means for an upscaling of the obtained results to pore networks and 

beyond. Such scalable results provide the opportunity to study the influence of 

bacterial distribution heterogeneity at larger scales especially when microbial 

abundance is positively [108] or negatively [109] correlated with flow velocity. In 

particular, the obtained effective rate expressions allow for the consideration of 

micro-scale biomass aggregations in modelling approaches simulating processes in 

networks of interconnected pores [110]. Nevertheless, further research is needed to 

test and verify the developed effective rate expression in the presence of more 

complex conditions than considered in this study and whether the presented concept 

and the 2D fluid dynamics computations can be applied analogously in larger systems 

such as pore networks.  

 

In summary, the results of the present study demonstrate the impact that microbial 

distribution patterns even at the micro-scale have on substrate bioavailability and in 

situ biodegradation rates and provide a conceptual approach how these results may be 
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scaled up. This proof-of-principle study can be adapted to more complex scenarios in 

the future to study how the properties at the system level emerge from the distribution 

of the individual cells and their adaptive behaviour [111]. 
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